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Reduction in host-finding behaviour in fungus-
infected mosquitoes is correlated with reduction
in olfactory receptor neuron responsiveness
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Abstract

Background: Chemical insecticides against mosquitoes are a major component of malaria control worldwide.
Fungal entomopathogens formulated as biopesticides and applied as insecticide residual sprays could augment
current control strategies and mitigate the evolution of resistance to chemical-based insecticides.

Methods: Anopheles stephensi mosquitoes were exposed to Beauveria bassiana or Metarhizium acridum fungal
spores and sub-lethal effects of exposure to fungal infection were studied, especially the potential for reductions in
feeding and host location behaviours related to olfaction. Electrophysiological techniques, such as
electroantennogram, electropalpogram and single sensillum recording techniques were then employed to
investigate how fungal exposure affected the olfactory responses in mosquitoes.

Results: Exposure to B. bassiana caused significant mortality and reduced the propensity of mosquitoes to respond
and fly to a feeding stimulus. Exposure to M. acridum spores induced a similar decline in feeding propensity, albeit
more slowly than B. bassiana exposure. Reduced host-seeking responses following fungal exposure corresponded
to reduced olfactory neuron responsiveness in both antennal electroantennogram and maxillary palp
electropalpogram recordings. Single cell recordings from neurons on the palps confirmed that fungal-exposed
behavioural non-responders exhibited significantly impaired responsiveness of neurons tuned specifically to 1-
octen-3-ol and to a lesser degree, to CO2.

Conclusions: Fungal infection reduces the responsiveness of mosquitoes to host odour cues, both behaviourally
and neuronally. These pre-lethal effects are likely to synergize with fungal-induced mortality to further reduce the
capacity of mosquito populations exposed to fungal biopesticides to transmit malaria.

Background
Chemical insecticides targeting adult female mosquito
vectors have been one of the most successful strategies
employed for malaria control [1]. However, the effective-
ness and sustainability of insecticide-based interventions,
such as indoor residual sprays (IRS) and insecticide-trea-
ted nets (ITNs), is being undermined by evolution of
insecticide resistance [1-8]. Accordingly, there is now a
pressing need for novel control tools including alterna-
tive, non-chemical approaches [8]. One promising

alternative is fungal entomopathogens formulated as
biopesticides. A number of studies have demonstrated
that residual contact with substrates treated with fungal
sprays can lead to high levels of infection, reducing sur-
vival of a range of mosquito vector species, including
insecticide resistant phenotypes [9-15]. Since it takes
around two weeks for the malaria parasite to develop
within a mosquito following a blood feed, the life-short-
ening effects of fungal infection can dramatically reduce
malaria transmission potential [14-17]. In addition, fun-
gal pathogens cause a range of pre- or sub-lethal effects
in other arthropods including reductions in feeding
[18-21], fecundity [22-26], flight performance [27,28]
and predator avoidance [29,30], together with elevation
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of metabolic rate [31] and alteration in development
[32]. For malaria control, reductions in feeding propen-
sity could be particularly important since the parasite
can only be transmitted during a blood feed and if feed-
ing is reduced, it does not necessarily matter whether
the mosquito is alive or not. To date, fungal infection
has been shown to reduce feeding in Anopheles, Culex
and Aedes mosquitoes [14,33,34]. The proximate
mechanisms associated with such changes, however,
remain unexplored.
Mosquitoes have a highly developed olfactory system

that uses specialized olfactory receptor neurons (ORNs)
to detect the odours emanating from their hosts [35].
They also use olfactory information to locate other food
sources, mates, and oviposition sites. The peripheral
olfactory organs that detect the olfactory cues are the
antennae and maxillary palps. In Aedes aegypti and Ano-
pheles gambiae, maxillary palps harbour a single mor-
phological type of chemosensory sensillum, the capitate
peg, which is innervated by three ORNs. One of these
three ORNs is highly responsive to CO2. The second
ORN is most sensitive to 1-octen-3-ol, which is a major
component of human and other vertebrate volatiles
[36,37]. In An. gambiae, this ORN expresses on its den-
drites the odorant receptor (OR) called AgOR8, which is
activated by 1-octen-3-ol [38]. The third ORN is tuned
to a broad panel of odorants and expresses the OR
named AgOR28 on its dendrite. Furthermore, An. gam-
biae responds with a significant dose-dependent electro-
palpogram (EPG) response profile to 1-octen-3-ol
[37,38].
This study combines simple behavioural assays with

electroantennogram (EAG) and electropalpogram (EPG)
recordings to examine possible olfaction effects of fungal
infection at the peripheral level. Single sensillum record-
ings (SSRs) were used to investigate individual capitate
peg neuronal responses after fungal infection. Results
show that in addition to survival, feeding propensity,
upwind flight behaviour and the olfactory responses are
all affected by fungal infection and depend on the fungal
species examined. The results provide one of the first
demonstrations of a pathogen having a functional
impact on insect olfaction. This could have important
implications for the effectiveness of fungi for vector
control.

Methods
Mosquito rearing
Anopheles stephensi were reared under standard insec-
tary conditions of 27°C, 80% humidity and 12:12 light:
dark photo-period. Eggs were placed in plastic trays (25
cm × 25 cm × 7 cm) filled with 1.5 l of distilled water.
To reduce variation in adult size at emergence, larvae
were reared at a fixed density of 400 per tray. Larvae

were fed Liquifry for five days and then on Tetrafin fish
flakes. From approximately two weeks after egg hatch,
pupae were collected daily and placed in emergence
cages. The adults that emerged were fed ad libitum on
a 10% glucose solution. All experiments used three to
five day old adult female mosquitoes.

Fungal isolates, formulation and application
Two species of entomopathogenic fungi were used that
are known to vary in their impact on mosquitoes: Beau-
veria bassiana isolate IMI39150, which has been investi-
gated in a number of previous publications and shown
to have a marked impact on mosquito survival and per-
formance [9,10,14,39], and Metarhizium acridum (for-
merly Metarhizium anisopliae var acridum [40] isolate
IMI330189, which is a relatively specific pathogen of
grasshoppers [41] but has been shown to infect mosqui-
toes although with only moderate virulence [39]. Both
isolates were formulated separately in a mix of mineral
oils (80% Isopar M:20% Ondina 22) and their concentra-
tions adjusted to give 1 × 109 spores ml-1.
Application and mosquito exposure were as described

by Bell et al [39]. In brief, spray applications of the
spore formulation were applied to the insides of waxed
cardboard cups using a hand-held artist’s airbrush and
allowed to dry. The spray method delivers an estimated
2 × 1010 spores/m2 of which approximately 2 × 108

spores/m2 are actually deposited on the cup surface
[39]. Mosquitoes were introduced to these cups for six
hours resulting in a spore acquisition in the region of 2
× 104 spores/mosquito [39]. After exposure, mosquitoes
were aspirated into mesh cages, provided with an ad
libitum supply of 10% glucose, and housed in a con-
trolled environment incubator at 26°C and 80% RH
where they remained for the duration of the experiment.
Control mosquitoes were handled in exactly the same
way but were exposed to untreated cups. Each treatment
had four replicate exposure cups per treatment with
between 50 and 60 mosquitoes per replicate. After their
time in the cups, mosquitoes were pooled into a single
large cage according to their respective treatment,
allowed to mix together and then redistributed into four
replicate cages (~ 30 insects per cage) for survival
assessment. Mortality was monitored daily and the trial
stopped when all treated insects were dead or the trial
had run for 14 days, whichever was sooner.
Three trials were run for feeding propensity and elec-

trophysiology recordings. The first had three treatments:
mosquitoes held in untreated cups ("UnExp”), or
exposed to either B. bassiana-treated or M. acridum-
treated cups ("Exp”). The second had two treatments:
mosquitoes held in untreated cups or exposed to B.
bassiana-treated cups. The third had un-exposed and B.
bassiana-exposed insects and these were used for single
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sensillum recordings and wind tunnel flight assessments.
In addition to the cages described above, a further cage
(~ 120 insects) was set up for each treatment as a
source of mosquitoes for SSR and flight trials.

Propensity to feed and selection of mosquitoes for
electrophysiological recording
Beauveria bassiana-exposed and unexposed mosquitoes
were tested for their responsiveness to a feeding stimu-
lus each day after exposure. Metarhizium acridum-
exposed mosquitoes were tested every other day because
previous trials had shown very little mortality in mos-
quitoes exposed to this fungal pathogen (unpublished
data). The feeding stimulus comprised a 250 ml flask
filled with hot tap water (water temperature 35-42°C)
that was covered with one of the investigator’s (SB)
recently worn socks. This stimulus was placed within
0.5 cm of the side of the cage holding the mosquitoes.
After one minute, the number of mosquitoes that
landed on the mesh cover and began probing with their
mouthparts was counted; these individuals are referred
to as ‘responders’.
Immediately after this count was made, a set of

responding mosquitoes that had not been exposed to
spores was removed from their cages and designated
Unexposed Responders ("UnExpR”). Responding mos-
quitoes that had been exposed to spores were likewise
removed from their cages and designated Exposed
Responders ("ExpR). Mosquitoes that had not responded
to the feeding-related stimulus were also selected and
designated as Unexposed Non-Responders ("UnExpNR”)
and Exposed Non-Responders ("ExpNR”), respectively.
Mosquitoes were taken evenly from across the four
replicate cages within each treatment. Mosquitoes from
each of the four groups were pooled into separate card-
board cups with mesh lids and used immediately for
electrophysiological readings.

Electrophysiology: EAGs, EPGs & SSR
To make a stable preparation for physiological record-
ings, methods similar to those established for mosquito
antennal single neuron recordings were employed [42].
A female mosquito was anaesthetized at -20°C, for 75-
90 s and mounted on a microscope slide between two
pieces of double-sided tape. The insect was secured in
place by covering half the thorax and abdomen using
tape. Its antennae or palps were fixed against the lower
surface using a piece of double-sided tape stuck to a
cover slip resting on a small ball of dental wax, all of
which helped facilitate manipulation of the mosquito in
order to fix the antennae onto the tape. The cover slip
was positioned parallel to the microscope slide at right
angles to the mosquito head. Once mounted, the mos-
quito was placed in the electrophysiological recording

rig under a Nikon Optihot microscope, which provided
a highly magnified (×750) view of the antennal or maxil-
lary palp sensilla. Two tungsten microelectrodes shar-
pened electrolytically in 10% KNO2 at 5-10 V to a 1 μm
tip diameter were used for the electrophysiological
recordings. One of these, the reference electrode, was
inserted into the eye or thorax of the mosquito to form
an electrical ground [43], using a Leitz mechanical
micromanipulator. The second, recording electrode was
connected to the preamplifier (10 ×, Syntech, Germany)
and inserted into the antennae or palps using a Nar-
ishige hydraulic micromanipulator to complete the elec-
trical circuit and to extracellularly record the summed
DC potentials of olfactory receptor neurons on the
antennae (EAGs) or palps (EPGs). EAGs and EPGs were
performed on the fungus-exposed or un-exposed mos-
quitoes from 0-8 days after inoculation by inserting a
tungsten electrode into the mosquito’s antennae or
palps [44]. For the M. acridum strain, EAGs were per-
formed up to 13 days after inoculation. The preamplifier
was connected to an analog-to-digital signal converter
(IDAC, Syntech), which was connected to a computer
for signal recording and visualization.
Single sensillum recordings were also done similarly

by inserting the sharpened tungsten reference electrode
into the eye and a tungsten recording electrode posi-
tioned into the base of the capitate peg sensillum on
mosquito palps until electrical contact with the sensil-
lum was established. Action potentials of the ORNs
housed in the sensillum were amplified using a USB-
IDAC interface amplifier (Syntech, Germany). The entire
SSR recording was made only from capitate peg sensilla
on mosquito palps, because this type of sensillum
houses three ORNs, one that is tuned to CO2, another
to 1-octen-3-ol [38] and third to other compounds that
we did not assay. The neuronal responses of mosquitoes
to 1-octen-3-ol and CO2 after exposure to fungal spores
were determined by counting the number of spikes pre-
sent during a 0.5 s pre-stimulus period and subtracting
this background frequency from the frequency elicited
during a 0.5 s post-stimulus delivery period.

Odorant stimulus delivery
The 1-octen-3-ol was dissolved in hexane at a concen-
tration of 1 μg/μl. A 10 μl aliquot of this solution was
dispensed onto a filter paper, which was then inserted
into a Pasteur pipette to create an odour cartridge hav-
ing 10 μg of this stimulus. A constant airflow of char-
coal-purified, humidified air was passed across the
antennae through a 10 mm i.d. glass tube during the
experiments. The odorant was delivered into this con-
stant air stream via the Pasteur pipette whose tip was
inserted through a small hole in the glass tube, 11 cm
away from its end. A stimulus flow controller (Syntech,
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Hilversum, Netherlands) pulsed a 40 ml/s air stream
through the cartridge for 0.05 seconds, effectively deli-
vering 2 ml of volatiles from the odour cartridge into
the air stream and onto the antenna. Either DC (EAG
and EPG) or AC (single-sensillum) responses to the sti-
mulus were recorded and analysed using Syntech Auto-
spike software (Hilversum, Netherlands). The CO2

stimuli were delivered from a certified CO2 cylinder at
the rate of 200 ml/min for 0.05 seconds at a room tem-
perature of 26°C. In single-sensillum recordings, the
ORN responding to CO2 exhibited large spikes that
were easily differentiated from the smaller-spiking ORN
responsive to 1-octen-3-ol. Spikes were counted for
each of these ORNs in the single-sensillum recordings
for all stimuli.

Behavioural trials in wind tunnel
In order to further study the effect of fungal infection
on mosquito flight and host-finding behaviour, we per-
formed upwind flight trials in a wind tunnel using B.
bassiana-exposed and unexposed mosquitoes from the
same pools of mosquitoes that were used for SSR
recordings. Mosquitoes were released into the heat-plus-
odour plume in the tunnel and given a chance to fly
upwind on days 2-5 after fungal exposure. The source
of the plume was a 500 ml Erhlenmeyer flask filled with
hot tap water (water temperature in the range of 45-50°
C) and covered with one of the investigator’s (JG) two-
day-worn socks. The heat from the hot water provided
heat cues and the worn socks provided the human vola-
tile cues. Individual mosquitoes were placed, via a plas-
tic transfer cup, into a 1.8 m × 0.6 m × 0.6 m acrylic
glass wind tunnel, 1 m downwind of the feeding stimu-
lus described above. The water in the flask was replaced
every twenty minutes to ensure a constant temperature.
Conditions in the tunnel were kept at 630 Lux light
intensity at floor level 0.3 m/s wind velocity (activated
charcoal filtered), 26-30°C and 50-75% RH. Ten mosqui-
toes were tested three times each and their upwind
flight responses towards the stimulus source were
recorded.

Statistical analysis
Survival was analysed with Kaplan-Meier Survival analy-
sis in SPSS for Mac v. 18. Median lethal times were cal-
culated (± 95% confidence interval) and differences
between treatments estimated using a Log Rank Test.
For the behavioural wind tunnel trials, a logit link func-
tion was fit to the data using PROC GENMOD in SAS.
The model assumed a binomial distribution for upwind
flight tendency. This model allowed analysis of Day
post-exposure and Treatment as factors influencing the
proportion of successful flights. The Day*Treatment
interaction effect was computed, along with Wald chi-

square tests to test differences between treatments
within each day (a = 0.05). Because three trials were
run per individual, the REPEATED statement was used
with an exchangeable within-subject correlation matrix.
EAG responses were square-root transformed to nor-
malize the data and remove variance heterogeneity
among treatments. Transformed data were analysed
using analysis of variance (SAS v. 9.2). The factors con-
sidered were Day post-exposure when the measurements
were made, and fungal and behavioural treatment
grouping. The treatments included the responding and
non-responding behaviours in the spore-exposed or
unexposed groups: ExpR; ExpNR; UnExpR; and
UnExpNR. The Day*Treatment interaction was also
included in the model. Comparisons among the four
treatments were made using the Tukey-Kramer adjust-
ment (a = 0.05). Single-sensillum recordings were simi-
larly analysed using ANOVA, with some minor
differences. For these analyses no transformation of the
data was necessary. There were only two treatment
groups with respect to fungal infection, with no beha-
vioural analyses having been performed. Also, because
more replicates were performed at fewer days, it was
possible to perform comparisons among the different
Day*Treatment combinations. Finally, because 1-octen-
3-ol was always presented first in our recordings,
whereas the order of presentation of CO2 versus the
blend of 1-octen-3-ol plus CO2 was varied, the effect of
this difference in the order of presentation was included
as a random factor when appropriate.

Results
Mosquito survival and response to feeding-related stimuli
Mosquitoes that had been exposed to B. bassiana spores
died more quickly than unexposed mosquitoes or those
exposed to M. acridum spores. In trial 1, exposure to B.
bassiana was associated with a steady increase in mor-
tality, with 100% of the exposed mosquitoes dead by day
13 and median lethal time for this group of 6.0 (5.81-
6.19) days. The median lethal times for M. acridum-
exposed mosquitoes and the unexposed control group
were 11.0 (10.21-11.79) and 10.0 (8.97-11.03) days,
respectively (Log Rank (Mantel Cox) statistic (LR stat) =
0.37, P = 0.54). Of the surviving mosquitoes, those that
had been exposed to B. bassiana exhibited reduced
responsiveness to host-related feeding cues from day 4
onwards, relative to control and to M. acridum-exposed
mosquitoes (Figure 1A). Additionally, even though mor-
tality was negligible following exposure to M. acridum,
these mosquitoes exhibited reduced responsiveness to
host-related feeding cues relative to the control group
from day 11 (Figure 1A).
In trial 2, Beauveria-exposed mosquitoes again

showed a higher daily mortality than control insects,
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with a median lethal time of 6.0 (5.79-6.21) days (LR
stat = 291.8, P < 0.001) (no median lethal time could be
computed for the control group because survival was
72% when the assay was censored on day 10). As in trial
1, surviving B. bassiana-exposed mosquitoes exhibited
reduced responsiveness to feeding cues relative to unex-
posed controls with clear differences apparent by day 4
and continuing to the end of the trial (Figure 1B).
The B. bassiana-exposed mosquitoes used in the sin-

gle-cell recordings and wind tunnel flight trials also

showed significant reduction in survival relative to con-
trols (LR stat = 229.9, P < 0.001), with median lethal
time of 6.0 (5.66 - 6.34) days. Control survival was >
80% by day 11 when the trials were terminated. These
exposed mosquitoes showed reduced responsiveness to
host-related cues. Beginning two days post-exposure,
mosquitoes were significantly less likely to take off and
fly 1 m upwind in the heat-plus-odour plume than the
unexposed controls (Figure 2). The repeated measures
logistic regression model indicates a significant effect of
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Figure 1 The responses of An. stephensi female mosquitoes to a feeding-related heat-plus-odour stimulus. Behaviour was assessed each
day following exposure to B. bassiana or M. acridum fungal spores. “Controls” received no spores. A) Mosquitoes from Trial 1 in which
individuals were drawn to assess EAG olfactory responses from antennae. B) Mosquitoes from Trial 2, drawn to assess olfactory EPG responses
from palps. Median day of mortality for the B. bassiana groups was Day 6, and so few survivors were available for the behavioural assay after
Day 7, in contrast to the M. acridum and Control groups that had low mortality (see Results text). Responsiveness of M. acridum-exposed
mosquitoes was assayed every second day. Brackets around the means denote ± 1 SEM.
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fungal Infection (chi-square = 14.96, d.f. = 1, p < 0.0001),
but not of Day (chi-square = 4.38, d.f. = 3, p = 0.22), or
the Day*Infection interaction (chi-square = 2.41, d.f. = 3,
p = 0.49). The exchangeable working correlation is
0.085. Pairwise comparisons were made among the
Day*Infections combinations.

EAG and EPG responsiveness in fungal-exposed and
unexposed mosquitoes
During the first three days post-exposure, when beha-
vioural responsiveness was apparently little affected by
fungal exposure (Figure 1A), there were differences in
EAG amplitudes among the treatments (p = 0.0001,
Table 1), with B. bassiana-exposed behaviourally non-
responsive mosquitoes, ExpNR, exhibiting significantly
lower EAG responses to 1-octen-3-ol than all other
treatments (Figure 3A). As the fungal infection pro-
gressed (days 4-7), and behavioural responsiveness
decreased (Figure 1A), there continued to be differences
in the EAGs among treatments (p < 0.0001, Table 1).
The EAGs of ExpNR mosquitoes remained significantly
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Figure 2 Flight tunnel behavioural assay. An. stephensi in-flight
host-finding ability was assessed in the days following exposure to
B. bassiana spores. On each day, ten mosquitoes from each of the
fungal-exposed or unexposed groups were assessed three times for
their responsiveness to the heat-plus-odour source. Mean
percentage (+/- standard error) of mosquitoes flying upwind is
shown. Asterisks denote fungal exposed groups having significantly
lower upwind flight responses than the unexposed group within a
given day using Wald chi-square tests (a = 0.05 after Bonferoni-
correction).

Table 1 Summary of ANOVA performed in the physiological experiments, using electroantenogram (EAG),
electropalpogram (EPG), or single-sensillum recording (SSR).

Treatment Compound Recording Fungus Day Day*Exposure Order

B. bassiana
Day 1-3

1-octen-3-ol EAG F = 9.34; 3,34 d.f.
p = 0.0001

F = 15.8; 2,34 d.f.
p < 0.0001

F = 1.92; 6,34 d.f.
p = 0.11

na

B. bassiana
Day 4-7

1-octen-3-ol EAG F = 14.8; 3,60 d.f.
p < 0.0001

F = 1.10; 3,60 d.f.
p = 0.36

F = 2.33; 9,60 d.f.
p = 0.0025

na

M. acridum
Day 1-7

1-octen-3-ol EAG F = 2.32; 3,71 d.f.
p = 0.085

F = 14.5; 3,71 d.f.
p < 0.0001

F = 3.33; 9,71 d.f.
p = 0.0025

na

M. acridum
Day 9-13

1-octen-3-ol EAG F = 13.6; 3,59 d.f.
p < 0.0001

F = 111; 2,59 d.f.
p < 0.0001

F = 4.41; 6,59 d.f.
p = 0.0013

na

B. bassiana
Day 1-3

1-octen-3-ol EPG F = 1.51; 3,45 d.f.
p < 0.22

F = 6.14; 2,45 d.f.
p = 0.0044

F = 0.85; 6,45 d.f.
p = 0.54

na

B. bassiana
Day 4-7

1-octen-3-ol EPG F = 19.6; 3,50 d.f. p < 0.0001), F = 20.6; 3,50 d.f.
p < 0.0001

F = 4.51; 9,50 d.f.
p = 0.0002

na

B. bassiana
Day 1-3

CO2 EPG F = 1.15; 3,45 d.f.
p = 0.34, Fig. 4C

F = 6.24; 2,45 d.f.
p = 0.0041),

F = 1.26; 6,45 d.f.
p = 0.29

na

B. bassiana
Day 4-7

CO2 EPG F = 11.1; 3,50 d.f.
p < 0.0001).

F = 28.9; 3,50 d.f.
p < 0.0001)

F = 6.79; 9,50 d.f.
p < 0.0001).

na

B. bassiana
Day 1-3

1-octen-3-ol
& CO2

EPG F = 2.81; 3,45 d.f.
p = 0.05

F = 15.8; 2,45 d.f.
p < 0.0001

F = 1.09; 6,45 d.f.
p = 0.38

na

B. bassiana
Day 4-7

1-octen-3-ol
& CO2

EPG F = 13.4; 3,50 d.f.
p < 0.0001

F = 18.5; 3,50 d.f.
p < 0.0001

F = 3.26; 9,50 d.f.
p = 0.0034

na

B. bassiana 1-octen-3-ol SSR F = 53.3; 1,28 d.f.
p < 0.0001

F = 11.9; 2,28 d.f.
p = 0.0002

F = 19.6; 2,28 d.f.
p < 0.0001

na

B. bassiana CO2 SSR F = 0.03; 1,27 d.f.
p = 0.86

F = 16.1; 2,27 d.f.
p < 0.0001

F = 7.56; 2,27 d.f.
p = 0.0025

F = 2.08; 1,27 d.f.
p = 0.16

B. bassiana 1-octen-3-ol
(in blend)

SSR F = 10.5; 1,27 d.f.
p = 0.0032

F = 7.35; 2,27 d.f.
p = 0.0028

F = 1.72; 2,27 d.f.
p = 0.20

F = 1.00; 1,27 d.f.
p = 0.33

B. bassiana CO2

(in blend)
SSR F = 1.14; 1,27 d.f.

p = 0.29
F = 11.8; 2,27 d.f.

p = 0.0002
F = 0.23; 2,27 d.f.

p = 0.80
F = 3.70; 1,27 d.f.

p = 0.065

Control or fungus-exposed mosquitoes were exposed to either 1-ocen-3-ol, CO2, or a blend of these compounds while performing these techniques as described
in the text.
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lower than the similarly behaviourally unresponsive
unexposed mosquitoes, UnExpNR (Figure 3B). Further-
more, the fungus-exposed responders, ExpR, also exhib-
ited lower EAGs compared to unexposed responding
mosquitoes (Figure 3B).
Reduced EAG amplitudes in response to 1-octen-3-ol

were not seen in mosquitoes exposed to M. acridum
over the first seven days post-infection (p = 0.085, Table
1, Figure 3C). For day 9-13 there were significant differ-
ences among the infection and behaviourally classified
treatment means (p < 0.0001, Table 1). On these later
days, the EAG amplitudes of M. acridum-exposed non-
responders, ExpNR, were lower than those of the simi-
larly fungus-exposed, but responsive, ExpR, mosquitoes
(Figure 3D).
For EPG recordings, there were no significant differ-

ences in response to 1-octen-3-ol among treatment in
the group measured within three days of exposure (p =
0.22, Table 1, Figure 4A). However, significant differ-
ences among the treatments arose in the 4-7 day period
(p < 0.0001, Table 1), with B. bassiana-ExpNR mosqui-
toes having significantly lower EPGs than UnExpNR
mosquitoes (Figure 4B). Thus the reduction in EPG

response occurs 4 days post-exposure, which was when
we began to see a decline in the behavioural responsive-
ness of fungus-exposed mosquitoes in the feeding-
related stimulus trials (Figure 1B). There was no signifi-
cant difference in the EPG responses of mosquitoes in
the earlier stages of exposure, days 1-3 (Figure 4A).
Thus, reduced EPG response to odorants in fungus-
infected mosquitoes manifested itself in later stages of
infection, days 4-7 post-exposure. As in the EAG
recordings, although there was a reduced overall activity
level for all non-responders during this period, there
was an additional significant reduction imposed on the
palps’ olfactory system by fungal infection (Figure 4B).
Similar to the 1-octen-3-ol response pattern, in the

early stages of infection exposure (days 1-3), there were
no differences between EPG amplitudes in response to
CO2 amongst the different mosquito classes (p = 0.34,
Table 1, Figure 4C). However, at the later stages of
infection (days 4-7), there were significant differences
between EPG amplitudes in response to CO2 amongst
the different mosquito classes (p < 0.0001, Table 1).
More specifically, ExpNR mosquitoes exhibited signifi-
cantly reduced EPG responses to CO2 compared to both
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UnExpNR and ExpR mosquitoes in later stages of infec-
tion, days 4-7 (Figure 4D).
There was only a marginal indication that mosquito

classes differed in EPG responses to the mixture of 1-
octen-3-ol and CO2 in day 1-3 (p = 0.05, Table 1), with no
specific comparisons among treatment means showing
significant differences (Figure 4E). In response to the mix-
ture of 1-octen-3-ol and CO2 in days 4-7, there was a sig-
nificant difference among treatments (p < 0.0001, Table
1), with the UnExpNR group again having a significantly
weaker response than the other groups (Figure 4F). Thus,
the EPG responses to CO2 and 1-octen-3-ol puffed as a
mixture (Figures 4E, F) were similar to those in which 1-
octen-3-ol or CO2 were puffed alone (Figures 4A-D).

Single-sensillum recordings
Good single-cell recordings were obtained from the
capitate peg sensilla of the maxillary palps (Figure 5). In
all the preparations, a large-spiking ORN was clearly
responsive to CO2 (Figure 5A), whereas a much smaller-
spiking ORN in this same sensillum was most respon-
sive to 1-octen-3-ol (Figure 5B). The combined spike
response to CO2 and 1-octen-3-ol blend is shown as
Figure 5C.
Responses by the ORN in capitate peg sensilla tuned

to 1-octen-3-ol, when presented with that compound
alone, exhibited significantly diminished spike frequen-
cies on Days 3 and 5 following fungal exposure (Figure
6A, p < 0.05; Table 1) compared to the frequencies of
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this ORN in unexposed control-group mosquitoes.
There were strongly significant effects of the number of
days after infection (p = 0.0002, Table 1) and the Day*-
Infection interaction (p < 0.0001, Table 1). Responses of

this ORN in fungus-exposed mosquitoes on Day 1 post-
exposure compared to those of the unexposed group
were not significantly different (Figure 6A). Spike fre-
quencies of the 1-octen-3-ol ORN were generally lower

A

B

C

2.0 s1.0 s 3.0 s

2.0 s

2.0 s 3.0 s

2.5 s 3.0 s
Figure 5 Sample recordings of action potentials from ORNs in the capitate peg sensillum of female An. stephensi. A) The large-spiking
ORN firing in response to CO2. B) The smaller-spiking ORN firing in response to 10 μg 1-octen-3-ol. C) The smaller and larger spiking ORNs firing
in response to CO2+ 1-octen-3-ol blend (10 μg). Rectangular bar shows stimulus duration of 0.05 s.
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when exposed to a blend of 1-octen-3-ol plus CO2 (Fig-
ure 6C) than when exposed to CO2 alone (Figure 6A),
but by Day 5 they were significantly lower in fungus-
exposed mosquitoes than those of the unexposed con-
trol group (Figure 6C, p = 0.05, Table 1).
A similar pattern of diminution of response of the

large-spiking ORN tuned to CO2 after fungus exposure
was not apparent, whether CO2 was puffed alone (p =
0.86, Table 1, Figure 6B) or as part of a blend along
with 1-octen-3-ol (p = 0.29, Table 1, Figure 6D).

Discussion
This study confirmed numerous previous studies indicat-
ing this particular isolate of B. bassiana to be lethal to
mosquitoes [10,14,33]. Transferred to the field, the signif-
icant life shortening observed from even the relatively
modest doses delivered in the current trials system
should result in reduced vectorial capacity. However, the
findings from this research supports previous studies
[14,34], that surviving fungal exposed mosquitoes exhibit
reduced propensity to feed, which would reduce malaria
transmission still further. Notably, the changed feeding
behaviour (including reductions in upwind flight towards
host cues) appears linked, at least in part, to reductions
in responsiveness to host-related feeding stimuli.
As expected, the M. acridum isolate had a much less

marked effect on mosquito survival and based on

simple mortality assessments, might lead to the con-
clusion that exposed mosquitoes remain uninfected by
this relatively acridid-specific pathogen. However, the
behavioural and electrophysiological measurements
indicate that mosquitoes suffered sub-lethal effects
from M. acridum infection resulting in reduced feeding
propensity and impaired olfaction. Many species of
mosquitoes, including the major malaria vector An.
gambiae, utilize CO2 and 1-octen-3-ol as olfactory
cues in host-seeking behaviours [38]. CO2 stimulation
synergizes responses to host odour and by itself
induces take-off and sustained flight behaviours in
host-seeking anophelines [45,46]. Some mosquito spe-
cies use the discontinuous pulses from breath-emitted
CO2 to fly upwind during their host-seeking behaviour,
whereas other animal odorants, such as lactic acid, can
contribute to additional host-locating upwind flight
without being pulsed [47]. Reception of CO2 integrates
these odorant inputs to drive sustained upwind flight
[35,38]. The EAG, EPG, and single-cell neurophysiolo-
gical recordings from behaviourally unresponsive fun-
gus-exposed mosquitoes all show a corresponding
reduction in neuron responsiveness to the host-related
volatile compound, 1-octen-3-ol. These diminished
neuronal responses were significantly lower than those
obtained from behaviourally unresponsive control mos-
quitoes, indicating that the olfactory capabilities of the
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fungal-exposed mosquitoes are impaired and contri-
bute to their behavioural reduction to feeding cues.
Why olfactory responsiveness to 1-octen-3-ol was so

clearly and repeatedly reduced by B. bassiana exposure
and that of CO2 is unknown. Because the maxillary palp
ORNs responsive to these compounds co-reside in the
same capitate peg type of sensillum, it seems unlikely
that there is some kind of physical or chemical impair-
ment producing blockage of cuticular pores reducing
entry of molecules from the outside, or some kind of
general ion imbalance in the receptor lymph caused by
fungal infection. However, it should be noted that the
odorant receptor type that is expressed on the ORN
tuned to 1-octen-3-ol is a true odorant receptor (OR),
whereas the “OR” that is expressed on the ORN tuned
to CO2 is a gustatory receptor (GR) [48,49]. ORs are
coupled to an extra protein, Orco, [50] which forms a
heterodimer with the odorant-ligand-accepting second
receptor protein on the dendritic membrane. GRs are
not coupled to Orco [49]. In the case of the ORN tuned
to 1-octen-3-ol, in An. gambiae this co-receptor that is
tuned to 1-octen-3-ol is named AgOR8 [38,51]. These
differences in the dendritic membrane-bound protein
receptors on these two types of neurons may possibly be
related to the degree of fungal infection-related reduc-
tion of responsiveness in the ORN tuned to 1-octen-3-
ol compared to that of the ORN tuned to CO2.
Fungal pathogens are known to release a range of tox-

ins and secondary metabolites during infection that
compete for energy reserves and cause general disrup-
tion of host tissues [52-54]. Studies on the pre-lethal
effects of fungal infection in locusts demonstrate that
infected locusts feed less and are less able to sustain
flight compared with uninfected controls [28,29], with
“fever” responses [55] and fungus-secreted “energy
scavenging” enzymes suggested to play a role [56]. The
results presented here add a new dimension to such pre
or sub-lethal effects, indicating an impact of fungal
infection on insect sensory capability.

Conclusions
This is the first study that, to our knowledge, correlates
fungal-induced reductions in mosquito host-seeking
behaviour with a decline in electrophysiological sensitiv-
ity of the olfactory apparatus. In the context of malaria
control, reductions in response to feeding-related cues
and upwind flight behaviour could add considerably to
the direct impacts of fungal infection on mosquito survi-
val. The importance of such subtle pre- or sub-lethal
effects of fungal infection can only be tested fully under
more realistic semi-field or field conditions. Placed in a
more complicated environmental context with diverse
and variable cues, it is possible that the effects we
identified here might be relatively unimportant.

Alternatively, and perhaps more likely, given we have
been working over small spatial scales and dealing with
young, healthy insects maintained under ideal laboratory
conditions, the behavioural, physiological and survival
effects we have found so far are underestimates of the
potential of fungi to reduce malaria transmission.
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