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falciparum clone FCR3S1.2
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Abstract

Background: The pathogenicity of Plasmodium falciparum is in part due to the ability of the parasitized red blood
cell (pRBC) to adhere to intra-vascular host cell receptors and serum-proteins. Binding of the pRBC is mediated by
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a large multi-variant molecule encoded by a
family of ≈60 var genes.

Methods: The study of var gene transcription in the parasite clone FCR3S1.2 was performed by semi-quantitative
PCR and quantitative PCR (qPCR). The expression of the major PfEMP1 in FCR3S1.2 pRBC was analysed with
polyclonal sera in rosette disruption assays and immunofluorecence.

Results: Transcripts from var1 (FCR3S1.2var1; IT4var21) and other var genes were detected by semi-quantitative PCR
but results from qPCR showed that one var gene transcript dominated over the others (FCR3S1.2var2; IT4var60).
Antibodies raised in rats to the recombinant NTS-DBL1a of var2 produced in E. coli completely and dose-
dependently disrupted rosettes (≈95% at a dilution of 1/5). The sera reacted with the Maurer’s clefts in trophozoite
stages (IFA) and to the infected erythrocyte surface (FACS) indicating that FCR3S1.2var2 encodes the dominant
PfEMP1 expressed in this parasite.

Conclusion: The major transcript in the rosetting model parasite FCR3S1.2 is FCR3S1.2var2 (IT4var60). The results
suggest that this gene encodes the PfEMP1-species responsible for the rosetting phenotype of this parasite. The
activity of previously raised antibodies to the NTS-DBL1a of FCR3S1.2var1 is likely due to cross-reactivity with
NTS-DBL1a of the var2 encoded PfEMP1.

Background
The malaria parasite Plasmodium falciparum causes the
death of around one million individuals annually, mainly
small children. There are an estimated 300 million
clinical cases annually in the world despite the fact that
individuals are able to acquire immunity to the disease
[1]. Protective immunity towards malaria develops, how-
ever, only after repeated exposure to the P. falciparum
parasite and it is known to be in part dependent on
antibodies towards the variable antigens present at the
pRBC surface [2-9]. The best-characterized molecule of
these surface antigens is the P. falciparum-infected

erythrocyte membrane protein 1 (PfEMP1). This protein
family is encoded by a repertoire of around 60 var-genes
per genome and the parasite can switch between differ-
ent variants that are exported to the surface of the
pRBC in order to evade the host’s immune system [10].
In addition, the molecule PfEMP1 plays a central role in
the parasite’s ability to sequester in the microvasculature
of the infected individual and to form rosettes between
infected and uninfected RBC as well as giant-rosettes or
auto-agglutinates [3,11,12]. Since PfEMP1 can bind to a
variety of host-cell receptors the pRBC is able to avoid
clearance in the spleen thus contributing substantially to
the manifestations of severe malaria through excessive
sequestration [13].
The N-terminal Duffy-binding like domain (DBL)

1a has the highest degree of sequence conservation
among all domains of PfEMP1 [14,15] and it is responsible
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for binding to host receptors both on RBC and on
endothelial cells [16-18]. This domain has, therefore, a
central role in parasite sequestration in the microvascula-
ture [18-20] and certain characteristics have been asso-
ciated with severe disease [5,12,21-24]. DBL1a-domains of
PfEMP1 of parasites of rosetting phenotypes have been
described for the strains R29 [16], varO [25] and the clone
FCR3S1.2 [17,26] (sequence alignment compare Figure
1A) which is the focus of this article.
var genes can be divided into five different classes

according to their 5’ upstream region [27] and it has
been found, that rosetting parasites more frequently
express var genes belonging to group A, and group A/B

are more often transcribed in patients suffering from
severe malaria [12,28-30]. The transcribed var gene
repertoire in the rosetting parasite strain FCR3S1.2 was
recently re-analysed and found that the dominant tran-
script is FCR3S1.2var2 (IT4var60) (Figure 1B) that also
belongs to the group A-var genes. The original analysis
and identification of the FCR3S1.2var1 as the dominant
transcript [26] was carried out using degenerated primers
modified after Su et al [31]. Now optimized RNA extrac-
tion and RT-PCR protocols were applied [12,32] using
three sets of primer-pairs generated for the amplification
of unknown DBL1a-sequences [12]. These transcripts
were subsequently amplified using qPCR. With this
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Figure 1 Structure and sequence comparison of the FCR3S1.2var2 gene A: Alignment of the protein sequence of the rosette associated DBL1a-
domains of the parasite strains FCR3S1.2, R29 and Palo Alto varO. B: Schematical presentation of the FCR3S1.2var2 gene structure.
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approach, a different var gene (FCR3S1.2var2) was found
to be the dominantly transcribed in FCR3S1.2. Sera raised
against the NTS-DBL1a-domain of FCR3S1.2var2 showed
a PfEMP1-specific immunofluorescence pattern, stained
the FCR3S1.2 pRBC surface in FACS and disrupted the
rosettes of this parasite clone.

Methods
Parasite cultures
The P. falciparum laboratory clone FCR3S1.2 [33] was
cultivated as described in blood group O RBC [34]. The
phenotype of FCR3S1.2 was maintained by weekly
enrichment over a Ficoll-gradient [34]. FCR3S1.2 pRBC
of different generations after cloning were used in the
experiments. Transcription levels were measured in dif-
ferent cultures of FCR3S1.2 including: A) parasites 18
generations after micromanipulation cloning (FCR3S1.2-
18G; 85% rosetting) [33]; B) parasites ≥100 generations
after cloning (FCR3S1.2-100 G, 85% rosetting) and C)
parasites after 28 generations of additional growth of
the parasites of (B) (FCR3S1.2-100 G) in the absence of
Ficoll enrichment (FCR3S1.2 128 G, 78% rosetting). The
pRBC of FCR3S1.2 avidly bind to a number human cel-
lular receptors and serum-proteins (Table 1).

RNA extraction, amplification of var transcript by RT-PCR
and semi-quantitative PCR
RNA was extracted from FCR3S1.2 early trophozoites
(18-24 h p.i.) at ≥100 generations after cloning with the
QiagenRNeasy kit with minor modifications, followed by
treatment with TURBO DNAse in order to remove any
remaining DNA (Ambion, Austin TX, USA) as previously
described [32]. Reverse transcription was carried out
using superscript III (Invitrogen, Carlsbad, CA, USA)
with random hexamers and oligo(dT)12-18 (300 ng/ml
and 25 ng/ml respectively) at 25°C for 10 min and 50°C
for 120 min followed by 70°C for 15 min. A control reac-
tion without reverse transcriptase (RT-) was performed
for each cDNA synthesis reaction. cDNA was used as
template for PCR with the degenerated primers nDBLf
(TKGCAGCMAAWTAYGARGX), nDBLr (KTCCAC-
CAATCTTCYCT), a-AF (GCACGMAGTTTTGC) and
a-BR (GCCCATTCSTCGAACCA). AccuTaq LA DNA
polymerase mix was used (Sigma, Saint Louis, MA, USA)
and the cycling conditions were 3 min denaturation fol-
lowed by 35 cycles of 30 sec at 45°C, 45 sec at 60°C,
15 sec at 94°C and finally 7 min at 72°C [12,32]. PCR
products were cloned using the TOPO TA cloning kit
(Invitrogen). Forty-eight clones for each primer pair were
subsequently sequenced using the MegaBace system.

Quantitative PCR
In order to quantify the transcripts identified by semi-
quantitative PCR in FCR3S1.2 quantitative PCR (qPCR)

was performed as previously described [32]. Oligonu-
cleotides were designed based on DBL1a sequences
obtained from the semi-quantitive PCR, using Primer
Express (version 3.0, Applied 215 Biosystems, Foster
City, CA, USA) and Netprimer (Premier Biosoft, 216
Palo Alto, CA, USA) (Additional file 1).
The evaluation of var transcripts was done for pRBC

of A) parasites 18 generations after cloning (FCR3S1.2-
18 G, 85% rosetting), B) parasites ≥100 generations after
cloning (FCR3S1.2-100 G, 85% rosetting) and C) with
pRBC of FCR3S1.2 grown for an additional 28 genera-
tions without any Ficoll enrichment (FCR3S1.2-128 G,
78% rosetting). After RNA extraction and DNAse treat-
ment (as described above) the RNA was analysed using
2100 Bioanalyzer (Agilent Tecnology). The RNA was
further processed when the RNA integrity (RIN) was
above 5 [35]. qPCR reactions were prepared in quadru-
plicates containing Power SYBR Green master mix

Table 1 Summary of adhesive characteristics of pRBC of
the P. falciparum clone FCR3S1.2

in vivo

Intravascular sequestration in Sprague Dawley ratsa +

Intravascular sequestration in Macaca fascicularisa +

in vitro

Rosetting (% rosetting pRBC)b 80-90%

Giant-rosetting/auto-agglutinationb +

Soluble heparinc 90%

Blood Group Ac 90%

Ig-binding anti-Igc 96%

Ig-binding anti-IgMc 90%

Ig-binding anti-IgGc 12-20%

HUVECd 1,200-1,600

Melanoma cellsd 400-500

CHO-CD36d 200-300

CHO-ICAM1d 40 ± 12

CHO cellsd 6 ± 3

L-cells (PECAM-1/CD31)d 390 ± 28

L-cellsd 5

sPECAM-1/CD31d 183 ± 31

TSPe -

CSAe -

Placentaf 0

a) Rats or macaques were administrated with 99 mTechnetium-labeled pRBC of
the FCR3S1.2 clone by injection into the tail vein (rats) or Vena saphena
magna (macaques). The animals were left for 60 min after which
sequestration was measured in a triple headed-gamma camera [20,44].

b) Rosetting rates are expressed as the range of percent rosetting
trophozoite-pRBC [33].

c) Percentage of late stage pRBC showing surface fluorescence when
incubated with antibodies to human non-immune Ig, IgM or IgG, or heparin,
or the blood group ABO antigens [33].

d) Number of pRBC bound per 100 cells [17,33].

e) Number of late stage pRBCs bound to thrombospondin-coated plastic (50
mg/ml).

f) Number of IEs bound to 1 mm2 of placental tissue.
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(Applied Biosystems) in 10 μl volumes at a 300 nM con-
centration for each primer. Quantitative amplifications
were performed through 45 cycles (95°C for 15 s and
60°C for 1 min) in an ABI 7900 qPCR system (Applied
Biosystems). Seryl-tRNA-synthetase was used as an
endogenous control for relative quantification. qPCR
results were analysed as earlier described [32].

Production of NTS-DBL1avar2 protein in E. coli and
polyclonal NTS-DBL1avar2 sera
The NTS-DBL1avar2 domain was amplified from geno-
mic DNA of the parasite clone FCR3S1.2 (forward pri-
mer: CCA TGG CAC CAA AGG GTA GAA; reverse
primer: AGA TCT GTA TTT TTTTTT TTG TTT ATT
AAA TTC) and cloned into the pQE60 vector (vector
pQE, Qiagen, USA), expression and purification of his-
tagged NTS-DBL1avar2 domain was carried out as
described [36]. Three male Sprague Dawley rats (3
months old) received four immunizations with recombi-
nant NTS-DBL1avar2 protein on days 0, 30, 60 and 90
(50 μg/rat) emulsified in Freund’s complete (first immu-
nization) or incomplete adjuvant (second to fourth
immunization). Sera were collected four weeks after the
last immunization.

Rosette disruption assay
The capacity of the immune sera raised in rats against
recombinant NTS-DBL1avar2 to disrupt rosettes of the
FCR3S1.2 clone in blood group O RBC (dilutions: 1:5,
1:10, 1:20, 1:40, 1:80) was assayed as described [17]. As
a positive control a purified IgG fraction of a Malawian
hyper-immune sera pool was used. Malaria naïve Swed-
ish sera and pre-immune rat sera were used as controls.

Immunofluorescence assays with anti NTS-DBL1avar2sera
Air-dried monolayers of trophozoite-pRBC of the
FCR3S1.2 clone were obtained as described previously
[37]. The monolayers were incubated 60 min with poly-
clonal NTS-DBL1avar2 sera diluted in PBS (1:50),
washed three times in PBS, and incubated 60 min with
an ALEXA488- conjugated goat anti-rat antibody (Mole-
cular Probes, Invitrogen). All incubations were carried
out at RT in a humid chamber. Preparations were
mounted with an anti-fading solution consisting of 20%
DABCO (Sigma) in glycerol, and analysed with 10× ocu-
lar and a 100× oil immersion lens in a Nikon Eclipse 80i
microscope.

Analysis of surface recognition by flow cytometry
Trophozoite pRBCs of ≈24-30 p.i. were incubated in a
dilution of 1:20 with the polyclonal NTS-DBL1avar2

rat sera for 30 min at RT. The pRBC were washed
twice with PBS/FCS after incubation with the primary
antibody followed by a 30 min incubation with a goat

anti-rat IgG antibody coupled to ALEXA488 (dilution
1:100). For nuclear staining ethidium bromide was
added at final concentration 2.5 μg/ml and resuspended
in PBS with 2% FCS. The cell acquisition was done
using flow cytometry (FACSCalibur, BD Bioscience,
http://www.bd.com) where 5000 pRBC were counted.
The analysis was performed using the software Cell
Quest Pro (BD Bioscience).

Results
Amplification of the transcribed var gene in FCR3S1.2 by
RT-PCR
The reverse transcriptase-PCR (RT-PCR) amplification
was carried out with three sets of degenerate primer
pairs (a-AF/a-BR, nDBLf/nDBLr, nDBLf/a-BR) and
sequencing generated a total of 111 sequence reads after
post quality control. These were divided into contigs
and analysed as previously described [12,32]. FCR3S1.2
expressed a range of var genes, not necessarily full-
length transcripts; in total 40 var genes were amplified,
where five of those sequences were present in 60% of
the total reads (Figure 2). A gene referred to as var2
(IT4var60) was the most dominant var gene transcribed
with 28% of the reads. Low transcript levels of the var1
gene were also detected (6.3% of the reads). The distri-
bution of transcribed var genes is shown in Figure 2.

Amplification of the transcribed var gene in FCR3S1.2 by
qPCR
After the identification of var genes transcripts by semi-
quantitative PCR a depth analysis was performed using
qPCR. The five most frequent var transcripts but also

Figure 2 var gene transcription in FCR3S1.2 trophozoites by
semi-quantitative PCR. The pie slices depict the total relative
distribution of each var gene amplified with three different
degenerate primer pairs. The five most frequently transcribed var
genes are shown. The white field indicates the remaining low level
transcribed var genes.
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nine minor transcripts identified in the semi-quantitative
PCR and two conserved var transcripts (var2csa and
var3) were analysed by qPCR. The predominant var
gene identified here was identical with the one found
by semi-quantitative PCR, here named FCR3S1.2var2
(Figure 3). Independent of the number of generations
after cloning (18 or ≥100 generations) or minor differ-
ences in the rosetting rate (85% versus 78%), the results
showed the same dominant var transcript. This tran-
script has 100% identity with the DBL1a domain of
IT4var60 [15]. The semi-quantitative PCR and qPCR
results, therefore, suggest that FCR3S1.2var2 is the most
dominant var transcript in FCR3S1.2. Minor transcripts,
such as IT4var21 (var1) and IT4var35 were also found
employing qPCR, in particular in the earlier generations
of the FCR3S1.2 parasite clone (FCR3S1.2 18 G).

Analysis of the expressed PfEMP1 in FCR3S1.2
The expression of PfEMP1 in the parasite clone
FCR3S1.2 was analysed using sera raised in rats against
the Escherichia coli-produced, his-tagged NTS-DBL1a-
var2. Indirect immunofluorescence was carried out on

air-dried monolayers of pRBC harbouring trophozoite
stages of 24-30 h p.i. The observed pattern in the pRBC
showed staining of multiple vesicular structures typical
for trafficking of PfEMP1 in Maurer’s clefts (Figure 4).
Pre-immune sera from the same animals did not show
any staining of the pRBC-monolayers. In addition, stain-
ing of live pRBC with the anti-NTS-DBL1avar2 was car-
ried out using flow-cytometry and IFA of live pRBC.
Around 75% of the pRBC showed surface reactivity with
the anti-NTS-DBL1avar2 sera (Figure 5). The number of
pRBC showing surface reactivity correlated to the rate
of FCR3S1.2 pRBC involved in rosetting/auto-agglutina-
tion in each experiment. Pre-immune sera of the immu-
nized rats did not result in any surface reactivity with
the pRBC.

Functional analysis of anti-NTS-DBL1avar2 antibodies
Functional analysis of the anti-NTS-DBL1avar2 antibo-
dies was carried out by analyzing their capacity to dis-
rupt rosettes and auto-agglutinates of the clone
FCR3S1.2. The sera were assayed in duplicates in dilu-
tion series from 1:5 to 1:80 and showed a strong and
dose-dependent ability to disrupt rosettes as compared
to a non-treated control (relative rosetting rates: 7.2%
for dilution 1:5, 17.1% for 1:10, 32.1% for 1:20, 49.4% for
1:40, 73.5% for 1:80 and 89.3% for pre immune serum;
Figure 6). The effect of the anti-NTS-DBL1avar2 serum
on rosetting in FCR3S1.2 was higher than that of a
hyper-immune pool from Malawi, which in a dilution of
1:10 gave a relative rosetting rate of 56.9% as compared
to 10.1% for the anti-NTS-DBL1avar2 serum. Pre-
immune sera from the same animals did not disrupt
rosettes and auto-agglutinates.

Discussion
Here, the FCR3S1.2var2 gene coding for the PfEMP1 that
mediates rosetting in the parasite strain FCR3S1.2 was
identified. Furthermore, it was shown that antibodies
towards the NTS-DBL1a-domain of FCR3S1.2var2

Figure 3 Relative var transcript levels in the pRBC of three
distinct FCR3S1.2 cultures as seen by qPCR. The most frequently
identified FCR3S1.2 var transcripts were amplified and the levels
were compared to that of the endogenous control, Seryl-tRNA-
synthetase. The var genes amplified had previously been identified
by semi-quantitative PCR and sequencing by employing three sets
of degenerate primers to the 5-prime end of the var genes[12].
Transcription levels were measured in different cultures of FCR3S1.2.
A) 18 generations after micro-manipulation cloning (FCR3S1.2 18 G;
85% rosetting; [33], B) 100 generations after cloning (FCR3S1.2 >100
G, enrichment on Ficoll to maintain rosetting, 85% rosetting), and C)
at 28 generations of additional growth of FCR3S1.2 100 G without
Ficoll enrichment (FCR3S1.2 128 G, 78% rosetting). Results are
visualized as log2 transformed values.

rat 1 rat 2 rat 3

Figure 4 PfEMP1 of FCR3S1.2var2. Indirect staining of pRBC of
FCR3S1.2 with anti-NTS-DBL1avar2 sera from three individual rats:
Maurer’s-cleft pattern is observed when staining air-dried
monolayers of pRBC with anti-NTS-DBL1avar2 sera (green). Parasite
nuclei were counterstained with Hoechst (blue). Pre-immune sera
did not show any reactivity.
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recognize the surface of the pRBC and are able to dis-
rupt rosettes of FCR3S1.2 parasite.
New tools have been developed for the study of mole-

cular processes and their quality has improved over
the last 15 years. Further, the accessibility of complete
P. falciparum genomes [15,38] and a number of studies
analysing variable sequences has facilitated the study of
polymorphic genes in this pathogen [12]. Sequence
information has helped in the development of ways to
analyse the variable genes. In 1998 when the dominant
var transcript in the rosetting parasite FCR3S1.2 was
first identified [26], only few var sequences were avail-
able and the tools for studying these genes were limited.
At that time, the single cell PCR and Northern blot
techniques were used to recognize the dominant tran-
script in FCR3S1.2 leading to the identification of the
gene FCR3S1.2var1 [26]. In contrast, in the present
study, two different primer pairs in three different com-
binations in RT-PCR were applied [12,32]. Thereafter
and based on the results from the RT-PCR, primers to
the five most dominant var genes as well as to two con-
served var genes (var3 and var2CSA) were designed. In
addition, nine var genes that were found as minor tran-
script (less than 4 sequence-reads) were included. These
primers were subsequently used to analyse the var gene
transcription by quantitative PCR. Using this more in-
depth approach we found a different FCR3S1.2 var gene
(var2) to be predominantly transcribed in the same
parasite.
In order to investigate whether a var gene switch had

occurred during growth of the parasite over the years,
parasites frozen immediately after the cloning of the
FCR3S1.2 (18 generations) were compared to more than
100 generations after cloning. In both cases, the same pre-
dominant var transcript was found, suggesting that the
var gene FCR3S1.2var2 (IT4var60) was already the major
transcript at the time of cloning. The primer pair used in
1998 for the identification of FCR3S1.2var1 transcript in
FCR3S1.2 includes several degenerated nucleotides (8/20
in the forward primer and 7/20 in the reverse primer)
(Figure 7). This could be the reason why var1 was identi-
fied, although this primer pair shows no bias [26].
Functional assays with polyclonal antibodies towards

the NTS-DBL1avar2 show that these antibodies are able
to disrupt almost 100% of the rosettes in the homolo-
gous parasite whereas antibodies against the NTS-
DBL1avar1 disrupt rosettes to a lower extent in the same
parasite (Additional file 2) [19,39]. Cross-reactivity of
NTS-DBL1avar1 antibodies to heterologous NTS-
DBL1a-domains such as the one of the R29 parasite
strain has also previously been reported by this group
[39]. In addition, the ability of antibodies to disrupt
rosettes and impair sequestration in the rat has been
observed in several other studies suggesting that anti-
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Figure 6 Disruption of rosettes formed by pRBC of FCR3S1.2.
Sera raised in rats against NTS-DBL1avar2 were assayed in different
dilutions for their capacity to disrupt rosettes and auto-agglutinates.
A pre-immune rat serum was used as a negative control (pre-bleed)
and a pool of human hyper-immune IgG obtained from Malawi was
used as a positive control (MP). The rosetting rate is expressed as
the relative rosetting rate compared to the untreated control.
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PfEMP1 antibodies may cross-react in-between different
parasites [4,5].
Depending on the 5’ upstream region, var genes can be

divided into 5 different subgroups, the FCR3S1.2var2 also
known as IT4var60 gene identified here belongs to the
group A var genes [15]. FCR3S1.2var2 lacks two cysteines
in the DBL1a domain as compared to FCR3S1.2var1 and
this characteristic has previously been associated with a
rosetting phenotype and/or severe malaria [12,25,40,41].
The FCR3S1.2var2/IT4var60 gene was also found asso-
ciated with the rosetting phenotype in a previous study
[42]. Taken together this suggests that DBL1avar2 of
FCR3S1.2 has characteristics that fit well with the roset-
ting phenotype of this parasite. Still, the results do not
entirely discard the possibility that a small population of
the FCR3S1.2 parasites transcribes the previously identi-
fied FCR3S1.2var1. The rosetting rate when enriched on a
Ficoll gradient, is about 85-90%, but never reaches 100%,
a fact which may indicate that a small subpopulation of
the parasites express PfEMP1 variants other than the
PfEMP1 encoded by var2.

Conclusions
The results presented here show that the FCR3S1.2
parasite clone expresses one dominant var gene tran-
script, FCR3S1.2var2 (IT4var60), which belongs to the
group A var genes. The encoded PfEMP1var2 carries a

two-cysteine-signature associated with rosetting and
antibodies to the protein avidly stain the pRBC suggest-
ing that FCR3S1.2var2 is the dominant var gene
expressed in this parasite.
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Additional file 1: Oligonucleotides used for qPCR experiments. The
data provided show the oligonucleotides used for qPCR are described
below or previously described by Blomqvist et al [32].

Additional file 2: Rosette disruption in FCR3S1.2 pRBC. Rosette
disruption of FCR3S1.2 pRBC with sera raised against the DBL1a-domain
of FCR3S1.2 var1, respectively FCR3S1.2var2
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Figure 7 Sequence alignment of the DBL1a-domain sequence and PCR-primers used Comparison of the DBL1a- and oligonucleotide-
sequences to depict mismatches of the primers used in the original identification of the dominant var gene in the FCR3S1.2 parasite: Aligned
are the “Taylor universal 2000” [43] oligonucletides, the DBL1a-sequence of var1, var2 of FCR3S1.2 as well as the originally used oligonucleotides
named “Chen 1998” [26]. The stars indicate degenerate nucleotides in the primer pairs.
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