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Abstract

Background: A lack of consensus on how to define malaria epidemics has impeded the evaluation of early
detection systems. This study aimed to develop local definitions of malaria epidemics in a known malarious area of
Iran, and to use that definition to evaluate the validity of several epidemic alert thresholds.

Methods: Epidemic definition variables generated from surveillance data were plotted against weekly malaria
counts to assess which most accurately labelled aberrations. Various alert thresholds were then generated from
weekly counts or log counts. Finally, the best epidemic definition was used to calculate and compare sensitivities,
specificities, detection delays, and areas under ROC curves of the alert thresholds.

Results: The best epidemic definition used a minimum duration of four weeks and week-specific and overall
smoothed geometric means plus 1.0 standard deviation. It defined 13 epidemics. A modified C-SUM alert of

untransformed weekly counts using a threshold of mean + 0.25 SD had the highest combined sensitivity and
specificity. Untransformed C-SUM alerts also had the highest area under the ROC curve.

Conclusions: Defining local malaria epidemics using objective criteria facilitated the evaluation of alert thresholds.
This approach needs further study to refine epidemic definitions and prospectively evaluate epidemic alerts.
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Background

Malaria epidemics cause significant morbidity and often
mortality where they occur [1-4]. To predict malaria epi-
demics, several methods with varying lead times and sensi-
tivities have been proposed. For example, Malaria Early
Warning Systems (MEWS) predict epidemics based on
weather forecasts. They provide a longer lead time, but
poor sensitivity and specificity. In contrast, Early Detection
Systems (EDS’s) raise an alert shortly after the onset of an
epidemic, providing little or no lead time, but a more spe-
cific warning of an epidemic [1,5]. An alert is raised when
a weekly case count exceeds the corresponding weekly
threshold. Malaria Control Programmes (MCP’s) then
investigate or immediately implement epidemic control
measures. Several different methods for calculating alert
thresholds have been proposed [2-6]. These are ideally
based on five years of historical surveillance data [7,8].
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Before widely implementing any EDS, one needs to eval-
uate the validity of its alert thresholds [7]. Alert threshold
validity, at least for other disease surveillance systems, is
normally assessed by measuring sensitivity and specificity
[9]. Sensitivity is the percentage of “true epidemic periods”
which correctly raised an alert. Specificity is the percen-
tage of non-epidemic periods which correctly did not to
raise an alert. Lower thresholds increase sensitivity (so
fewer epidemics are missed), but decrease specificity (so
more false alarms are raised). Higher thresholds decrease
sensitivity, but increase specificity. Finding the optimal
alert threshold involves striking a balance between sensi-
tivity and specificity.

To calculate the sensitivity and specificity of any EDS
threshold, a gold standard definition of what constitutes
a malaria epidemic is needed. Unfortunately, there is no
universal consensus on how to define malaria epidemics
[5,10]. Such a definition would have to distinguish true
epidemics from seasonal variations and from random
transient aberrations.

© 2012 McKelvie et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:raeisia@tums.ac.ir
http://creativecommons.org/licenses/by/2.0

McKelvie et al. Malaria Journal 2012, 11:81
http://www.malariajournal.com/content/11/1/81

Only two studies have used standard sensitivities and
specificities to evaluate EDSs, but these had important
flaws in methodology [11] or data collection [12]. Other
evaluations used non-standard measures of validity [10]
or anecdotal reports [13]. Without a good way to evalu-
ate EDS threshold validity, implementing an EDS in any
epidemic-prone area will remain problematic.

Malaria has been eliminated from most of Iran so that
now only 6% of the population lives in endemic areas [14].
Unfortunately there has been little decrease since 2002
[15]. Malaria persists in three of Iran’s thirty provinces, all
clustered in the south-east [14]. About 90% of Iran’s
malaria cases are detected in these provinces, (A. Raeisi,
personal correspondence) and epidemics have been
reported there [7,14]. The MCP needs to control malaria
epidemics in these three provinces if it is to meet its goal
of elimination. It already has an efficient case monitoring
and reporting system, but lacks a formal threshold-based
EDS [7].

This study developed a local definition of what constitu-
tes a malaria epidemic in Chabahar District, south-east
Iran by comparing how well several proposed definitions
correlated with observed aberrations in transmission.
Then alert thresholds were developed for the early detec-
tion of local epidemics. Finally, the sensitivity, specificity,
and timeliness of those alert thresholds were evaluated
using the local definition.

Methods

Study setting

This study analysed surveillance data from Chabahar, one
of the endemic districts of Iran, collected between 21
March 2003 and 19 March 2008. Chabahar District is
located in south-east Iran. It has a population of 204,587.
On average, the health system detects about 2,000
malaria cases there annually.

Iran’s malaria control and surveillance system is imple-
mented mainly through the Primary Health Care (PHC)
system so data collection covers the entire district. The
PHC also dispenses all malaria treatment free of charge to
both nationals and expatriates, even that prescribed by pri-
vate doctors. All suspected cases are confirmed through
quality assured smear microscopy and each of the district’s
15 rural health centres reports any positive results to the
District Health Centre, usually the same day [7,14,16].

Data management

To address of the main objective of this study, records of
symptomatic cases from all 15 regional malaria labs of
Chabahar District were used. Because of their proximity,
data from five labs in two areas were pooled by area,
making 12 reporting centres. Names and addresses were
stripped to preserve confidentiality and the spreadsheet
was translated into English. The data were then exported
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into Stata version 8.2 for Windows [17]. Gregorian dates
were generated and all variables appropriately cleaned
and labelled, leaving the original dataset intact.

Weekly case counts were aggregated by health centre,
species and transmission type. The analysis was limited to
indigenous malaria cases, because they are a better reflec-
tion of local malaria transmission [18]. For each health
centre, week (¢) and year (y), weekly indigenous case
counts (w, ,), were incremented by one and logarithms
taken to give the log counts (x, ,). Finally, three-week
moving averages of log counts were calculated (z, ,) to
provide a time series of smoothed log counts. These base-
line variables were used to help define epidemic and alert
thresholds.

Defining epidemics

Several epidemic variables were plotted against a times
series of weekly case counts to compare how well they
correlated with observed aberrations in transmission.
The details of how they were calculated are described
elsewhere [18]. Most of these consisted of both weekly
and annual thresholds, and a minimum duration. The
two definitions which on visual inspection appeared to
best identify epidemics were selected for use in assessing
validity of alert thresholds and for determining the effect
of changing definitions on measures of validity.

Defining epidemic detection (alert) thresholds

Six different alert types were tested, each consisting of
both a week-specific and an annual threshold. Positive
alerts required that weekly counts exceeded both weekly
and annual thresholds. For all six alert types, annual
thresholds were calculated using all weekly counts in
the baseline. Weekly thresholds were calculated in one
of two ways: 1) for “one week span” alerts, weekly
thresholds were calculated from baseline counts corre-
sponding to the current week alone; 2) for “three-week
span” alerts, weekly thresholds were calculated from
baseline counts corresponding to the previous, current,
and following weeks. Figure 1 shows how this worked
at one centre for one alert type using a three-week
span.

Annual and weekly alert thresholds were calculated
from n™ percentiles (where n = 50, 60, 65, 70, 75, 80, or
85), from means plus k X standard deviation (SD), or
from geometric means plus k X SD (where k = 0.25, 0.5,
1.0, 1.5, 2.0, 2.5, 3.0). For each of these three methods,
weekly thresholds were generated from baseline data
using either one-week or three-week spans as described
above, giving six alert types in all. Alerts calculated from
weekly means using one-week spans of baseline data
were called modified Cullen alerts [6]. Alerts calculated
from weekly means using three-week spans were called
modified C-SUM (cumulative sum) alerts [2-5].
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Figure 1 Weekly indigenous malaria counts in Chabahar City (21 Mar 2003-19 Mar 2008). When weekly case counts (black line) exceed
both the mean of baseline counts in the surrounding 3 weeks plus 0.25 standard deviations (solid grey line) and also exceed the mean over all
weeks in the baseline plus 0.25 standard deviations (dashed grey line), an alert is triggered (grey dots at top of graph). The epidemic weeks
according to the primary definition (weekly smoothed log counts exceeded both weekly and annual means plus 1

standard deviation for at

Baseline data

To calculate means and standard deviations for both
epidemic definitions and alert thresholds, the entire
dataset excluding the year being tested was used as the
baseline [10]. This allowed separation of test and base-
line data, and inclusion of all epidemics periods. How-
ever, this approach tends to lower thresholds in
epidemic years and increase thresholds in non-epidemic
years, possibly inflating sensitivity and specificity. To
assess this possible bias, calculations were repeated
using the entire dataset without exclusion as the base-
line [19].

Statistical methods

For each alert type and threshold level, sensitivity was
calculated as the percentage of epidemic weeks (accord-
ing to the definition) with a positive alert and specificity
as the percentage of non-epidemic weeks with a nega-
tive alert. The week of each epidemic when alerts first
became positive was also determined.

Calculations were made initially using the primary epi-
demic definition noted above (counts exceed weekly and
annual smoothed geometric mean plus 1 SD for at least
four weeks) and baseline data which excluded the

current year. Calculations were repeated using a three-
week minimum epidemic duration and with baseline
data which included the current year. To assess the
effect of changing definitions or baseline data on the
relative performance of alert types, areas under the
curve (AUCs) of receiver operating characteristic (ROC)
plots were calculated and compared.

Results

Total case counts, temporal trends, and seasonal
variations

Between 21 March 2003 and 19 March 2008, 10,738
cases of malaria were reported in Chabahar District, of
which 8,055 (75.0%) were Plasmodium vivax. Total
reported cases in the study period varied between cen-
tres, ranging from 149 (from Kambelsoleiman) to 2,446
(from Chabahar City). Most reported malaria cases were
indigenous (62.9%), of whom 67.3% were adults. Females
comprised only 29.8% of total cases.

Marked inter-annual variations in transmission were
observed. The highest number of cases occurred in the
first year of the five-year study period: 4,007 (37.3%),
over twice that of any other year in the period (see
Figure 2). Annual cases then remained at a stable lower
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Figure 2 Weekly indigenous malaria counts with epidemics marked in all centres of District Chabahar, (21 Mar 2003-19 Mar 2008). For
the primary epidemic definition, weekly case counts (black line) had to exceed both weekly and annual smoothed geometric means plus 1
standard deviation for at least 4 weeks (flagged by black dots at top of graphs). For the secondary epidemic definition used the same thresholds
and a 3-week minimum duration (flagged by grey dots at top of graphs).

level for the remaining four years, showing no temporal
trend (p = 0.77).

Total case counts varied considerably from week to
week. Of the 3,120 weekly reports, 2,076 (66.5%) reported
less than three cases and in 1,097 weeks (35.2%), no cases
were reported at all. Both Plasmodium vivax and Plasmo-
dium falciparum counts were much higher in August to
October than in other months. Inter-annual variations
were also highest at that time.

Defining epidemics

The best definition of an epidemic was a period of at least
four consecutive weeks in which smoothed weekly log
counts (z ,) all exceeded both the annual mean plus one
standard deviation and z, , also exceeded respective
weekly mean plus one standard deviation. It flagged 13
epidemic periods lasting a total of 143 weeks. All occurred
from August to October of the first year of the study per-
iod (see Figure 2). This was the primary definition used in
the subsequent analysis.

The second best definition was like the primary defini-
tion except it used a 3-week minimum duration. This
alternative definition flagged 20 epidemics lasting 164
weeks, but at least six of these flagged epidemics were
spurious (see Figure 2). Other definitions that we exam-
ined performed much more poorly [18].

Effects of changing baseline data on epidemic definitions
and alert thresholds

Using a five-year baseline, the primary definition flagged
the same 13 epidemic periods as when using the four-year
baseline but only 128 epidemic weeks, 15 weeks less than
with a four-year baseline. With the alternative definition,
the number of epidemic periods decreased from 20 to 18
and epidemic weeks decreased from 164 to 143 using the
larger baseline dataset.

Using a four year baseline, weekly alert thresholds in
the first year (an epidemic year) were, as expected,
lower than in other years, especially during seasonal
peaks (see Figure 1). These differences reached statistical
significance for both the primary definition (z = 3.13,
p = 0.0017), and the alternative definition. (z = 3.80, p =
0.0001).

Using a five-year baseline epidemic thresholds were, of
course, the same from year to year.

Performance of alert thresholds

Using the primary epidemic definition (weekly counts >
geometric means + ISD for > 4 weeks) as the gold stan-
dard and a four-year baseline, all six types of thresholds
were able to predict epidemics within two weeks at
thresholds producing at least 90% specificity. The modi-
fied C-SUM alert using raw counts and a threshold of
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0.25 standard deviations above mean gave the highest
sum of sensitivity and specificity (see Table 1).

C-SUM alerts with raw counts also had the greatest
area under the curve (AUC) of its ROC plot compared
to other alert types (AUC = 0.9845, y* = 67.95, p <
0.0001). The AUC of raw count C-SUM alerts decreased
only slightly when calculated against a three-week mini-
mum epidemic definition and still exceeded AUCs of
other alert types: 0.9840 (y*> on 5 df = 63.25, p <
0.0001).

Using all five years of baseline data, the C-SUM AUC
still exceeded those of thresholds based on percentiles
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or log counts. Surprisingly though, the AUC for raw
count Cullen thresholds actually increased and exceeded
that of C-SUM thresholds (see Table 2).

Discussion

Summary of findings

The primary epidemic definition (weekly smoothed log
counts > weekly and annual means + 1SD, four-week
minimum duration) was the most sensitive and specific,
identifying 13 epidemics, though it may have missed a
possible epidemic in the final year in Pirsohrab. It also
remained robust to changing the baseline data.

Table 1 Sensitivities, specificities, and detection times of various alert thresholds in Chabahar District, south-east Iran

(21 Mar 2003-19 Mar 2008)

Earliest week epidemic
detected (n = 13)

Thresholds Sensitivity Specificity 1st 2nd 3rd > 4th
(percent) (percent)
Percentiles (1 week span)
> 60% 93.7 815 12 1 0 0
> 70% 937 855 12 1 0 0
> 75% 874 91.2 10 3 0 0
> 80% 74.8 943 5 6 1 1
Percentiles (3 week span)

> 60% 96.5 81.7 12 1 0 0
> 70% 95.1 87.5 12 1 0 0
> 75% 944 90.5 12 1 0 0
> 80% 90.9 93.1 11 2 0 0
> 85% 783 95.6 6 6 1 0

Mean count + SD’s (1 week span)
> mean + 0.255D 97.2 894 12 1 0 0
> mean + 0.50SD 93.7 934 10 3 0 0
> mean + 1.005D 81.8 97.2 6 1 0
> mean + 1.50SD 69.9 98.2 6 2 1

Mean count + SD’s (3 week span)
> mean + 0.255D* 99.3 90.0 12 1 0 0
> mean + 0.50SD 93.7 939 10 3 0 0
> mean + 1.005D 839 973 7 6 0 0
> mean + 1.505D 727 984 5 6 1 1

Mean log(count + 1) + SD’s (1 week span)
> mean + 0.255D 98.6 782 12 1 0 0
> mean + 0.50SD 96.5 84.5 12 1 0 0
> mean + 1.00SD 84.6 93.0 9 3 1 0
> mean + 1.50SD 70.6 975 4 6 2 1

Mean log(count + 1) + SD’s (1 week span)
> mean + 0.255D 100.0 77.1 13 0 0 0
> mean + 0.50SD 100.0 835 13 0 0 0
> mean + 1.00SD 930 929 10 3 0 0
> mean + 1.505D 741 97.7 5 6 1 1
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Table 2 Areas under the curve (AUCs) of ROC curves for various epidemic definitions and alert thresholds, Chabahar

District, 21 Mar 2003-19 Mar 2008

Areas Under ROC Curves

Years of Baseline data

4 years (excludes test year)

5 years (includes test year)

Minimum Epidemic Duration (Definition) 4 weeks (Primary)

3 weeks (Alternative)

4 weeks (Primary) 3 weeks (Alternative)

Threshold Type (span)

Percentiles (1 week) 0.9481 0.9492 09324 0.9321

Percentiles (3 week) 0.9624 0.9634 0.9469 0.9480
Mean+SDs (1 week) 09724 0.9702 0.9743 0.9718
(Cullen alerts of raw counts)

Mean+SDs (3 week) 0.9845 0.9840 0.9634 0.9659
(C-SUM alerts of raw counts)

Geometric mean+SDs 0.9647 0.9655 0.9607 0.9629
(1 week)

(Cullen alerts of log counts)

Geometric mean+SDs 0.9768 09778 09510 0.9541

(3 week)

(C-SUM alerts of log counts)

%2 for homogeneity (on 5 dfs) 67.95 63.25 5284 5862

P-value < 0.0001 < 0.0001 < 0.0001 < 0.0001

Among alert types, raw count C-SUM alerts per-
formed best. (These are thresholds derived from means
and standard deviations of raw weekly counts from 3-
week spans in the baseline data). Using a threshold of
mean plus 0.25 standard deviations, C-SUM alerts
detected 12 of 13 epidemics within one week and all
within two weeks. This alert threshold had the highest
combined sensitivity and specificity, 99.3 and 90.0
respectively. With changes in the baseline data, it still
performed better than all other alert types except the
Cullen type.

Epidemic definitions

Distinguishing between malaria epidemics and normal
seasonal or inter-annual variations can be challenging.
Some have even eschewed defining malaria epidemics at
all because no universally agreed criteria exist for declar-
ing them [10]

Though no universally agreed definition exists, this
study’s local definition of malaria epidemics was based
on several agreed principles. First, Chabahar District lies
in an area prone to malaria epidemics. Applying malaria
epidemic definitions to areas where they probably had
not occurred had impaired earlier efforts to define epi-
demics [12].

This study also distinguished normal from excess
transmission [8] by adapting EDS thresholds described
by Abeku et al. [20] and distinguished epidemics from
transient increases [8] by retrospectively setting a mini-
mum duration [19]. A four-week minimum duration
was chosen because four-week epidemics would peak at
two weeks, the Abuja declaration’s target for detecting

epidemics [21]. This assumes that shorter epidemics
would peak and begin to resolve earlier. To test this
assumption, a definition with three-week minimum per-
iod was also assessed and found to be less specific, as
expected. Other epidemic definitions examined were
insensitive, non-specific, or much less robust to changes
in the baseline dataset [18].

Finally, epidemics in this study were defined according
to the epidemiology of malaria and available resources
in Chabahar District. Hence, both Plasmodium vivax
and Plasmodium falciparum were included rather than
using only Plasmodium falciparum cases as was done in
Ethiopia [19]. Also, only indigenous cases were included
because there was no local evidence that increases in
imported cases affected indigenous transmission, though
imported cases may have precipitated epidemics else-
where [22,23]. The lack of temporal trend and the pre-
sence of epidemic control measures in District
Chabahar also influenced the definition.

All recognize that EDSs must be tailored to local epi-
demiological and social circumstances. Local circum-
stances should also dictate how one defines malaria
epidemics. The lack of universally agreed criteria should
not prevent defining malaria epidemics locally. Using
specific criteria does not obviate the need to exercise
judgement. The authors had to use judgement when
assessing whether peaks in reported malaria cases were
actual epidemics and whether epidemic definition vari-
ables correctly labelled them. However, objective criteria
can inform judgement.

Teklehaimanot et al. [10] argued that one can avoid
the problem of defining epidemics by comparing the
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validity of EDS thresholds using an alternative to sensi-
tivity and specificity. There are three problems with this
position. First, the agreed indicators of successful EDSs,
detection and control of epidemics within two weeks
[21] depend upon defining epidemics. Second, sensitivity
and specificity are the standard measures of validity for
alert thresholds of many diseases [9]. Third, the pro-
posed alternative, “potentially preventable cases” (PPC),
depends not only on the utility of the alert thresholds,
but also on the lack of past epidemic control. As epi-
demics are contained, PPC will decline. Thus, PPCs
would be less useful for operational settings, like District
Chabahar.

Alert thresholds

C-SUM type alerts using raw counts generally per-
formed better than other alert types. It had the highest
AUC, the specific threshold with the highest sum of
sensitivity and specificity, and detection delays at least
as good as other thresholds tested. Other threshold
types also detected all 13 epidemics within two weeks
and with at least 90% specificity, but with less sensitivity
and lower AUC’s. Reducing the minimum duration to
three weeks in the gold standard epidemic definition did
not alter the relatively superior performance of untrans-
formed C-SUM alerts. Using a five-year instead of a
four-year baseline, raw count C-SUM alerts still had
higher AUCs than all other alert types except that of
raw count Cullen alerts.

No other EDS evaluation has used sensitivity and spe-
cificity or ROC areas to compare different alert thresh-
olds. Cullen et al. elected to use means + 2 SDs of
monthly counts because of their lower SD but did not
otherwise compare this alert with others [6]. Hay et al.
[12] also found that untransformed Cullen alerts were
more sensitive and less specific than C-SUM or percen-
tile based alerts, but they detected “epidemic years”
rather than epidemic periods and the authors ques-
tioned whether true epidemics had occurred at all.
Later, many of the same authors argued that C-SUM
methods may be best because they account for inter-
annual variations in the timing of peaks [24]. Teklehai-
manot et al. [10] found percentile-based alerts per-
formed as well as the Cullen method, but they did not
evaluate the C-SUM method and they required that
alerts remain positive for two weeks.

Limitations

The use of a limited baseline dataset for both generating
thresholds and testing them may have contributed to
the good performance and the low levels of optimal
alert thresholds that we observed, levels which were
lower than those used by others [3,4,6,10,12,13]. How-
ever, this probably did not cause the observed superior
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performance of untransformed C-SUM alerts since their
relatively superior performance remained robust to
changes in the baseline data. The findings need confir-
mation using a larger baseline dataset to generate epi-
demic and alert thresholds. The new epidemic
definitions and alerts should also be re-evaluated on
prospectively collected test data.

The apparent under-representation of females could
only have affected results if females’ tendency to seek
care would periodically increase sufficiently to spur-
iously inflate reported cases. However, the magnitudes
of the observed epidemics make this explanation
unlikely.

Wide variations in case counts were observed between
centres within Chabahar District. Compared to larger
centres, smaller centres mislabelled more spurious aber-
rations as epidemics when sensitive definitions were
used. If less sensitive alert thresholds had been used at
centres with fewer indigenous cases, overall specificity
may have been improved.

Our methods of defining alerts did not incorporate the
use of climate data. Recently, this has been used effec-
tively in predicting epidemics of other vector borne dis-
eases [25]. The malaria epidemic definitions and alert
thresholds we used are specific to south-east Iran, which
has a very efficient case-finding and reporting system.
Still, defining malaria outbreaks based on criteria speci-
fic to local circumstances should be possible elsewhere
too. This approach to EDS development and evaluation
should also be explored in epidemic-prone areas outside
Iran.

Conclusions

In District Chabahar, Iran, malaria epidemics can be
defined as a period lasting at least four weeks, when
weekly indigenous malaria counts exceed both weekly
and overall geometric mean plus one standard deviation.
Using this gold standard, the modified raw count C-
SUM threshold using mean plus 0.25 SD’s identified
malaria epidemics within two weeks with the highest
sensitivity and specificity. Further study is required to
refine the epidemic definition and to confirm which
alerts are most sensitive and specific when applied pro-
spectively, both in Iran and in other epidemic prone
areas.

Abbreviations

AUC: Area under the curve; C-SUM: Cumulative sum; EDS: Early detection
systems; MCP: Malaria control programmes; MEWS: Malaria early warning
systems; PHC: Primary health care; PPC: Potentially preventable cases; ROC:
Receiver operating characteristic; SD: Standard deviation.

Acknowledgements
We thank the Zahedan University of Medical Sciences, Dr. Sheikhzadeh
(Sistan and Baluchestan Provincial Health Centre) and Dr.Medizadeh and Mr.



McKelvie et al. Malaria Journal 2012, 11:81
http://www.malariajournal.com/content/11/1/81

Gorgij (Chabahar District Health Center) for their assistance and for allowing
us to use their data.

Author details

'Diocese of Hyderabad, Ashraf Goth, Rattanabad, PO Box 21, Mirpur Khas
69000, Sindh, Pakistan. “Research center for modeling in health, Kerman
University of Medical Sciences, Jomhoori Islami Blvd, Kerman, Iran. *School of
Public Health, Tehran University of Medical Sciences, Tehran, Iran. “National
Malaria Control Programme, Health Ministry of Iran, Hafez-Jomhoori, Tehran,
Iran.

Authors’ contributions

WM conducted the background literature search, cleaned the data,
conducted the analysis, and drafted the manuscript. AH developed the
research question and data analysis strategy, assisted with data analysis, and
assisted in the composition and editing of the manuscript. AR helped
develop the research question, provided the data and helped to clean it,
and helped in editing the manuscript. Al authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 31 August 2011 Accepted: 23 March 2012
Published: 23 March 2012

References

1. Kiszewski AE: A review of the clinical and epidemiologic burdens
ofepidemic malaria. Am J Trop Med Hyg 2004, 71:128-135.

2. Guintran J, Delacollette C, Trigg P: Systems for the early detection of malaria
epidemics in Africa WHO/HTM/MAL/2006.1115 Geneva: World Health
Organisation; 2006.

3. WHO: Prevention and control of malaria epidemics Geneva: The Organisation;
2002.

4. WHO: Malaria Early Warning Systems-A Framework for Field Research in Africa
WHO/CDS/RBM/2001.32 Geneva: The Organisation; 2001.

5. Trigg P: Malaria epidemics: forecasting, prevention, early detection and control
Geneva: World Health Organisation; 2004.

6. Cullen JR, Chitprarop U, Doberstyn EB, Sombatwattanangkul K: An
epidemiological early warning system for malaria control in northern
Thailand. Bull World Health Organ 1984, 62:107-114.

7. Cox J: Development of systems for early detection, early warning and control
of malaria outbreaks in Iran: assignment report Geneva: World Health
Organisation; 2007.

8. Najera JA, Kouznetsov RL, Delacollette C: Malaria epidemics detection and
control forecasting and prevention Geneva: World Health Organisation; 1998.

9. Hashimoto S, Murakami Y, Taniguchi K, Nagal M: Detection of epidemics in
their early stage through infectious disease surveillance. Int J Epidemiol
2000, 29:905-910.

10.  Teklehaimanot HD, Schwatrz J, Teklehaimanot A, Lipsitch M: Alert threshold
algorithms and malaria epidemic detection. Emerg Infect Dis 2004,
10:1220-1226.

11, Albonico M, De Giorgi F, Razanakolona J, Raveloson A, Sabatinelli G,

Pietra V, Modiano D: Control of epidemic malaria on the highlands of
Madagascar. Parassitologia 1999, 41:373-376.

12. Hay SI, Simba M, Busolo M, Noor AM, Guyatt HL, Ochola SA, Snow RW:
Defining and detecting malaria epidemics in the highlands of western
Kenya. Emerg Infect Dis 2002, 8:555-562.

13. Cox J, Abeku TA: Early warning systems for malaria in Africa: from
blueprint to practice. Trends Parasitol 2007, 23:243-246.

4. Haghdoost AA: Assessment of seasonal and climatic effects on the incidence
and species composition of malaria by using GIS methods. PhD thesis
University of London, London School of Hygiene and Tropical Medicine;
2004.

15. WHO: World Malaria Report 2008 WHO/HTM/GMP/2008.1 Geneva: The
Organisation; 2008.

16.  Haghdoost A-A, Mazhari S, Bahadini K: Comparing the results of light
microscopy with the results of PCR method in the diagnosis of
Plasmodium viva. J Vector Borne Dis 2006, 43:53-57.

17.  StataCorp: Stata Statistical Software College Station (TX): StataCorp.

20.

22.

23.

24.

25.

Page 8 of 8

McKelvie W: Defining malaria epidemics and developing an early detection
system in South East Iran MSc thesis University of London, London School of
Hygiene and Tropical Medicine; 2008.

Abeku TA, van Oortmarssen GJ, Borsboom G, de Vlas SJ, Habbema JDF:
Spatial and temporal variations of malaria epidemic risk in Ethiopia:
factors involved and implications. Acta Trop 2003, 87:331-340.

Abeku TA, Hay SI, Ochola S, Langi P, Beard B, de Vlas SJ, Cox J: Malaria
epidemic early warning and detection in African highlands. Trends
Parasitol 2004, 20:400-405.

WHO: The Abuja Delcaration and action plan WHO/CDS/RBM/2000.17
Geneva: The Organisation; 2000.

Gilles HM: Epidemiology of malaria. Bruce-Chwatt's Essential Malariology. 3
edition. London, Boston, Melbourne, Aukland: Edward Arnold; 1989, 130.
Xu B-L, Su Y-P, Shang L-Y, Zhang H-W: Malaria control in Henan Province,
People’s Republic of China. AmJTrop Med Hyg 2006, 74:564-567.

Hay SI, Were EC, Renshaw M, Noor AM, Ochola SA, Olusanmi |, Alipui N,
Snow RW: Forecasting, warning, and detection of malaria epidemics: a
case study. Lancet 2003, 361:1705-1706.

Chaves LF, Pascual M: Comparing models for early warning systems of
neglected tropical diseases. PLoS Negl Trop Dis 2007, 1:e33.

doi:10.1186/1475-2875-11-81
Cite this article as: McKelvie et al: Defining and detecting malaria
epidemics in south-east Iran. Malaria Journal 2012 11:81.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
e Convenient online submission
e Thorough peer review
¢ No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
¢ Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BioMed Central
J



http://www.ncbi.nlm.nih.gov/pubmed/15331828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15331828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6609015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6609015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6609015?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11034976?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11034976?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15324541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15324541?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10697886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10697886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12023909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12023909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17412641?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17412641?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16967816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16967816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16967816?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12875926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12875926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15324728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15324728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20569947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12767739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12767739?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17989780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17989780?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Study setting
	Data management
	Defining epidemics
	Defining epidemic detection (alert) thresholds
	Baseline data
	Statistical methods

	Results
	Total case counts, temporal trends, and seasonal variations
	Defining epidemics
	Effects of changing baseline data on epidemic definitions and alert thresholds
	Performance of alert thresholds

	Discussion
	Summary of findings
	Epidemic definitions
	Alert thresholds
	Limitations

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

