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Abstract

Background: MSP1 is the major surface protein on merozoites and a prime candidate for a blood stage malaria
vaccine. Preclinical and seroepidemiological studies have implicated antibodies to MSP1 in protection against blood
stage parasitaemia and/or reduced parasite densities, respectively. Malaria endemic areas have multiple strains of
Plasmodium falciparum circulating at any given time, giving rise to complex immune responses, an issue which is
generally not addressed in clinical trials conducted in non-endemic areas. A lack of understanding of the effect of
pre-existing immunity to heterologous parasite strains may significantly contribute to vaccine failure in the field.
The purpose of this study was to model the effect of pre-existing immunity to MSP14, on the immunogenicity of
blood-stage malaria vaccines based on alternative MSP1 alleles.

Methods: Inbred and outbred mice were immunized with various recombinant P. falciparum MSP1,, proteins that
represent the two major alleles of MSP1,4,, MAD20 (3D7) and Wellcome (K1, FVO). Humoral immune responses were
analysed by ELISA and Luminex™, and functional activity of induced MSP1,,-specific antibodies was assessed by
growth inhibition assays. T-cell responses were characterized using ex vivo ELISpot assays.

Results: Analysis of the immune responses induced by various immunization regimens demonstrated a strong
allele-specific response at the T cell level in both inbred and outbred mice. The success of heterologous regimens
depended on the degree of homology of the N-terminal p33 portion of the MSP1,,, likely due to the fact that
most T cell epitopes reside in this part of the molecule. Analysis of humoral immune responses revealed a marked
cross-reactivity between the alleles. Functional analyses showed that some of the heterologous regimens induced
antibodies with improved growth inhibitory activities.

Conclusion: The development of a more broadly efficacious MSP1 based vaccine may be hindered by clonally
imprinted p33 responses mainly restricted at the T cell level. In this study, the homology of the p33 sequence
between the clonally imprinted response and the vaccine allele determines the magnitude of vaccine induced
responses.
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Background

Natural immunity against malaria is based on the pres-
ence of antibodies directed against the blood stage para-
site, as demonstrated by passive transfer experiments of
immunoglobulins [1-3]. There are likely many target
antigens that mediate this immunity; however, their
identification is obscured by the presence of malaria-
specific antibodies that do not necessarily correlate with
an efficacious immune response. Characterization of im-
mune complexes formed by merozoites and antibodies
from malaria-exposed individuals [4], and results from
seroepidemiological studies support the development of
the major merozoite surface protein-1 (MSP1) as a vac-
cine candidate [5-7]. The initial 195kD MSP1 protein
undergoes two successive proteolytic cleavage events [8];
the first yielding a non-covalently associated complex
formed by the p83, p20 and p45 fragments and the
membrane-anchored p42 (see schematic Figure 1A). The
second processing event occurs immediately before inva-
sion, resulting in the cleavage of the p42 molecule into a
p33 and a pl9 fragment. The p19 fragment remains
attached to the merozoite surface through a glycosylpho-
sphatidylinositol (GPI) anchor [9] and is comprised of
two epidermal growth factor (EGF)-like domains [10],
which may play a role in the invasion process. Anti-
bodies directed to the C-terminal fragments of MSP1
(MSP1,9 and MSP1,,) have been associated with im-
munity in preclinical models [11-13].

In the course of characterizing immune responses
induced by MSP1 vaccines, it was recognized that: (1)
proteins produced by various expression systems differ
in their immunogenicity and ability to induce anti-
parasite activities [11,13-15]; (2) not all MSP1-based
vaccines induce protective immunity in preclinical mod-
els [11,13,16,17]; (3) the immunity induced by MSP1,,
vaccines in nonhuman primate models is parasite
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Figure 1 (A) Schematic diagram of the peptide organization of
the MSP1 protein. (B) Schematic of recombinant E. coli expressed
MSP1,, alleles (3D7 =MAD20 (red), FVO = Wellcome/K1 (blue) and
the CAMP/FUP parasite clones.
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strain-specific [13,18]; (4) the degree of parasite inhib-
ition by immune serum induced with an MSP1,, vac-
cine depends on the method chosen to measure
invasion- and growth inhibition [19]; and (5) the im-
munogenicity induced by vaccination with MSP1,, and
AMA-1 vaccines depends on the malaria exposure his-
tory of the vaccinees, ie., differences in the magnitude
of the humoral immune response between US malaria-
naive and African malaria-exposed vaccinees [20-24].
The observed strain specificity arises from the di-
morphic nature of MSP1,, represented by the two
major allelic families, the MAD20 and the Wellcome/
K1 [25,26]. At the amino acid level, these two alleles of
MSP1,, differ by only four amino acids in their p19 region
(E-TSR and Q-KNG, respectively), while they differ signifi-
cantly in their p33 regions exhibiting only 46% identity.
Previous studies have mapped dominant T cell epitopes
within the p33 region; these epitopes provide help for the
humoral response to the highly conserved and disulfide-
constrained C-terminal p19 [27-29]. The sequence hetero-
geneity found in the variant T cell epitopes from different
alleles inhibit T cell memory functions and likely interfere
with B cell help [18,30]. Thus, inclusion of polymorphic
p33 alleles may be required to broadly enhance MSP1 im-
munogenicity and thus vaccine efficacy.

The purpose of the current study was to simulate pre-
existing immunity in mice by establishing primary im-
mune responses with different alleles of MSP1,, and to
identify whether the established immunity against one
allele interferes with the induction of an immune re-
sponse against the alternative allele. The limited clinical
efficacy of MSP1 vaccines in the field, despite good im-
munogenicity in malaria-naive US subjects, has led us to
formulate the hypothesis that pre-exposure of vaccinees
to natural infection interferes with the induction of pro-
tective immunity. The concept of original antigenic sin
(i.e., exposure to a certain serotype of a pathogen that
modulates the induction and magnitude of subsequent
immune responses to cross-reactive serotypes and/or
pathogens) was first described for the influenza virus
[31], but has since been found to apply to other patho-
gens as well (reviewed in [32,33]). These findings would
have implications not only for the broadening of im-
munity induced by vaccination but also for boosting by
natural exposure, and would render an individual more
susceptible to infection with alleles not previously
encountered.

The previously developed MSP1,, vaccines [11,34]
represent the two major parasite clones of MSP1,4,, 3D7
(MAD20) and FVO (Wellcome/K1). To address the ef-
fect of pre-existing immunity, immunization regimens
were designed that employ different prime and boost
combinations of MSP1,, proteins, namely 3D7, FVO
and CAMP/FUP. The third clone, CAMP/FUD, is a
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hybrid between 3D7 and FVO at the level of p42 and
was prevalent in Western Kenya [35] where several clin-
ical trials were conducted evaluating the MSP1,, 3D7
vaccine (FMP1/AS02,) [20-22,24]. Systematic deep se-
quencing to identify circulating variants of p19 revealed
that the three allotypes of MSP1,, were represented at
different levels at this site, i.e. CAMP/FUP at 58%, FVO
at 31% and 3D7 at 7% (C.F. Ockenhouse unpublished
observation). For the current study, inbred BALB/c and
outbred ICR mice were immunized to determine
whether any of the responses are subject to genetic re-
striction. Humoral immune responses were first charac-
terized by fragment-specific ELISA and flow-based bead
assays (Luminex™) and then tested for anti-parasite ac-
tivity by a parasite lactate dehydrogenase (pLDH) based
growth inhibition assay (GIA). Cellular immune
responses and the changes in the precursor frequency of
MSP1-specific T cells were measured by IFN-y and IL-4
specific ELISpot assays. Humoral responses were overall
cross-reactive with the other alleles, but the highest anti-
body concentrations were measured against the homolo-
gous p42 proteins. The MSP1ly, CAMP allele was
inferior in priming immune responses that could be
boosted by the other MSP1,, alleles. Priming with either
the 3D7 or FVO vaccine followed by a boost with any of
the other antigens was always associated with a boosting
effect. The best combinations for inducing broadly
cross-reactive responses were ad hoc mixtures of the
3D7 and FVO antigens (3D7/FVO mix) for both prime
and boost, and the heterologous regimen, 3D7 — CAMP
or FVO — CAMP (i.e. prime — boost). Cellular immune
responses were strain-specific as demonstrated by the
magnitude of the responses to the homologous proteins.
Combinations of 3D7 and FVO (3D7/FVO mix) or using
a heterologous prime — boost regimen (3D7 — FVO or
FVO — 3D7) led to broadened IFN-y responses against
the p42 FVO and p42 3D7. Notably, CAMP induced
weak cross-reactive responses against the other stimulat-
ing antigens in a heterologous regimen.

In conclusion, the current study provides evidence that
pre-existing allele-specific immunity (acquired immun-
ity) does affect the ability of an MSP1,,-based protein
vaccine to mount an immune response (vaccine immun-
ity). The homology of the p33 subunit between the allele
that primed the immune response and the allele used for
vaccination will determine whether the established (pre-
existing) immune response will be boosted or a new T
cell response will be mounted against the “vaccination”
allele.

Methods
Antigens
Escherichia coli-expressed recombinant MSP,4, 3D7 (FMP1,
falciparum malaria protein 1) and codon-harmonized
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MSP1y, FVO (FMPO010) were produced under cGMP con-
ditions as previously described [11,34,36]. The recombinant
MSP1,, CAMP protein was similarly expressed and puri-
fied to homogeneity, however, not under cGMP conditions
[37]. Subunit fragments of MSP1,, (for 3D7 p19, EGF-like
domain 1 and EGF-like domain 2; for FVO, p33, p19 and
EFG-like domain 1 and EGF-like domain 2) were expressed
as fusions to GST and were purified to homogeneity using
Glutathione Sepharose 4B resin (GE Healthcare, Piscat-
away, NJ) [11]. Recombinant GST was purified under the
same conditions and used as a negative control in the
Luminex assay and for ELISpot. MSP133 3D7 recombinant
protein contained an N-terminal histidine tag and was puri-
fied to homogeneity using Ni*>-NTA Superflow resin (Qia-
gen Chatsworth, CA).

Immunizations

BALB/c mice (5—-6 week old, Jackson Laboratories, Bar
Harbor ME) were immunized subcutaneously with 2 pg
of recombinant P. falciparum MSPl,, proteins (in the
case of 3D7/FVO vaccine mix 1 pg of each antigen was
combined). All doses were in 100 pL on day 0 and 21.
ICR mice (5-6 week-old, Charles River Laboratories,
Wilmington, MA) were immunized with 5 pg of recom-
binant P. falciparum MSP1ly, proteins (in the case
of 3D7/FVO vaccine mix 2.5 pg of each antigen was
combined), adjuvanted with Montanide ISA-720 (Seppic
Inc., Fairfield, NJ) at three week intervals. Emulsification
of the antigen-adjuvant mixture was performed as
described elsewhere [38]. Quality control for the Monta-
nide ISA-720 oil emulsions were performed by micro-
scopically examining the size, homogeneity and number
of oil droplets in the formulation as per manufacturer’s
instructions (Seppic Inc.). Mice were injected in the in-
guinal area within 1 hr of preparing the emulsion
(n=20/group). Blood samples were obtained two weeks
after each immunization.

ELISA

ELISAs were performed as previously described in detail
[39]. Briefly, 96-well plates (Immunolon 2 HB, Thermo,
Milford, MA) were coated by overnight incubation with
the recombinant MSP1,, at 0.8 pmol in 100 pL (0.35 ng/
puL) PBS at 4°C. Plates were washed with PBS/0.1%
Tween 20 using a 96-well plate automatic ELISA-plate
washer (Skatron, Sterling, VA) and blocked with blocking
buffer (PBS, 1% BSA, pH 7.4) for 1 hr at 37°C. Sera were
diluted in blocking buffer and incubated for 2 hr at 37°C.
Alkaline phosphatase-conjugated goat anti-mouse IgG
(Promega, Madison, WI) secondary antibody was added
to blocking buffer (1:1,000) and incubated for 1 hr at RT.
The assay was developed for 15 min at 37°C with Blue-
Phos substrate (Kirkegaard Perry, Gaithersburg, MD)
and read at 570 nm. Antibody concentration was
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determined by establishing a standard curve with purified
mouse IgG.

ELISpot

ELISpot assays were performed as previously described in
detail [39]. Briefly, multiscreen plates (Millipore, Bedford
MA) were coated with either anti-IFN-y or anti-IL-4 cap-
turing antibodies according to manufacturer’s instructions
(R&D Systems, Minneapolis, MN). Plates were blocked
using culture medium (DMEM containing 10% FBS con-
taining Pen/Strep, HEPES, NEAA, sodium pyruvate, 2-
mercaptoethanol). Thawed splenocytes were counted and
plated at 107 cells/mL (50 pL/well) and stimulated with
the various recombinant proteins. Plates were incubated
for 36 hrs (IFN-y) or 48 hrs (IL-4) in the presence of anti-
gen at 37°C and then processed according to manufac-
turer’s instructions. Plates were counted using the AID
Autoimmun Diagnostica GmbH ELISpot reader and soft-
ware (Strassberg, Germany).

Luminex™ analysis

Antibody fine specificity to the fragments of MSP1y4,
(p33, p19, EGF-like Domain 1 (D1) and EGF-like Domain
2 (D2)) was detected by the particle-based Luminex™
method. Beads were coupled with 25 ng/5,000 micro-
spheres/well per antigen. Microfilter plates were blocked
with 200 pL/well of PBS, 0.05% Tween 20, followed by
200 pL PBS, 1% BSA for 1 hr at RT. 5,000 microspheres
of each fragment per 50 pL were combined in the follow-
ing mixtures to avoid competition or interferences:
Multiplex 1: p33 + p19 3D7; Multiplex 2: pD1 + pD2 3D7;
Multiplex 3: p33+pl9 FVO; Multiplex 4: pD1 +pD2
FVO. Each reaction contained 50 pL of the microsphere
mix with 50 pL of the post boost-diluted serum tested at
either 1:200 or 1:2,500. Plates were incubated for 1 hr at
22°C on a vibrating plate shaker (Heidolph Titramax
100). R-phycoerythrin conjugated anti-mouse IgG (1:250)
(Jackson ImmunoResearch Laboratories, Inc., West
Grove, PA) was added to washed plates (4 times with 200
pL 1X PBS, 0.05% Tween 20) and incubated for 30 min
at 22°C on a plate shaker. All data were analysed on a
Luminex™ 200 (Luminex 100 IS 2.3 software) set to read
the fluorescence intensity per microsphere signature, 100
events per signature (per antigen) were calculated and
reported as the mean fluorescence intensity (MFI).

Parasite cultures and growth inhibition assays

Complete media was prepared with RPMI 1640
(Invitrogen, Carlsbad, CA) containing 25 mM HEPES,
7.5% w/v NaHCOj3; and 10% human pooled serum
(blood group O+). Plasmodium falciparum clones
3D7 and FVO were maintained and synchronized by
the temperature cycling method [40]. Unless stated
otherwise, cultures in the presence or absence of
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immune serum were set up at approximately six
hours before rupture occurred (starting parasitaemia
at 0.3%, hematocrit of uninfected erythrocytes at 2%)
in 384-well plates under static conditions.

Immunoglobulin purifications

Mouse IgG from sera were purified using caprylic acid/
ammonium sulfate and dialyzed as previously described
[41]. Immunoglobulins were pre-absorbed with human
red blood cells (RBCs; blood group O+) and tested for
GIA by measuring the inhibition of pLDH activity as
previously described in detail [42].

Statistical analysis

Serological responses measured by ELISA, Luminex'™
and for GIA were tested for statistical significance using
an ANOVA (pairwise comparisons were done by two-
sided T-tests) and cellular responses measured by ELI-
Spot were tested by using two-sided T-tests employing
the Minitab software package (Penn State University,
State College, PA) and Sigmaplot 11.0 (Systat Software
Inc). Antibody data tested by ANOVA were equally var-
ied and normally distributed; therefore, no transform-
ation was required.

Results

Homologous and heterologous immunization regimens to
simulate pre-existing immunity to different alleles of
MSP1,,

Various immunization regimens were designed employ-
ing the C-terminal MSP1,, of the full length MSP1
from three laboratory parasite isolates (Figure 1),
namely 3D7, FVO and CAMP. While 3D7 and FVO
represent the two dimorphic alleles of the p33 protein
(MAD20 and Wellcome/K1, respectively) the CAMP
haplotype represents a hybrid between these two para-
site clones where the p33 and EGF-like D1 portion of
the molecule is homologous to p42 3D7 and the p19
EGF-like D2 portion is identical to EGF-like D2 of p42
FVO (see Figure 1B).

Serological responses of inbred and outbred mice to the
various vaccine alleles differ significantly but confirm the
value of immunizations with mixed alleles
MSP14,-specific antibody concentrations were measured
after the first and the second immunization (Figure 2).
In BALB/c mice, the highest antibody concentration was
measured after two immunizations with FVO followed
by the 3D7/FVO mix (Figure 2A). The difference in anti-
body concentrations for these two groups were signifi-
cant only at the 90% confidence level (p =0.09, 2-sample
T-test). These antibodies were equally reactive in the
ELISA to both the homologous and the heterologous
plate antigens. The two regimens involving identical 3D7
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Figure 2 Differences in the immunogenicity of various MSP1,, proteins after homologous and heterologous immunizations of inbred
BALB/c were tested by ELISA for reactivity against homologous (Panel A) and heterologous (Panel B) MSP1,4, proteins. X-axis =time
point (two weeks post first or second immunization) using ELISA plate antigens: MSP1,4, 3D7, FVO and CAMP. Data are expressed as the mean
pg/mL mouse IgG (+/—SEM). n =20 mice/group, two independent immunization experiments.

p33 N-termini, 3D7—3D7 and CAMP — CAMP,
induced relatively poor antibody responses, an order of
magnitude lower than for any immunization that
involved an FVO immunogen in BALB/c. All heterol-
ogous prime and boost regimen induced equally low
antibody concentrations after two immunizations sug-
gesting lack of boosting by the second allele (Figure 2B).
In ICR mice, the highest antibody responses were
induced by the 3D7 — 3D7 and the 3D7/FVO mix (Fig-
ure 3). These responses were equally reactive against

homologous and heterologous plate antigens (represent-
ing the different alleles of MSP1,,) by ELISA. In regards
to the two heterologous prime and boost regimens eval-
uated in ICR mice (Figure 3), only the mice that were
boosted with an immunogen having an identical p33 to
the prime (i.e. CAMP — 3D7) induced significant levels
of antibodies. These antibodies were equally cross-
reactive against all plate antigens (representing the dif-
ferent alleles of MSP14,). A disparity in the magnitude
of responses induced by the different MSP1,, alleles
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Figure 3 Differences in the immunogenicity of various MSP1,, proteins after homologous and heterologous immunizations of outbred
ICR mice were tested by ELISA for reactivity against homologous (Panel A) and heterologous (Panel B) MSP1,, proteins. X-axis =time
point (two weeks post first or second immunization) using ELISA plate antigens: MSP1,4, 3D7, FVO and CAMP. Data are expressed as the mean
pg/mL mouse IgG (+/—SEM). n =20 mice/group, two independent immunization experiments.
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appears mouse strain-dependent and indicates a genetic
restriction where BALB/c preferentially recognize the
FVO immunogen over the 3D7 and CAMP MSP1,, pro-
teins (Figure 2A). This finding emphasizes the necessity
to evaluate vaccine combinations in more than one
mouse strain.

Effect of pre-existing immunity on antibody recall
responses against homologous or heterologous MSP1
antigens

The data presented in Figures 2 and 3 were further ana-
lysed arithmetically to determine the effect of pre-existing
immunity on the potency of a heterologous MSP1 allele-
based vaccine (Figure 4 A, B). To this end, a stimulation
index (SI) was calculated to determine changes in the
MSP1-specific antibody levels after the booster
immunization. As expected, the homologous cohorts have
overall higher indices against all plate antigens compared
to the heterologous cohorts except for 3D7 — 3D7 in
BALB/c (Figure 4A). The homologous regimen, 3D7 — 3
D7, is the weakest of all homologous regimens suggesting a
relatively low immunogenicity of this MSP1 vaccine in both
mouse strains. Moreover, the 3D7 based vaccine was also
inferior when used as the booster immunization compared
to the two other allele antigens. In ICR mice, only the ad
hoc combination regimen, 3D7/FVO mix, significantly
boosts primary responses (Figure 4B). The heterologous
regimen CAMP — 3D7 had a much higher boosting index
compared to the mis-matched p33 in the CAMP — FVO
regimen indicating again the influence of the p33 portion of
the molecule to boost pre-existing responses.

Heterologous immunization regimens affect the epitope
fine specificity of humoral responses

To further explore the impact of exposure to different
MSP1 alleles on the resulting antibody response the
antibody fine specificity of immune sera from BALB/c
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(Figure 5) and ICR mice (Figure 6) was determined by
bead-based flow cytometry (Luminex™). For this purpose,
beads were coupled with MSP1ly, subunit fragments
representing the p33, p19 and the EGF-like D1 and D2 for
the 3D7 and FVO alleles. Significant allele-specificity was
detected to the p33 3D7 (p<0.001, ANOVA) with the
highest responses induced by the two p33 homologous
regimens (3D7 —3D7 and CAMP — CAMP). For p19
3D7, the strongest responses were found in the homolo-
gous regimen, FVO — FVO, followed by 3D7 — 3D7, and
then all regimens that included at least one FVO.
Responses to p19 3D7 that were induced by the heterol-
ogous EGF-like domain 2 regimens, 3D7 — CAMP and
CAMP — 3D7, were the lowest (p=0.034, ANOVA). A
similar trend was seen for p19 FVO responses (Figure 5B)
with 3D7 — CAMP and CAMP — 3D7 inducing the low-
est responses to both p19 FVO and D1 FVO and all
responses to EGF-like D1 paralleled the responses to the
p19. These results indicate that the FVO vaccine is more
potent than the other MSP-vaccines, as it induces stronger
antibody responses even against the heterologous p19
3D7. Immunization with the FVO — FVO and the 3D7/
FVO mix regimen led to pronounced responses to the
EGF-like domain 2 (D2) of p19 3D7 and FVO. Overall,
the FVO — FVO vaccination regimen induced the highest
responses to the C-terminus of MSP1,,.

The fine specificity of immune sera from ICR mice
(Figure 6) were noticeably different from those observed
for BALB/c mice. Responses to p33 3D7 were relatively
high for all regimens tested except for the FVO — FVO
(p<0.0001, ANOVA) which failed to induce any cross re-
activity to p33 3D7. Responses to p33 FVO were only
induced by the two regimens containing homologous p33
EVO in the prime and boost. These findings further
underscore the influence of strain specificity at the N-
terminal p33 portion of MSP14,. None of the regimens
could be distinguished based on their responses to p19

Prime->Boost

3D7->3D7 A
FVO->FVO

CAMP->CAMP S —
3D7/FVO mix
3D7->FVO |
3D7->CAMP Plate Antigen
FVO->3D7 C—1 CAMP
FVO->CAMP == FVO
CAMP->3D7 == 3D7
CAMP->FVO

0 10 20 30 40 50 60 70
Fold Increase of Ab Levels (post2/post1)

Figure 4 MSP1-alleles vary in their ability to boost homologous or heterologous MSP1,4,-induced Ab responses in inbred BALB/c mice
(Panel A) and outbred ICR mice (Panel B). Data expressed as fold increase in antibody concentration of the post 2 over post 1 IgG
concentrations. Bar shadings indicate the three MSP1,, plate antigens used in the ELISA, No fill (CAMP), gray (FVO), and black filled (3D7).
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Figure 5 Heterologous immunization regimens affect the epitope fine specificity of humoral responses in BALB/c mice. Fine specificities
of the post boost sera were tested for reactivity against 3D7 (Panel A) and FVO (Panel B) protein fragments and analysed by particle-based flow
cytometry (Luminex™). Proteins coupled to the Luminex beads are shown on the X-axis. Y-axis = mean fluorescence intensity (MFI). Data are from
two independent immunization experiments (n =20/group).

3D7 and pl9 FVO. On the other hand, a hierarchy of
responses was detected to D1 of both p19 alleles with the
highest response in the 3D7 — 3D7 and the lowest in the
CAMP — FVO regimen (p=0.018, ANOVA). Induction
of specific antibodies to D2 of the pl19 3D7 required
immunization with either the homologous 3D7 vaccine
(3D7 — 3D7) or the homologous 3D7/FVO mix vaccine
while the responses tested against the D2 of FVO were
overall not distinguishable by vaccination regimen.

Functional activity of antibodies and the magnitude of

the humoral immune response do not parallel each other
Previous studies have demonstrated that the quality, and
not necessarily the quantity of the MSP1-specific anti-
body response determine the degree of protection
[13,43]. To characterize the quality of the humoral im-
mune response, functional assays were performed with
the MSP1-specific antibodies induced by the various

immunization regimens. Immunoglobulins from individ-
ual mice were tested for anti-parasite activity using the
pLDH GIA [19,43]. Analysing the functional activity of
antibodies induced in BALB/c mice showed statistically
different responses against 3D7 and FVO parasites
(p=0.003 and p=0.007, respectively, ANOVA)
(Figure 7A). Regimens leading to the highest level of
growth inhibition against both 3D7 and FVO parasites
were the 3D7/FVO mix, CAMP — FVO, FVO — 3D7,
and CAMP — 3D7, indicating cross-reactivity at the level
of functional antibodies that is not necessarily evident
when solely measuring total antibody.

Analysing the functional antibodies induced in ICR mice
revealed a significant difference in the level of growth in-
hibition against both 3D7 and FVO parasites by regimen
(p=0.001 and p<0.001, respectively, ANOVA) (Figure 7B).
The 3D7/FVO mix induced relatively low levels of activity
against 3D7 parasites and failed to induce significant
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Figure 6 Heterologous immunization regimens affect the epitope fine specificity of humoral responses in ICR mice. Fine specificities of
the post boost sera were tested for reactivity against 3D7 (Panel A) and FVO (Panel B) protein fragments and analysed by particle-based flow
cytometry (Luminex™). Proteins coupled to the Luminex beads are shown on the X-axis. Y-axis = mean fluorescence intensity (MFI). Data are from
two independent immunization experiments (n = 20/group).

activity against FVO parasites. Immunization with the
3D7 — 3D7 regimen resulted in the strongest growth in-
hibition with no discernible preference for the homolo-
gous strain. All other regimens induced responses that
were higher against the FVO parasites (Figure 7B).

Cellular immune responses induced by the various
regimens are strain-specific

In order to determine the fine specificity of the cellular
immune response, the number of antigen-specific splenic
T cells secreting either IFN-y (Figures 8A and 9A) or IL-4
(Figures 8B and 9B) was determined ex vivo by ELISpot
analysis. Initially, a comprehensive analysis was performed
on splenocytes from BALB/c mice obtained from all

regimens tested. Splenocytes were stimulated with recom-
binant MSP1,, CAMP, 3D7 and FVO, p33, p19 and each
of the subunit fragments for D1 and D2 of both 3D7 and
FVO clones (Figure 8 and Table 1). Since no MSP1-
specific responses against the smaller subunits p19, D1
and D2, above background levels were detected (stimula-
tion above glutathione S-transferase (GST) alone), these
data were omitted from further analyses. In contrast,
significant responses were measured against the larger
subunit fragments MSP1,, and the p33. The highest
IEN-y responses were measured in the 3D7 — 3D7 and
CAMP — CAMP regimens and to a lesser extent in the
3D7 — CAMP and FVO — 3D7 after ex vivo stimulation
with MSP1,, 3D7 and p33 3D7 (p =0.0007 and p = 0.0176,
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Figure 7 Functional activity of antibodies induced by immunization does not parallel the magnitude of the serological response.
Growth inhibition of 3D7 (black bars) and FVO (white bars) parasites by MSP1 specific antibodies induced in BALB/c (Panel A) or ICR mice
(Panel B) by the various immunization regimens (indicated on X-axis). Bars represent mean GIA activity (SEM) of 20 individual mice (two
independent immunization experiments). Purified immunoglobulins were tested at a final concentration of 0.8 mg/mL.

respectively, two-sided T-test). For FVO stimulations with
either MSP1,, or p33, the IFN-y responses did not signifi-
cantly differ (p=0.148 for the MSP1,, FVO and p =0.299
for the p33 FVO). Regimens that included a least one
FVO immunization were more likely to recall FVO spe-
cific responses. The highest degree of strain-specificity
was observed with the CAMP — CAMP regimen as this
group responded stronger to the ex vivo stimulation with
the MSP1,, CAMP than to any other antigen (p =0.043,
two-sided T-test). The IL-4 responses, although lower
overall, paralleled the IFN-y responses: The highest IL-4
responses were measured after stimulation with MSP1,,
3D7 and p33 3D7 in the 3D7 —3D7 and CAMP —
CAMP regimens (p=0.0002 and p =0.0001, respectively,
two-sided T-test). Only the 3D7— CAMP regimen

induced responses that could be significantly stimulated
by MSP14, FVO stimulation.

A select set of immunization regimens (-exposure in
Western Kenya where CAMP parasites predominant
and either a 3D7 or FVO allele vaccine could be
deployed) were employed to investigate the fine specifi-
city of T cell responses in outbred mice (Figure 9 and
Table 2). Similar to the findings for inbred BALB/c mice,
the IFN-y responses in ICR mice demonstrated a strain-
specific response pattern. The regimens that included
the 3D7 vaccine yielded higher T cell responses to
MSP1,, 3D7 and p33 3D7. The regimens that included
the CAMP or FVO vaccine induced higher responses to
MSP1,, FVO and p33 FVO (Figure 9A). The IL-4
responses induced by the various regimens paralleled
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Figure 8 Cellular immune responses induced by the various regimens are strain-specific. Fine specificity of T cell responses induced in
BALB/c mice (Panel A, B) by various immunization regimens. IFN-y responses (Panel A) and IL-4 (Panel B) responses were measured after ex vivo
stimulations with MSP14, and subunit fragments (antigen dose for ex vivo stimulation =5 pg/mL) by ELISpot analysis. Data are expressed as the
mean (+/— SEM) number of cytokine spot producing cells (SFC) per 10° splenocytes. Data are from two independent immunization experiments
(n=20/group). Cells from mice immunized only with saline/Montanide ISA-720 and splenocytes from the various immunization regimens
stimulated with GST as control antigen did not yield responses above medium control.

the T cell fine specificity seen for the IFN-y responses
(Figure 9B). As expected, IL-4 responses induced in ICR
mice were lower than the responses measured in BALB/
¢ mice as the latter strain of mice is biased towards Th2-
type responses [44].

Discussion

Evidence of protection induced by MSP1,, based vac-
cines in nonhuman primate studies [11,13,34] and the
association of MSP1 antibodies with reduced parasite
burden and clinical disease (reviewed in [45,46]) have
contributed to the development of recombinant MSP1-

based vaccine candidates for clinical investigations.
However, significant obstacles to overcome for blood
stage vaccines that have yet to be addressed include
the issues of parasite strain heterogeneity in the field
and pre-existing immunity to circulating alleles. The
present study models the impact of an established im-
mune response to one MSP1l,, allele (prime) on the
induction of immunity to a different allele (boost). To
this end, recombinant MSP1,, protein antigens from
the two major MSP1,, alleles, namely MAD20 (3D7
clone) and Wellcome/K1 (FVO clone) and the CAMP
clone, a recombinant between MAD20 and Wellcome/
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Figure 9 Cellular immune responses induced by the various regimens are strain-specific. Fine specificity of T cell responses induced in ICR
mice (Panel A, B) by various immunization regimens. IFN-y responses (Panel A) and IL-4 (Panel B) responses were measured after ex vivo
stimulations with MSP14, and subunit fragments (antigen dose. for ex vivo stimulation =5 pg/mL) by ELISpot analysis. Data are expressed as the
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(n=20/group). Cells from mice immunized only with saline/Montanide ISA-720 and splenocytes from the various immunization regimens
stimulated with GST as control antigen did not yield responses above medium control.

K1 (Figure 1) adjuvanted with Montanide ISA-720
were used as immunogens in various prime:boost
regimens.

Analysis of antibody responses revealed that in the
context of homologous immunization, both the FVO —
EVO and the 3D7/FVO mix were highly immunogenic
in BALB/c (Figure 2). These antibodies had a high de-
gree of cross-reactivity to each of the P. falciparum
strain MSP1,, antigens by ELISA, suggesting that these
two regimens could overcome the allelic diversity in
the field. In addition, the BALB/c mice model yielded
reduced immunogenicity of the homologous 3D7 and

CAMP vaccines, most likely due to a genetic restric-
tion within this mouse strain. Humoral responses in
ICR mice were higher when immunizing with the 3D7
vaccine, in contrast to the responses seen in BALB/c
mice.

A stimulation index (SI) was calculated to assess the
effect of pre-existing immunity on the ability of a hom-
ologous or heterologous vaccine to boost an established
humoral immune response (Figure 4A, B). The SI
reports the fold increase of MSP1,,—specific antibody
concentration between the prime and booster
immunization. In all cases, a homologous prime:boost
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Table 1 Reactivity of MSP1 specific T cells from BALB/c
mice demonstrates strong strain-specificity

Regimen IFN-y responses® 1l-4 responses®
MSP1,, MSP1,,
CAMP® FVO 3D7 CAMP FVO 3D7
FVO — FVO + +++ + +/- + +/—
FVO — 3D7 + ++ ++ +/— +/— +/—
FVO — CAMP + ++ +/— + +/— +/—
3D7—3D7 + +/- ++ + +/— +++
3D7 — FVO +/— ++ + +/— +/— +
307 — CAMP ++ +/— ++ + ++ ++
3D7/FVO mix + ++ ++ +/— +/— +
CAMP — CAMP +++ + + ++ +/— +/—
CAMP — 3D7 ++ +/- + + +/—
CAMP — FVO + + +/— + +/- +/-

2 Strength of response: +> 15 SFC, ++ >30, +++>45 SFC. Responses of mice
immunized with saline/Montanide ISA-720 did not exceed 2+ 1 SFC/10°
splenocytes when stimulated with any of the antigens used. Responses of
splenocytes stimulated with GST as the control antigen did not exceed 2 +2
SFC/10° splenocytes.

P MSP1,, allele used for ex vivo stimulation. Bold characters highlight the
magnitude of the homologous response.

out performed any heterologous regimens in terms of
the ability to boost pre-existing immunity in BALB/c
mice. In ICR mice, none of the regimens performed as
well as the 3D7/FVO mix. These data reveal that in an
experimental murine model, the priming exposure to
MSP1-alleles leads to “clonal imprinting” also known as
original antigenic sin. For Plasmodium, this is the first
such demonstration of clonal imprinting and these find-
ings have major implications for the development of
blood stage malaria vaccines. Similar evidence of pre-
exposure has previously been shown to modulate subse-
quent immune responses (reviewed in [32,33]).

Analysis of the antibody fine specificity by Luminex™
induced in inbred and outbred mice by the various

Table 2 Reactivity of MSP1 specific T cells from ICR mice
demonstrates strong strain-specific IFN-y responses

Regimen IFN-y responses® IIl-4 responses®
MSP1,4, MSP1,4,
CAMP® FVO 3D7 CAMP FVO  3D7
FVO — FVO +/— +++ +/— +/— + +/—
3D7 —3D7 4+ +/— +++ +/— +/— +/-
3D7/FVO mix +++ +++ +++ +/— +/— +
CAMP — 3D7 4+ +++ 4+ +/—- +/— +/—
CAMP — FVO +++ +/— +++ +/— +/— +/—

2 Strength of response: +> 15 SFC, ++ >30, +++>45 SFC. Responses of mice
immunized only with saline/Montanide ISA-720 did not exceed 3+ 2 SFC/10°
splenocytes when stimulated with any of the antigens used. Splenocytes
stimulated with GST as control antigen did not exceed 2 +2 SFC/10°
splenocytes.

P MSP1,, allele used for ex vivo stimulation. Bold characters highlight the
magnitude of the homologous response.
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regimens provided several important insights: (1)
Responses to the p33 3D7 were obtained only when using
immunization regimens that consisted of either homolo-
gous CAMP or 3D7 regimens, or any regimens that
included the 3D7 vaccine. Responses in BALB/c mice to
the p33 FVO were only significant in the homologous
FVO — FVO regimen. In ICR mice, p33 FVO responses
were only induced by the homologous FVO — FVO regi-
men and the 3D7/FVO mix regimen. These results clearly
show that the responses to p33 are not cross-reactive be-
tween the alleles: no boosting occurs in the presence of an
established heterologous allele response. (2) Anti-p19
responses did not show any allele specific immune
responses. (3) Responses to the D2 of p19 3D7 and FVO
were only triggered by the 3D7/FVO mix regimen and the
FVO — FVO regimen in BALB/c mice. In ICR mice, the
3D7/EVO mix regimen and the 3D7 — 3D7 regimen were
able to induce responses to the D2 of the p19 3D7 while
any regimen tested was able to induce responses to the
D2 of the p19 FVO.

The most stringent measurement of a vaccine’s effect-
iveness is to determine the biological effect of the
induced immune response. Therefore, the growth in-
hibitory activity of antibodies generated by the various
regimens was determined (Figure 7). The regimen that
induced antibodies with the highest anti-parasite activ-
ity against both parasite strains in BALB/c mice was
CAMP — FVO. In ICR mice, the strongest functional
responses were induced by the 3D7 — 3D7 regimen
whereas the 3D7/FVO mix vaccine triggered the weak-
est functional antibody response, a result inconsistent
with the response seen in BALB/c mice. These GIA data
suggest that the high titer antibodies induced by the
3D7/FVO mix may be to epitopes that do not necessar-
ily function against the parasite. It should, however, be
noted, that although routinely used as a surrogate read-
out for vaccine efficacy, there is no evidence that the
in vitro growth-inhibitory activity correlates to bio-
logical relevance of antibodies against blood stage anti-
gens [46]. While MSP1;4-specific GIA active antibodies
acquired through natural immunity have been asso-
ciated with reduced clinical disease [7,47], confounding
evidence suggests that the quality of antibodies induced
in malaria-naive- and malaria-experienced individuals
vaccinated with blood stage antigens differs [48-51]. It is
not clear whether the inability of blood stage vaccines
to induce functional antibody responses to MSP1 in the
field is solely due to the complexity and diversity of cir-
culating parasite strains [24,52,53] or to the ability of
the vaccine to overwrite pre-existing immunity. These
findings suggest that assessing a vaccine-induced
growth inhibitory activity, in the context of natural im-
munity, is hindered by the multitude of antibody
specificities.
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Induction of potent humoral immune responses
requires the engagement of an efficacious T helper cell
response. Evidence in the literature suggests a direct in-
volvement of effector T cells in protection against blood
stage malaria [54]. Analysing the fine specificity of the T
cell response revealed that the homologous regimens
were highly immunogenic for inducing IEN-y responses
in BALB/c mice. In contrast, the 3D7 and CAMP vac-
cines were more immunogenic in ICR mice. These
results confirm the existence of an MHC-restriction in
BALB/c that favors the presentation of FVO-derived
peptide fragments over 3D7 derived fragments. When
using the full length vs fragments of MSP1 to stimulate
recall responses, only the full length and the N-terminal
p33 fragments were able to stimulate T-cell responses
ex vivo. In part, this may be a result of the disulfide con-
strained nature of the pl9, which can impede antigen
processing [55]. Cellular responses revealed a p33-
dominated response in the regimens where the vaccines
shared the same p33 amino acid sequence (3D7 and
CAMP) leading to a boost of the cellular response. In no
case did a heterologous p33 regimen induce cross-
reactivity. The current study reveals that despite an
allele-specific T cell response; an allele-cross-reactive
humoral immune response could be induced leading to
antibodies that recognize parasite clones with homolo-
gous and heterologous MSP1 alleles.

Natural immunity to malaria is an age-dependent
phenomenon developing over repeated infections. The im-
munity that develops becomes broadly specific and com-
prises antibodies induced to the blood stages of infection.
Initially, the immunity that develops is allele-specific, and
thus is inadequate to protect against heterologous expos-
ure. To date, the immunity induced by blood stage vac-
cines is allele-specific, highlighted in several Phase 2b field
trials where vaccines representing single alleles were evalu-
ated to MSP2 in Combination B (Papua New Guinea) [48],
AMA1 3D7 in FMP2.1/AS02, (Mali) [53,56], and MSP1,,
3D7 in FMP1/AS02, (Western Kenya) (personal commu-
nication C.F. Ockenhouse). From these studies, it is rea-
sonable to conclude that multiple-allelic formulations are
required to overcome the effect of allelic polymorphisms
on induced immune responses. However, in the context of
the current study, none of the regimens that were tested
were able to circumvent allele-specific immunodominant
T cell responses. Overcoming this limitation may require
frequent, sequential prime and boost regimens with heter-
ologous immunogens focusing immune responses toward
more broadly conserved and cross reactive epitopes. The
current model of pre-existing immunity did not adequately
address this question since mice were only immunized two
times. Additional studies will be required to determine
whether serial immunizations with heterologous immuno-
gens can overcome the allele specificity at the T cell level.
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Thus, in the context of the current study, immunizing
infants and young children (without previous malaria ex-
posure) with the two dimorphic alleles of MSP1,, should
suffice to prime for conserved cross-reactive responses that
are directed against parasites that they may encounter
later. While in adult vaccinees, their extensive exposure
and pre-existing immunity should allow recognition of
conserved epitopes on vaccine immunogens leading to suc-
cessful boosting of these responses through repeated
exposure.

Conclusion

The present study demonstrates that pre-existing im-
munity modulates the magnitude and specificity of im-
mune responses induced by subsequent immunizations.
The effect was pronounced at the level of T cell
responses. The degree of homology in the p33 region of
MSP1 between the allele responsible for the clonally
imprinted immune response and the vaccine allele deter-
mines the magnitude of vaccine induced responses.
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