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Abstract

Mathematical models have been used to provide an explicit framework for understanding malaria transmission
dynamics in human population for over 100 years. With the disease still thriving and threatening to be a major
source of death and disability due to changed environmental and socio-economic conditions, it is necessary to
make a critical assessment of the existing models, and study their evolution and efficacy in describing the host-
parasite biology. In this article, starting from the basic Ross model, the key mathematical models and their
underlying features, based on their specific contributions in the understanding of spread and transmission of
malaria have been discussed. The first aim of this article is to develop, starting from the basic models, a hierarchical
structure of a range of deterministic models of different levels of complexity. The second objective is to elaborate,
using some of the representative mathematical models, the evolution of modelling strategies to describe malaria
incidence by including the critical features of host-vector-parasite interactions. Emphasis is more on the evolution
of the deterministic differential equation based epidemiological compartment models with a brief discussion on
data based statistical models. In this comprehensive survey, the approach has been to summarize the modelling
activity in this area so that it helps reach a wider range of researchers working on epidemiology, transmission, and
other aspects of malaria. This may facilitate the mathematicians to further develop suitable models in this direction
relevant to the present scenario, and help the biologists and public health personnel to adopt better
understanding of the modelling strategies to control the disease

Background

Malaria is an ancient disease having a huge social, eco-
nomic, and health burden. It is predominantly present
in the tropical countries. Even though the disease has
been investigated for hundreds of years, it still remains a
major public health problem with 109 countries
declared as endemic to the disease in 2008. There were
243 million malaria cases reported, and nearly a million
deaths - primarily of children under 5 years [1]. With
no effective vaccine in sight and many of the older anti-
malarial drugs losing effectiveness due to the parasite
evolving drug resistance, prevention (using bed nets) is
still the only advisory given to afflicted persons. Malaria
has also gained prominence in recent times since cli-
mate change or global warming is predicted to have
unexpected effects on its incidence. Both increase and
fluctuation in temperature affects the vector and parasite
life cycle. This can cause reduced prevalence of the dis-
ease in some areas, while it may increase in others.
Thus climate change can affect malaria prevalence
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pattern by moving away from lower latitudes to regions
where populations have not developed immunity to the
disease [2-8].

Malaria is caused by the protozoan parasites of genus
Plasmodium. In humans it is caused by Plasmodium fal-
ciparum, Plasmodium malariae, Plasmodium ovale, and
Plasmodium vivax. Of these, P. falciparum is the most
common cause of infection in Africa and South East
Asia, and is responsible for ~80% of all malaria cases
and ~90% of deaths [1]. In India, P. vivax, has been the
primary pathogen responsible for malaria, even though
P. falciparum cases are on the rise in recent times [9].
The parasite requires two hosts to complete its life cycle
- the vector female Anopheles mosquito and human.
The bites/bloodmeals of infected mosquitoes are the
mode of transmission of the parasite between the
human hosts. Grassi and Ross discovered the mosquito’s
role in the parasite life cycle and transmission in 1897
[1], and the genomes of Anopheles mosquito and P. fal-
ciparum were sequenced in 2002 [10,11]. During the
interim 105 years, much scientific research was underta-
ken and progress made in the understanding of the
host-parasite-vector interactions and their biology.
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However, the complexities in the life cycle of the para-
site, highly complex environmental and social interac-
tions, evolutionary pressure of drugs and control
measures contributing to drug resistance of parasite,
unforeseen effects of climate change, and migration of
population between endemic and non endemic areas
continued to contribute to the huge burden of morbidity
and mortality accompanying the disease. These have
also thrown up new challenges to researchers and public
health professionals.

Among all areas in Biology, researchers in infectious
disease were one of the foremost to realize the impor-
tant role of mathematics and mathematical models in
providing an explicit framework for understanding the
disease transmission dynamics within and between hosts
and parasites. In a mathematical expression or a model,
several known clinical and biological information are
included in a simplified form by selecting features that
seem to be important to the question being investigated
in disease progression and dynamics. Therefore, a model
is an “approximation” of the complex reality, and its
structure depends upon the processes being studied and
aimed for extrapolation. Based on the questions being
asked, these studies can help fit empirical observations,
and can be applied to make theoretical predictions on
lesser known or unknown situations. For example,
mathematical models have been widely used by epide-
miologists as tools to predict the occurrence of epi-
demics of infectious diseases, and also as a tool for
guiding research for eradication of malaria at the pre-
sent time [12,13].

Malaria is one of the oldest diseases studied for a long
time from all angles, and vast literature exists describing
a host of modelling approaches. Different approaches
are helpful in guiding different stages of the disease
through synthesizing available information and extrapo-
lating it. It is felt that a combination of different
approaches, rather than a single type of modelling, may
have long term usefulness in eradication and control
[13]. In the recent years, global eradication and control
efforts [14,15] have led to a surge of activities leading to
many studies and publications. It is a formidable task to
review all types of models in one article. In this article a
historical path has been considered, and an attempt is
made to take into account some of those mathematical
models, which are primarily focused on the transmission
dynamics of the infection in the host and vector popula-
tions, using the epidemiological compartment modelling
approach [16,17]. The modelling methodology is predo-
minantly deterministic and differential equation based.

This in no way undermines the importance of other
models that are concerned with the “within host” biol-
ogy, or population genetic models that have an increas-
ing impact in eradication and control. To study the
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infection phenomena inside the individual host, “within
host” models consider the interaction of the parasite
with the immune cells in an individual host [18-21].
Population genetic models study evolution and spread
of the parasite in a complex landscape of varying host
immunity, host death, drugs, and mosquito availability
[22,23]. These are connected to the parasitological status
of a population, which is related to the different classes
in the epidemiological compartment models. As men-
tioned earlier, only few recent papers are referred on
these topics, and interested readers may get further
leads from them. Different modelling methodologies
have also been adopted in addition to differential equa-
tion-based models. Few examples are, individual-based
models [24], habitat-based models [25], integrated mod-
els [26,27], and others [17,28-34]. In spite of the wide
range of these models and methodologies, the major
modelling approach still remains the transmission of
infection through the epidemiological compartments of
human and vector populations. Further, with the recent
concern with climate change [5,6], the importance of
the power of prediction of mathematical models in
understanding the infectious disease transmission, high-
lights the requirement of a consolidated review on
this modelling strategy and evolution of the models
employed till date.

Sir Ronald Ross, while working at the Indian Medical
Service in 1890’s, demonstrated the life-cycle of the
malaria parasite in mosquito, and was one among the
first to publish a series of papers using mathematical
functions to study transmission of Malaria in early 1900
[35-39]. He developed a simple model, now known as
the classical “Ross model” [36], which explained the
relationship between the number of mosquitoes and
incidence of malaria in humans. A commonly adopted
method of parsimony in developing mathematical mod-
els is to accept the simplest possible theoretical descrip-
tion consistent with the data available at a given time.
However, these simple models often have limited pre-
dictability and are not satisfactory when new data
becomes available, and more complexities of interactions
are considered. Therefore, subsequently several models
have been developed by researchers who extended
Ross’s model by considering different factors, such as
latent period of infection (Table 1) in mosquitoes and
human [12,40], age-related differential susceptibility to
malaria in human population [12,41,42], acquired immu-
nity [41,43,44], and spatial and genetic heterogeneity of
host and parasite [45-49].

With all these models at hand, it is not a trivial matter
to infer the crucial features of the disease, and get a
coherent understanding of the development of the mod-
els from interactions among the vector, parasite and
host. In this review, the emphasis is more on the
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Table 1 Glossary of different important terms

Latent period (t):
Incubation period:

Asymptomatic:
Vectorial capacity:

Entomological Inoculation
Rate (EIR):

Force of infection:

Clinical immunity:
Anti-parasite immunity:
Effectiveness of treatment

The period from the point of infection to the beginning of the state of infectiousness is known as Latent period
during which the infected individuals stay in the exposed (£) class.

The period from the point of infection to the appearance of symptoms of disease is known as the Incubation
period.

In some infections, symptoms do not appear in the individual in spite of being a carrier for a disease and this is
called Asymptomatic Infection. The appearance of symptoms is important for case diagnosis and treatment.
Sometimes asymptomatic infections are also called subclinical infections.

All the information (vector density relative to host, biting rate, life expectancy etc.) about the vector populations is
incorporated through vectorial capacity, which is defined as the number of potentially infective contacts an
individual person makes, through the vector population, per unit time.

Rate of infectious bites per person is termed as Entomological inoculation rate.

Per capita rate of acquisition of infection by infectious bites is called force of infection.

The immunity, which reduces the probability of clinical disease, is called Clinical immunity.
The immunity, which is responsible for clearance of parasite is called Anti-parasite immunity.
The ratio of the duration of infection for the untreated and treated sensitive parasites.

L

Cost of resistance (I'):
to the drug.

The reduction of a resistant parasite’s fitness relative to that of a sensitive parasite, when neither parasite is exposed

evolution of different mathematical models (mainly dif-
ferential equation based) of malaria with a brief discus-
sion on stochastic models and data based statistical
models. The first aim of this paper is to develop a hier-
archical structure of the range of deterministic models
of different levels of complexity, starting from the basic
Ross Model. The second objective is to elaborate on the
evolution of modelling strategies in different steps, using
some of the key mathematical models that describe
malaria incidence by including specific properties of
host-vector-parasite interactions. To reach a wide range
of researchers working on the epidemiology, transmis-
sion, and other aspects of malaria, the models have been
critically analysed, so that it will be useful in under-
standing and classifying the numerous between-host
models in this area. This may help mathematicians to
further develop suitable models, and biologists and pub-
lic health professionals to adopt better strategies for
controlling the disease.

Model basics

In epidemiological compartment models of infectious
diseases, transmission of infectious agents in the host
population is the fundamental process to be described.
When a pathogen appears in a host community, it parti-
tions individuals in the community into categories
depending on parasite density inside them and the type
of infection. These categories or compartments are
represented by standard notation of S-E-I-R after the
pioneering work of Kermack and McKendrik [16]. In a
simple form they are as follows: the first group consists
of the fraction of host population that is Susceptible (S)
to infection; then comes the Exposed (E) class - the
fraction of population whose individuals are infected by

the pathogen, but not capable of passing on the infec-
tion to others during a latent period (Table 1). The next
is I class or Infectious individuals, who give rise to more
infected individuals through interaction with the Suscep-
tibles. Finally, those individuals who recover from the
infection make up the R class.

There may be variations in the compartment structure
depending on the type of disease. For example, the I
class of individuals may not recover at all and die; R can
consist of individuals, who recover with temporary or
permanent immunity, thereby further subdividing the
epidemiological compartments. Using these notations,
eight classes of compartmental models are possible - S,
SIS, SEI, SEIS, SIR, SIRS, SEIR and SEIRS [50]. For
example, in an SEIRS model, a fraction of the suscepti-
ble (S) population gets exposed (E) to infection, a part
of which then becomes infectious (I). Some from the I
class recover from the disease, and become part of the R
class with temporary immunity. When immunity is lost,
they become susceptible to pathogen attack again, and
enter the S class. The Plasmodium parasite requires
both human and mosquito for its life cycle to complete,
and the infection is transferred between susceptible
human individuals through the bite of infected mosqui-
toes, which acquire infection through a blood meal from
infected humans. In malaria models, therefore, these
compartments have been applied to both human (host)
and vector (mosquito).

Epidemiological compartments, for an SEIRS model,
separating different stages of infection and parasite den-
sity in the host population, are shown in Figure 1. Dif-
ferent stages of infection, which are significant to the
dynamics of transmission, are shown in the transfer
diagram at the top of Figure 1. The level of infectious
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Figure 1 Epidemiological Compartments separating different stages of infection and parasite density in a population. S, E, | and R
represent Susceptible, Exposed, Infected and Recovered fraction of the population respectively. Arrows on the top indicate different ways of
population loss and transfer of population from one compartment to another. Different periods (Latent, Incubation, Symptomatic) characteristic
of infection are shown by dotted arrows. The bottom panel shows the status of clinical markers for each compartment - PCR (P), Sero-
conversion (S¢) and Cellular immunity (C) (positive or negative). Colour Bar indicates the density of parasites in host in different compartments
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agent that replicates inside a host may develop from
small inoculums to a higher level, and later decline and/
or disappear altogether as it passes through these com-
partments (shown by blue colour scale in Figure 1).
Latent period, Incubation period and Symptomatic per-
iod (Table 1 for definitions) are also shown in Figure 1.
In many cases of infection, the incubation period and
latent period are not the same [12]. Appearance of
symptoms is important for case diagnosis and treatment.
But Asymptomatic infections are commonly observed in
humans and require clinical validation. The status of the
clinical markers (presence/absence indicated by +/-) for
diagnosis of each compartment is denoted by P (PCR),

Table 2 Clinical markers for diagnosis

Sc (Sero-conversion) and C (Cellular immunity) [51-53],
and are shown in the bottom panel of Figure 1 (Table 2
for details). Starting from the basic Ross model many
transmission models of malaria have been developed by
considering regulation of the passage of the human host
and mosquito vector through these epidemiological
compartments as a function of the host and parasite-
specific factors, their interactions, and external environ-
mental variables.

Hierarchy of malaria models
Even for the restricted set of deterministic Ordinary Dif-
ferential Equation (ODE) models of epidemiological

Polymerase Chain
Reaction (P):

For identification of malaria parasites in blood, Polymerase Chain Reaction (PCR) is now a common and often vital
technique, which amplifies a minute amount of DNA of the parasite across several orders of magnitude, generating

thousands to millions of copies of a particular DNA sequence [51,52]. Due to absence of parasite in susceptible (5) and
recovered (R) classes PCR indicates negativity whereas for exposed (£) and infected classes (/) PCR shows positivity.

Sero-conversion (Sc):

To determine antibody positivity as a result of infection or immunization, the clinical technique Serology is used. The

development of detectable specific antibodies to microorganisms in the blood serum (Sero-conversion) is a reliable
indicator for different infectious diseases including malaria [53]. Before Sero-conversion, the blood test shows Sero-
negativity for the antibody (in susceptible and exposed classes); after Sero-conversion it shows Sero-positivity for the

antibody (in infected and recovered classes).
Cellular immunity (C):

Parasite infection lead to development of specific memory immune cells (T-cells and/or B-cells), which is detected

positive through clinical diagnostic of cellular immunity (C) in the recovered class.
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compartments being considered in this article, summar-
ising hundred years of extensive theoretical work on
malaria modelling with the incorporation of ever-
increasing complexities, have the possibility of uninten-
tional bias, omissions, and under-representations. Keep-
ing this in mind, an attempt has been made here to
elaborate the evolution of these models by considering
some representative mathematical models that include
the increasing complexities of host-vector-parasite inter-
actions. The word “hierarchy of models” used here
(shown here as a tree in Figure 2), is based on the
undisputed fact that the start of the tree is the model by
Ronald Ross [36-39], and its highly significant improve-
ment, with focus on application in mosquito eradication,

Page 5 of 19

by George Macdonald [40]. The rest of the models have
been grouped here purely on the basis of increasing
complexity of the epidemiological compartments in the
host and vector populations, and hence the temporal
order is not conserved. The three basic models, based
on which other models were developed, are shown as
the grey trunk of the tree.

The epidemiological compartments are kept in dou-
ble-fold boxes in Figure 2. The human classes (S;, Ej, I,
Ry) are in the left fold and the mosquito classes (S, E,,
I,,) in the right. In general, the human classes in malaria
infection end with the susceptible (S;,) class, but the
mosquito populations die of infection and hence it can
only go up to the infected class (,,). In models where

~
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v v
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Figure 2 Evolution and grouping of different types of SEIR malaria models. Subscripts ‘h" and ‘m’ stands for human and mosquito. Double-
folded boxes are for both human & mosquito population, and single fold boxes are only for human. First time addition of a new compartment
is shown in red. The subscript j' (= 1, 2, 3) indicates further subdivision of the corresponding compartment. Three models inside the big grey
box are considered as the Basic malaria models in this paper. Dotted arrows show the incorporation of complex factors in different models or
specific compartment (red circle). Total population size is constant for all models, except the ones inside the dashed box.
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there is only a single-fold box (for the human classes),
the effect of vector is introduced through their vectorial
capacity of infection (Table 1 for definition). The newly
introduced compartment over the earlier one is shown
in red. The effects of different complex factors, such as
age, immunity, environment and socio-economic, in dif-
ferent models or specific compartments (red) are shown
by dotted arrows.

Ronald Ross in his first mathematical model of
malaria used the word “pathometry” to mean “quantita-
tive study of a disease either in the individual or in the
community” [36]. Ross, through his model, showed that
reduction of mosquito numbers “below a certain figure”
(Transmission threshold) was sufficient to counter
malaria - a concept far ahead of his time. After about 40
years, George Macdonald [40], in the 1950s, reasserted
the usefulness of mathematical epidemiology based on
20 years of fieldwork. He modified Ross’s model by inte-
grating biological information of latency in the mosquito
due to malaria parasite development, and implicated the
survivorship of adult female mosquito as the weakest
element in the malaria cycle. This provided a rationale
for a massive World Health Organization (WHO)-coor-
dinated campaign, which focused on using the insecti-
cide dichlorodiphenyltrichloroethane (DDT) that killed
mosquitoes, for the elimination of malaria transmission
among 500 million people in Africa [54,55]. Latency of
infection in humans was introduced by Anderson and
May [12] in Macdonald’s model making the additional
“Exposed” class in humans.

Researchers have modified the basic Ross model to
explain the effect of age structure of prevalence [12],
migration and visitation of people [48]. Several models
were also put forward after Macdonald’s model by com-
bining additional complexities of human immunity,
parasite diversity, and resistance, to explain large
amounts of epidemiological data collected in Africa and
other parts of the world [17,56,57]. They were fairly suc-
cessful in describing region-specific incidence data.
Thus, all other models shown in Figure 2, and discussed
in this paper, are developed from these three basic mod-
els by incorporating different factors to make them bio-
logically more realistic in explaining disease prevalence
and prediction. The only new class that is added in
humans is the recovered (R),) class, which incorporates a
time dependent immunity developed on recovery from
infection, before being transferred to the susceptible (Sj,)
class again. The major advantage of these early models
was to provide a suitable control strategy through the
Transmission threshold criterion, which is based on the
reproductive capacity of the parasite, and termed as
basic reproductive number, R, (Table 3 for details). Even
though the concept of threshold was first introduced by
Ross, it originated from Fisher’s “net reproductive value“
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for a parasite [58]. From its inception the concept of R,
is widely discussed in any study on population biology
of a parasite [59-61]. The basic results of all these mod-
els can also be described by estimating the basic repro-
ductive number (Ry).

In the following sections, starting from the details of
the basic models, the representative mathematical mod-
els in each group along with their underlying features
are discussed, and their specific contributions are
reviewed.

Important features and comparative analysis of
mathematical models

Basic models

The three basic models, shown in the grey trunk of the
tree in Figure 2, are given in Table 4. The first column
of the Table gives the mathematical model; the basic
reproductive number, R, - is given in the second col-
umn; and, the parameters (with range of values used in
literature) are described in the last column. These basic
models used the simplest scenario by incorporating only
two critical features for predicting malaria progression
in the host and vector populations - epidemiological
compartments in the populations, and latency periods of
pathogen in the mosquito and human. The population
size of human is kept constant (unity) in all three basic
models.

Ross introduced the first deterministic differential
equation model of malaria by dividing the human popu-
lation into susceptible (S;) and infected (I;) compart-
ments, with the infected class returning to susceptible
class again leading to the SIS structure. The mosquito
population also has only two compartments (S,,, 1),
but they do not recover from infection due to their
short life span, and thereby follow the SI structure.
Time evolution of the fraction of individuals in the
infected classes (I;, I,,,) is studied using two differential
equations - one each for the human and mosquito
(Table 4). 1t is clear that the parameters, m, a, b, and ¢,
that contribute to the increase of R, in this model, are
related to mosquitoes and humans, and any change in
them can significantly affect malaria transmission.
Increasing mosquito mortality and reducing mosquito
biting rate can reduce R,. The Ross model outlines the
basic features of malaria transmission, and puts the
main burden of transmission on mosquito-specific fea-
tures, thereby paving the way for mosquito-based
malaria control programmes.

The malaria parasite spends approximately 10 days
inside a mosquito during its life cycle. The simple Ross
model did not consider this latency period of the para-
site in mosquitoes and their survival during that period.
This resulted in the model predicting a rapid progress
of the epidemic in human, and a higher equilibrium
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Table 3 Definition of basic reproductive number (Ro)

Basic Reproductive The basic reproductive number, Ry, is the average number of successful offspring that a parasite is capable of

Number (Ro) producing [12,61]. For the compartmental models of malaria this is defined as the number of secondary cases of
malaria arising from a single case in an otherwise uninfected population [40], and can be thought of as a measure of
the intensity of transmission. The estimation of basic reproductive number (Ry), from both models and data has been
discussed by several researchers over the years [12,59-61,125]. Malaria can spread in a population only if Ry > 1
(epidemic), but when it is maintained in a population without the need for external inputs R, = 1 (endemic). A disease
free population is possible when R, < 1. These threshold conditions of Ry may not hold for stochastic models. In that
case the disease may go extinct even for R, > 1, depending on the magnitude of stochastic fluctuations around the
endemic equilibrium state [12].

prevalence of infectious mosquitoes. Macdonald consid-  the time evolution of the exposed (E,,) and infected (/,,)
ered this latency period (¢,), and introduced the classes in mosquito. The R, for this model is conse-
Exposed (E,,) class in the mosquitoes [40]. Therefore, in  quently scaled down with increasing latency period.

this model (Table 4), the mosquito population is divided In a natural extension to the Ross and Macdonald’s
into three compartments (SEI), and the model studies models, Anderson and May considered the ~21 days

Table 4 Basic malaria models - (a) Ross Model, (b) Macdonald Model, and (c) Anderson-May Model, with
corresponding basic reproductive number (Ry) and parameter descriptions

Models Ro Parameters and their values
[12,36,40,44,56]
(a) Ross model [36] a : Man biting rate
[0.01-0.5 day™']
dry, 2 b : Proportion of bites that
=abmly, (1 —1y) —rly ma-be produce infection in human
dt ) [02-0.5]
dl,
=acly (1 —1In) = palnm
dt
(b) Macdonald model [40] ¢ : Proportion of bites by
which one susceptible
dl 2 mosquito becomes infected
"o abmln(1—Iy) —rly mazbe ., [0.5)
dt T o m : Ratio of number of female
p mosquitoes to that of
En _ ¢ Ii(1 = By — Iy) humans [0.5-40]
dt , Lk i p r: Average recovery rate of
—ac Iy(t = tw) [1 = En(t — tn) = In(t — )] @ — 2 En human [0.005-005 day”']
ddI;" =acIy(t — tm) [1 = Em(t — tw) = In(t — )] €72 — py Iy
(c) Anderson and May model [12] U;: Per capita rate of human
mortality [0.017 year']
dEx(t) 2 U Per capita rate of mosquito
o =abmIy (01 = Ex(t) ~ (1)) ma*b Ce*’“ gt T mortality [0.05-05 day ]
— abmly(t — ) [1 = En(t — w) — In(t — )] e~ T2 7, Latent period of mosquito
[5-15 days]
B _ 7, Latent period of human
rEh(t) .U'lEh(t) [10-100 day]
‘ﬂ:lgt) = abmly(t — ) [1 — Ex(t — t) — In(t — )] e (0™
—rIy(t) — paln(t)
) _ a6 (0 [1 = E(©) = (0] = achi(i = )1 = En(i = )
= In(t = t)]e™" ™ = paEn(t)
dl,(t .
Zt( ) =acly(t — t)[1 — En(t — )i

— It — )] e ™ — pualn(t)
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Figure 3 (a) Prevalence curves of human (I;: solid line) and mosquito (I,,,: dashed line) populations in Ross (RR), Macdonald (MC) and
Anderson-May (AM) models. Parameters used are: a = 0.2 day’ , b = 0.5, c = 0.5, m = 20, r = 0.01 day’, u; = 0.017 year', u, = 0.12 day’’, t,, =
10 days, 7, = 21 days. (b) Variation of basic reproductive number (Ry) with mosquito biting rate (@) and mosquito mortality rate (u,) in Ross
model (grey surface) and Anderson-May model (black surface). The surface of Ry = 1 is shown as gridded white plane.

003 05

latency period of the parasite in humans, and introduced
the Exposed (E;) class in human population in their
model [12]. This divided the host population into three
compartments (S, Ej, I,), along with that in the mos-
quito population (S,,, E,, I,). This, therefore, is a SEIS
model for the human population, and the model con-
sists of four differential equations (Table 4) describing
the time evolution of both the exposed and infected
classes for humans and mosquitoes (Ej, I, E,, I,,). The
R, for this model is further reduced due to inclusion of
human latency period. A comparative study of Ross
(RR), Macdonald (MC), and Anderson-May (AM) mod-
els for the prevalence of infected humans and mosqui-
toes (I, I,,) is shown in Figure 3a. The figure shows
that inclusion of the latency periods of parasites in
humans and mosquitoes not only reduces the long term
prevalence of both 7, and I,,, (RR being the highest and
AM the lowest); the rates of progression to these final
infected populations are also reduced. Even with this
minimal complexity, these basic models can give some
idea of the effect of different types of interventions on
disease transmission dynamics, which is discussed in the
next section.

Predicting the effects of interventions in the basic models
The parameters mosquito density (m), biting rate (a)
and mosquito mortality rate (4,) are important in regu-
lating the fraction of human population that will enter
into the exposed (E) and infected (I) classes. The most
important fact for any epidemiologist or public health
person is to have an idea about the relative effects of
interventions in these parameters to the intensity of
transmission, the measure of which is R,. Given the

expressions of R, in all three models in Table 4 it is
clear that the square dependence of the biting rate ‘a’
implies that halving the biting rate is more effective
than halving the coefficients ‘4’ or ‘c’ in all three models
Thus, reducing the biting rate (by using bed nets, or any
other method) will be an effective method of controlling
the transmission. But this is not so obvious for all para-
meters. For example, the relative effect of reducing the
adult mosquito mortality (u#,) in comparison to biting
rate (a) is different in these models due to the presence
of the exponential function of y,. Figure 3b shows this
with the Ross and Anderson-May models, where the
variation of R, is plotted with changes in two para-
meters, biting rate (2) and adult mosquito mortality (x,)
with other parameters as per Table 4. Due to higher dis-
ease prevalence predicted by Ross model (see Figure 3a),
the R, surface is also higher compared to that of the
Anderson-May model. The surface of R, = 1 shows that
onset of epidemic happens at higher values of para-
meters in Ross model compared to Anderson-May
model. These results indicate that compared to the
reduction in biting rate ‘a’, reducing the length of life of
adult mosquitoes is most effective in decreasing malaria
cases, in the latter two of the three basic models. As
mentioned before, these model results provided ratio-
nale for control of malaria transmission through the
mosquitoes, using insecticides (DDT) and insecticide-
impregnated bed nets, since they affect m, a, and pu,.
Thus, even at this low level of complexity, these models
had been successful in describing the factors that influ-
ence the transmission of the disease, which were useful
in control and eradication of malaria from many coun-
tries of the world.
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Complex models

Over and above the simple scenario described in the
basic models, many other factors such as, host factors,
demographic heterogeneity, geographic distribution of
populations, rules of social interactions, climate and
environmental influences, and the ecology of the area
play important roles in the development of malaria in
space and time. Age-specific host immunity, parasite
diversity, DDT and drug resistance dynamics, vector
population dynamics, effect of global warming are also
interacting factors and variables that influence disease
dynamics at different scales. There has not been A
MODEL that has been able to incorporate all factors
and variables because of the overwhelming complexity
of the system. Also, a model’s utility may not always lie
in its mathematical analysis or incorporating finer
details. The ability to base it on relevant details and ask
specific questions that can be tested, are the hallmark of
useful models. Along with fitting the past data and pre-
dicting the future, it should also be able to point to
areas where data needs to be generated in order to
increase our conceptual grasp. Such improvements in
modelling generally occur in multiple steps, one leading
to the other, as more information become available. The
next section elaborates on some representative next-
generation mathematical models that evolved from the
above-mentioned basic models, and includes the
increasing complexities of host-vector-parasite interac-
tions. Specifically, the factors considered here are - (i)
Age and immunity, (ii) Host-Pathogen variability and
resistant Strains, (iii) Environmental factors, (iv) Social
and economic factors, and (v) Migration and visitation.
Age and immunity

Malaria burden differs depending on age and gender in
humans. In African children, most malaria deaths occur
under the age of 5-years. As a result of continuous
exposure and the ability to develop a degree of immu-
nity to the disease, older Africans have reduced risk.
Outside Africa, where continuous exposure does not
occur, the disease burden extends into adulthood [1].
Age and immunity, therefore, are known to be impor-
tant inter-related factors for transmission of malaria in a
population. The importance of incorporation of immu-
nity in malaria models is aptly described by Koella [56]
- “Incorporating immunity into malaria models is impor-
tant for two reasons. First, the neglect of immunity leads
to unrealistic predictions. Incorporating immunity can
help to make models more realistic. Secondly, modelling
immunity, and in particular the effect of vaccines, can
help to predict the outcome of vaccination programmes”.
A number of epidemiological studies [41,43,44,57,62]
have focused on this important aspect by including
immunity and age structure of the human community
in the models. In this scenario, the infection moves
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differentially within different age groups based on their
immune status, and also with time.

Age structure was included by Anderson and May
[12] in the simple Ross model by considering the
human population density in the [, class as a function
of age (&) and time (2) as,

31;,(0(, t) . 3[;,(0(, t) _
at da
dt

abmIn(t) [N(a) — In(e, )] — (r + p1) In(er, 1)

=achy(1) [&1 - lm(t)] — 112 In(1),

where, N(a) denotes the population density of human
at age o, and N is the mosquito density. Other variables
and parameters are as described in Table 4. In this sce-
nario, the infection moves differentially within different
age groups and also with time. With the inclusion of a
simple force of infection (Table 1), which represents the
per capita rate of acquisition of infection based on N,
N> ‘@’ and ‘D', this simple model can improve upon the
basic models to include the age dependence of infection
in human community. But the dependence, as predicted
by this model, did not match well with observed trend
in prevalence with age [63], and it was clear that the
interaction of age and immunity needs to be modelled
more explicitly.

Immunity can be included in a model in two ways -
by considering a separate Immune class (R;) in humans,
and by incorporating an Immunity function in existing
models. Some models (Dietz et al [57], Aron [43], Ngwa
and Shu [64], Ngwa [65], Chitnis et al [32,66], Yang
[67,68]) have introduced a separate immune class in
their models, whereas, some others (Fillipe et al [44]
and [69-72]) have used complex immunity functions in
their model. Assuming that the malaria immunity is not
permanent, Dietz et al [57] first proposed a model con-
sidering seven compartments of human. The effect of
mosquito was introduced through vectorial capacity. In
this model a person may either recover from the
infected class (1) and directly return to the susceptible
class (Sy), or become re-infected through a temporary
immune class (R;). The model has shown a good fit to
the data obtained from northern Nigeria. The changes
on each compartment in this model were presented
using difference equations. The differential equation
based models that incorporate immune classes are dis-
cussed below.

Immune class Generally immunity is modelled by con-
sidering the fact that individuals are born susceptible to
become infected at a rate of / infections per year, but
they subsequently recover and acquire immunity at a
slow rate. If immunity is temporary and lasts only for z
years (in absence of new infections), then they again
become susceptible to infection. Immunity is also
boosted by new infections. In this simple scenario [73],



Mandal et al. Malaria Journal 2011, 10:202
http://www.malariajournal.com/content/10/1/202

Page 10 of 19

and 7 = 5.

Figure 4 (a) Variation in loss of immunity (7) with force of infection (h), and immunity period (z) in absence of new infections. (b) Age-
Prevalence curve simulated from Aron-May model for three different levels of force of infection (h). Other parameter values are r = 0.8, g = 0.2,
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the average per capita rate of loss of immunity YA, 7) is
given by

he—hr
yhe) = "

The range for / is estimated between 0 to the order of
10° [74,75], and the upper limit of T has not been
reported so far [56]. The variation of ¥(/4, ) with force
of infection (/%) and period of immunity (z), in absence
of new infections, is shown in Figure 4a for a small
parameter range to highlight the relative effects of
changes in # and 7, as the major variation of y is
observed only for low values of 4. Due to continuous
exposure, in high endemic zones where force of infec-
tion (k) is very high, the rate of loss of immunity is
nearly zero. Figure 4a clearly shows that the rate of loss
of immunity (y) is faster at low 7 values, whereas for the
force of infection (%), it decreases slowly. For a fixed 7, y
decreases monotonically with force of infection (h),
implying reduced rate of transformation from recovered
class to susceptible class due to increase in force of
infection. It is further reduced if the period of immunity
(7) is increased. Some of the models that have consid-
ered the immune class are discussed below.

In a population that has reached its equilibrium pat-
tern of infection, time can be represented through the
age (a) of the cohort. Considering this, Aron and May
[41] proposed an age-specific immunity model with a
new compartment - Immune (R;) - in humans. This
model, thus, consists of three compartments in humans:
Susceptible (Sy), Infected (I;,) and Immune (Ry), and is a
SIRS model. This model is shown in a single-fold box
for host in Figure 2, because the effect of mosquito is
introduced only through the force of infection, /4. The

infected individuals can recover at a rate r to become
susceptible again, or may acquire immunity at a slow
rate of ¢g. This simple model of immunity, incorporates
the immunity factor by adding an extra term Y/, 7) R, -
of people who lose immunity - in the susceptible class,
and subtracting the same from the immune class in
equation (2).

Ljiih =—hSp+rly+y(h t)Rn

I

dh=h8h—7‘1h—q1h (2)
do

dR
o =l =y (h Ry
o

Solution of equation 2 shows how the prevalence of
infection varies with the age of human. Figure 4b shows
the prevalence of infection (I;,) with age at three differ-
ent forces of infection (/). At higher infection (4 = 4), I,
rises rapidly with age in young infants and children,
attains a peak, and then declines in the older children to
reach a low level in adults. Prevalence in adults
decreases due to the increase in immunity. For low % (h
= 0.04), this dependence on age is negligible. This
model predicts that the prevalence rises quickly in early
childhood and declines slowly into adulthood in highly
endemic areas, due to slow acquisition of immunity
with age/time. Interestingly, the prevalence among
adults is highest when % is in an intermediate value.
The adult crossover of the age-prevalence curve with
increasing /1 resembles the pattern of acute infection
described by Boyd in tropical Africa [63].

Inclusion of the “Recovered” class with immunity of the
host has been the source of many later models that con-
sidered other variations in host-pathogen interactions
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[12,56]. A few models are mentioned below, which along
with introducing the “Recovered” class in humans in the
Anderson-May (AM) model, also differ in some of the
critical assumptions from the models discussed so far.
One of the features that has been consistently followed in
all the models discussed above is the constancy of popu-
lation size. Mortality and migrations are major factors in
changing the population size in an area and the inclusion
of varying population size in the model makes them
more realistic.

Ngwa and Shu proposed an immunity model in which
disease related death rate is considered to be significantly
high, and the total population is not constant (shown
inside the dashed box in Figure 2). The Ngwa-Shu model
[64] model consists of four compartments in humans -
Susceptible (S,), Exposed (Ej), Infected (I,) and Immune
(Ry) - and three compartments in mosquitoes - Suscepti-
ble (S,,), Exposed (E,,), and Infected (1,,,) (see Additional
file 1 Table S1). Mathematical analysis of the model shows
that the Basic Reproductive Number, R, can describe the
malaria transmission dynamics of the disease, where a
globally stable disease-free state exists if Ry < 1, while for
Ry > 1, the endemic equilibrium becomes globally stable.
This model explicitly shows the role of inclusion of demo-
graphic effects (net population growth) in predicting the
number of fatalities that may arise as a result of the dis-
ease. In a similar theme, Chitins et al [32,66] included
constant immigration of susceptible human population,
(see Additional file 1 Table S2). Considering immigration
of people and excluding direct human recovery from the
infectious to susceptible class (as is considered in other
models here), they showed that the population approaches
the locally asymptotically stable endemic equilibrium
point, or stable disease-free equilibrium point, depending
on the initial size of the susceptible class.

Immunity can be described as a continuum of differ-
ent levels of protection rather than a single class, as
anti-malarial immunity develops slowly among people
exposed to continuous and intense malaria transmission.
Yang [67] divided the immune class (R;) in human
population into immune (Ry,;), partially immune (R}»)
and non-immune but with immunologic memory (R,3),
with each class having differential immunity (see Addi-
tional file 1 Table S3). The mathematical analysis of
Yang model shows that the effects of these three types
of immune responses lead to delay in the reappearance
of the individuals, who already had experienced malaria,
to the susceptible population. Hence the community
under high threat of malaria (high R)) shows low preva-
lence of individuals with asexual blood-stage infection
and without infectious gametocytes, whereas, the same
community is relatively free of severe infection due to
the increase in immunity by re-infection.
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Immunity functions Due to lack of confirmed markers
of immunological protection, different processes that
determine the immunity acquisition to clinical disease
and to asymptomatic carriage of malaria parasites are
poorly understood. The models discussed in the earlier
section consider the immune individuals as a separate
class, with no consideration of the types of processes
that drive acquisition of immunity and its role in disease
progression. In an insightful approach, Filipe et al [44]
introduced three age-specific “immunity-functions” in
their SEI model for the human host, in which the
infected humans are divided into three classes - infected
with severe disease (I},;), asymptomatic patent infection
(I2), and infected with undetectable parasite density
(In3). The effect of mosquito density is incorporated
through the force of infection (/#). The dynamics of
transmission of infection in this model is given in Addi-
tional file 1 (Table S4).

The three immunity functions (IF) introduced in the
Filipe model are - (i) Reducing the susceptibility to clini-
cal disease, ¢ (IF1), (ii) speeding up of the clearance of
detectable parasites, r4 (IF2), and (iii) increasing toler-
ance to sub-patent infections, r; (IF3). These functions
depend on age and disease transmission intensity (i.e.,
Entomological Inoculation Rate, see Table 1) in a com-
plex manner. They base their model assumptions on the
fact that the rates at which both types of immunity -
clinical and anti-parasite - develop are different. Details
of the immunity functions are given in Additional file 2.
All these processes have widely varied time scales,
which make the disease transmission in this age-struc-
tured population quite complex. The first two types of
immune functions reproduced the epidemiological age-
prevalence curves seen in empirical data better. The
third one i.e. the tolerance to sub-patent infections, is
not required to explain the empirical data.

Susceptibility to clinical disease (effect of IF1) develops
early in life and then decreases with age, and is inversely
proportional to the inoculation rate (Figure 5a). Anti-
parasite immunity, on the other hand, develops later
in life and results in more rapid clearance of parasite.
Figure 5b shows that the rate of recovery from detect-
able parasite (effect of IF2) increases with age and force
of infection (/). These figures clearly show that these
two distinct acquired immunity processes are required
to demonstrate: (i) reduction in clinical susceptibility
and (ii) a parasite immunity process that develops sub-
stantially in later life, and, which increases the rate of
natural recovery. In addition, this also explains the dura-
tion of clinical and parasite immunity from the age-
prevalence pattern. To show the efficacy of different
intervention strategies more complex models have been
developed in this area [69-72]
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parasites (r), to variation in force of infection (h) and age.
A\

Figure 5 Response of immunity functions: (a) susceptibility (¢) to develop clinical disease; and (b) rate of clearance of detectable

0 Age (years)

Host-pathogen variability and resistant strain models

The basic models assume homogeneity in the host and
parasite populations in terms of their response to the
process of transmission of infection. They consider all
the individual hosts and parasites in the population to
have an equal chance of developing disease or becoming
immune or transmitting infection. However modern
application of molecular typing methods has shown that
there exist diversity among host and parasites in
responding to infection. Further, long term and indiscri-
minate use of insecticides (DDT) and drugs (quinine
and chloroquine) brought forth the hitherto neglected
issue of heterogeneity in vector and parasite phenotypes
and genotypes. The evolutionary consequences of these
interventions had serious negative impact in malaria
control. Most models of population heterogeneity and
resistance consider within-host processes. Many mathe-
matical models have been developed with pathogen
population structure and heterogeneous host population
to describe variable antigenic response, immune selec-
tion, pathogen strain structure [76-78]. Inclusion of evo-
lution of drug resistance, along with other factors, in the
models can help in the design of rational strategies for
the control of drug resistance [79-86].

Several resistant-strain models have been developed
based on evolution of drug resistance through host
immunity [82,85], and by considering the practical
implications of the artemisinin combination therapy
(ACT) drug policies adopted by many countries [84].
Population genetic considerations of the cost of resis-
tance (Table 1), are also included in this type of models
[81,87]. More recent work elaborates the complexity of
the process of drug resistance by considering the inter-
action of several environmental, pharmacological and
genetic factors [86]. These models are important as they

address phenomena critical to public health, i.e., the
evolution of drug resistance in malaria parasites.

In general, these resistant-Strain models divide the
infected host population () into two compartments,
i.e.,, infected by drug-sensitive strain and drug-resistant
strain of the parasite.

The model, proposed by Koella and Antia [82], further
divides the host population infected by drug-sensitive
strain into two compartments - treated and untreated.
So this model consists of five compartments of human:
susceptible (S,), sensitive, infected, and treated (I};),
sensitive, infected, and untreated (I},5), infected with the
resistant strain (I},3), and the recovered (R;,). The role of
mosquito vector is included through inoculation rates of
sensitive and resistant parasites. The formulation of the
model is described in Additional file 1 (Table S5). The
primary prediction of this model indicates that there is
a threshold proportion of people (f;) among the infected
and treated ([,;) classes, below which resistance cannot
spread, and above which resistance will eventually
become fixed in the population. The threshold level f, is
defined as:

1=
1=

where, € is termed as the “Effectiveness of treatment”,
i.e., the ratio of the duration of infection for the
untreated and treated sensitive parasites, and T is the
cost of resistance. Thus, these two parameters (I' and €)
regulate whether drug sensitive or resistant parasite will
be dominant in the population. The model also shows
that, in the absence of drug or treatment, the fitness
of resistant parasite reduces with respect to sensitive
parasite; otherwise both the parasites have identical

fe
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properties. In this case, sensitive and resistant parasites
cannot co-exist.

Environmental factors

The epidemiology of the host, vector, and pathogen for
malaria necessitates consideration of the conditions that
increase the mosquito population density. Modelling the
dynamics of mosquito populations to increase under-
standing of malaria transmission across a range of envir-
onmental conditions, including climate change, is an
important and emerging research area. The basic repro-
ductive numbers (R;) for the basic models depend cru-
cially on the parameters related to mosquito density.
Environmental factors, such as temperature, humidity,
rainfall and wind patterns have great impact on mos-
quito reproduction, development and longevity and the
parasite survival in its life cycle in mosquito. It is known
that mosquito breeding is influenced by temperature - a
change in temperature from 12°C to 31°C reduces the
number of days required for breeding from 65 days to
7.3 days [88]. The sporogony of the parasites in vector
is completed in 55 days at 16°C, which reduces to
7 days at 28°C [89]. With recent surge of interest on the
effects of global warming on malaria incidence, model-
ling the effects of environmental factors in malaria
transmission has become quite relevant and topical
[6-8,90,91]. As humidity is conducive to mosquito
growth, rainfall and stagnant water bodies also influence
mosquito density.

The environmental impact on the transmission of
malaria is therefore studied primarily by modifying the
mosquito population dynamics. Influence of temperature
and humidity change on the rate of transformation from
juveniles to adults in the susceptible class of adult mos-
quitoes has been modelled [88]. In addition, several
mathematical studies have been performed to simulate
the effect of environmental variability in the abundance
of mosquito populations such as, random fluctuation in
the form of colour noise in infected mosquito dynamics
of Ross model [92], periodic or noisy form of the force
of infection [12,41,92]. Several studies have also included
the effect of environmental fluctuations in diverse ways
[2,5,67,68,93,94] with the aim to develop realistic and
validated malaria modelling frameworks that are able to
identify the crucial linkages between pathogen transmis-
sion processes and climactic factors.

In a recent study, Parham and Michael proposed a
model [5], to study the dynamics of the mosquito popula-
tion by considering simultaneous effects of rainfall and
temperature. The model consists of three compartments
in humans (Sy, 1), R;) with fixed duration of latency, and
three compartments in mosquitoes (S, E,, I,,) (see
Additional file 1 Table S6). Different environmental fac-
tors are introduced in this model through parameters
related to mosquitoes. The birth rate of adult mosquito is
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considered to be a function of rainfall and temperature,
whereas, mosquito mortality rate, biting rate, duration of
sporogonic cycle and survival probability of infected mos-
quitoes over the incubation period of the parasite are
considered to be dependent on temperature variation.
The major finding of this model is that changes in rain-
fall patterns not only influence vector abundance, but
also strongly govern malaria endemicity, invasion and
extinction. However, when sufficient rainfall exists to sus-
tain vector development and survival, then the tempera-
ture affects the pathogen life cycle, and has stronger
influence on the rate of disease spread.

Social and economic factors

Malaria risk is highly dependent on the socioeconomic
conditions of the host population. It is now fairly evi-
dent that “as a general rule of thumb, where malaria
prospers most, human societies have prospered least”
[95]. Poverty is largely concentrated in the tropical and
subtropical zones, and that is where most malaria trans-
mission is observed. The extent of the correlation sug-
gests that malaria and poverty are intimately related. In
most endemic areas of malaria, changes in social and
economic conditions are considered to be far more
important than temperature shift [68]. The economic
and social burdens from factors such as fertility, popula-
tion growth, premature mortality, misdiagnosis, inflicted
by the disease on the society have been studied by many
authors [95-100]. Given the nature of the factors, most
investigations are case studies, and there are only few
differential equation based models that incorporate
socio-economic structure.

Using a mathematical model (see Additional file 1
Table S3), Yang showed how the basic reproductive
number (R,) of malaria transmission changes with global
warming and local social and economic conditions [68].
In this model good, intermediate and poor economic
conditions among human community have been consid-
ered and each condition is further divided into three
temperature zones. A host of factors control disease
transmission rates in this model such as, differential
immunity, endemicity, resistance, economic conditions
and temperature dependence of mosquito development.
These lead to different R, for three temperature zones
with different socio-economic structures. These model-
ling results point out the requirement of proper man-
agement of the surrounding environment, along with
good health care system, in disease transmission. From
the point of view of designing field research, it is shown
in a mosquito based model [101], that the effectiveness
of malaria control through different types of interven-
tion methods (insecticide-treated nets and indoor resi-
dual spraying) can have differential protection, with the
former being more protective. The socio-economic sce-
nario for large scale deployment of interventions at the
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population level has also been addressed using model-
ling studies [102].

Migration and visitation

One of the important reasons for the failure of strategies
to eradicate infectious disease is because of their neglect
of the mobility patterns of the host. The importance of
the role of human migration is evident in the recent
increase in malaria incidence not only in the endemic
zones, but also in zones where malaria had been eradi-
cated [17,103-105]. Mainly two types of mobility pat-
terns that can spread the infection to newer areas, are
considered - migration, i.e., when the people move from
one region to another with no returns; and visitation,
when the people return to their original region after vis-
iting other regions.

The effects of migration and visitation on transmission
of malaria were shown by Torres-Sorando and Rodriguez
by modifying the basic Ross model to include space that is
fragmented into A number of patches [48]. Only humans
are assumed to move among the patches and mosquitoes
are evenly distributed. The equations describing the
system are shown in Additional file 1 (Table S7i). The
number of infected humans and mosquitoes in patch i
(i=1 2..., A) at time ¢ are, [;,/(¢) and 1,,,,(), respectively,
and e;; is the fraction of humans that migrate per unit time
from patch i to patch j, and do not return. So, to incorpo-
rate the effect of migration in this model, an extra term
related to infected people due to movement between
the patches, i.e. ;eﬁ[hf(t)_ ;eﬁl’”(t), is added to the
human dynamics equation. For visitation, the individuals
visit from patch i to patch j during a time, which is a frac-
tion Tj; of the time unit, and then return to their patch of
origin. The number of newly infected people added during

visitation is,g abmT; [ni(t) — Ini(1) ] Inj(t) | The corre-
j#i

sponding equations for the visitation model are shown in
Additional file 1 (Table S7ii). The model results show that
increase in mobility between patches enhances the persis-
tence of the disease. Even though migration of humans
does not change the equilibrium prevalence, equilibrium is
reached faster for higher levels of migration. When there
is visitation, the equilibrium prevalence increases with
visitation time, and the time to reach the equilibrium
decreases with increase in the intensity of visitation.

The elaboration of different approaches to model malaria
transmission in populations, as described in Figure 2, is
given in the earlier sections. As mentioned earlier, only few
models have been discussed above as examples to demon-
strate the manner in which different factors and variables
relevant to the host-vector-parasite biology have been
incorporated in the basic models. Because of the over-
whelming complexity of the disease system and its
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nonlinear interdependence on the environmental and
socio-economic factors, there has not been one consensus
general model where all factors are included. Linking the
within-host and between-host dynamics of malaria has
been one approach towards a comprehensive model
[26,27]. Some effort has also been directed to develop soft-
ware that include many factors for simulating the disease
output [23,106].

Stochastic models

Plasmodium life-cycle and mosquito population density
are highly dependent on different internal processes and
external environmental factors, which are probabilistic
in nature. In many of the models referred above, sto-
chasticity has been included in different ways. Even
when the main structure of the compartments is similar
to the differential equation based models, stochasticity
has been included through individual variability in indi-
vidual based models [24,27], and probabilistic variation
in different variables and parameters of transmission
processes and environmental factors [27,107-110]. Mod-
els integrating stochasticity with other factors such as,
spatial contact structure and temporal forcing, also
explain many interesting features of disease transmission
[111,112]. Though not discussed in detail here, these
models are powerful tools to explain complex interac-
tions characterized by realistic descriptions.

Data based statistical modelling

One of the major uses of a model is to fit past data and
predict the future trend. This capability of a model
improves the credibility of the underlying hypothesis of
the model. In general epidemiological data represent the
disease prevalence in an area over a period of time
(time series data), and is given by the number of cases
and number of infected persons. As has been enumer-
ated in the earlier sections, this number, representing
the prevalence of the disease, is the result of a large
number of interacting nonlinear processes in host-
pathogen interaction - both deterministic and probabil-
istic. These processes may have variable contribution to
the development of the infection depending on the type
of disease - a few may have larger contribution in the
process, and others can be peripheral. Statistical model-
ling involves developing relationships between these fac-
tors in the form of mathematical equations. Statistical
models that fit curves of past temporal prevalence of a
disease, do not make any assumptions about the internal
mechanisms that a mathematical model provides. This
modelling approach involves application of a variety
of elaborate statistical methodologies and tests, and
has been extensively used in describing and predicting
(forecasting) malaria incidence in different regions.
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Several results from the models described in the pre-
vious sections have been validated with experimental
data. Incorporating age and immunity, Aron [73] veri-
fied the results with the Garki project data [62]. To
show the effect of socio economic conditions and envir-
onmental factors, Yang tested his model results with
malaria data from three regions - (i) disease free but
potentially under risk (Southeast Brazil: upper bound of
temperature 20°C), (ii) disease at low endemic levels
(Amazon region and Southeast Asia), and (iii) disease at
higher endemic levels (Africa: lower bound of tempera-
ture 31°C) [68]. Filipe et al used the data from Northern
Tanzania and north and south bank of river Gambia, to
verify their model findings [44]. This kind of statistical
modelling remains a highly preferred approach in quan-
titative malaria research to understand the disease inci-
dence and the role of different factors [113].

One useful statistical approach to understand how
disease prevalence changes based on other variables
such as, temperature or rainfall, is the method of
Regression modelling [114]. It involves techniques for
modelling and analysis of the relationship between a
dependent variable and one or more independent vari-
ables. Different variants of this method has been used
to model malaria transmission in Africa through the
Malaria Risk in Africa (MARA) project and in Europe
[115], understanding the effect of childhood population
data, climate averages and Normalized Difference
Vegetation Index (NDVI) in Mali from 1960 [116], role
of temperature and rainfall from meteorological sta-
tions and community-based parasitological survey in
the prediction of malaria risk [117], effect of vector
abundance, population immunity, on malaria incidence
[118], predict the seasonal pattern of malaria in Kenya
using NDVI [119] and to show evidence and causality
between health and poverty in malaria prevalence
[120]. Researchers have also used elaborate time series
analysis models to show seasonality patterns in the
malaria incidence [121-124].

With the availability of world-wide datasets on popu-
lation distribution, global circulation, environmental fac-
tors, and parasitological prevalence, epidemiologists
have now increasingly been interested in global model-
ling perspectives [89]. Such activities require, along with
mathematical models, in depth statistical modelling
techniques such as, bayesian inference using Markov
chain Monte Carlo method, and multivariate statistical
modelling techniques to generate maximum likelihood
predictions for posterior probability of parasite distribu-
tions on the world map [6,125-127]. The most reassur-
ing result from these global studies is that contrary to
prevailing forecasts of global malaria expansion due to
climate change, other natural and anthropogenic forces
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acting on the disease have actually resulted in a net
reduction in transmission.

The above theoretical exercises depend crucially on the
quality and availability of data and the methodologies
used to build the models. They yield limited predictability
and understanding due to factors such as, lack of infor-
mation or excessive complexity. These models also evolve
based on newer data and increased understanding of pro-
cesses involved. Thus the data based analysis in the statis-
tical modelling approach continues to be a major area in
malaria research.

Summary and outlook

A model is a mathematical abstraction of reality. The
level of abstraction depends on the questions asked and
the scale at which the underlying causative processes are
studied. For example, in inter-host transmission of an
infection, most molecular events in host-pathogen inter-
actions (e.g., types of immune cells involved, parasite
development inside the host, signaling pathways) are not
considered. Many of these processes are condensed into
a single parameter in the immune function or inocula-
tion rate. In intra-host models, on the other hand, how
the titers of the infective agent or related molecules
change in an individual is studied, because that is what
decides the diseased state of the host individual. In epi-
demiological models, intra-host processes between host-
parasite-vector are neglected, but the host and vector
population are subdivided in terms of the infection/dis-
eased state (i.e., Susceptible, Exposed, Infected, and
Immune/Recovered). These models aim to match their
results with the available epidemiological data, where
incidence of the infectious disease (and death due to it)
determines the status of an epidemic in the population.
Here, from the public health point of view, one is more
interested in knowing if the infection will die out, or
persist in a population through the important parameter
Ry. Yet, as more molecular studies are coming to the
fore and both detection of infection and mode of infec-
tion propagation (genes, proteins, pathways, immune
interactions) are elucidated, the epidemiological models
also would need to consider these processes for inclu-
sion as parameters or subclasses. This is clearly visible
in the later models, where both the infected and recov-
ered classes are divided into subclasses (such as, asymp-
tomatic), which have different time scales and/or
transmission modes. In this review, efforts have been
taken to group the epidemiological models of malaria in
terms of the complexity of infection processes included
in its description, which makes them more realistic. The
age-specific distribution of infection due to differential
immunity across age is one such case. The assumption
is that more realistic models would enhance the
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understanding of the infection transmission process at
the population level, which, in turn, may help in better
prediction of intervention strategies. The specific models
discussed here are only indicative and not exhaustive.
Pure mathematical analysis of the models, even though
not so popular among the biologists, is important. They
allow clear understanding of the logic of the system
behaviour in terms of the relationship among the para-
meters and variables, which are representative to real
biological processes. It will be useful to develop connec-
tions between mathematical analysis and their real
world implications, since such analyses may help us to
understand hitherto unknown scenario, such as the
effect of temperature, seasonal forcing, excessive rainfall,
correlation between different variables and parameter
changes. Among the innumerable statistical models
based on malaria incidence data, only a few approaches
have been described here. The results of these models
are mostly data specific and applicable primarily to the
particular data set studied. They are highly useful for
prediction in that specific context, but may not work in
other places/scenarios. Models that incorporate the
essentials of host-parasite-vector interaction, proper
clinical population subdivisions for disease transmission
and also describe multiple data sets from different eco-
logical regions, promise to be an ideal combination of
both approaches. It is now clear that the role of indirect
factors such as, social structure, economic status, play
an overwhelming role in the transmission and persis-
tence of malaria in a region. It also underlies the failure
of several control measures where local heterogeneity
was not considered. It is the need of the hour to include
factors such as the role of heterogeneity in host popula-
tion due to social status, local differences in ecology due
to poverty, differential effects of disease transmission in
populations residing in habitats of different temperature,
in the mathematical models. Such a description has the
possibility of yielding understanding of malaria transmis-
sion for populations with societal differences and climate
change. Mathematical models have the ability to address
several multiplicative, feedback and nonlinear effects that
enhance or suppress the effects of factors such as, expo-
sure, immunity, spatiotemporal heterogeneities, control
measures and environment, in order to capture key lin-
kages to the complex transmission dynamics. They can
also include stochasticity in different variables and para-
meters to simulate realistic scenario. This comparative
analysis of different mathematical models of malaria
would contribute to consolidate our understanding about
the evolution of these models, and may also help in
developing new models by incorporating features dis-
cussed above to improve predictions and deciding realis-
tic control measures.
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Additional material

Additional file 1: Description of different mathematical models of
malaria. This file contains eight Tables (S1-S7i,ii), giving description of
mathematical expressions and parameters used in different models.

Additional file 2: Description of different immunity functions. This
file contains details of three immunity functions used in Filipe model
[44].
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