
Gong et al. Malaria Journal 2013, 12:317
http://www.malariajournal.com/content/12/1/317
REVIEW Open Access
Biochemical and immunological mechanisms by
which sickle cell trait protects against malaria
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Abstract

Sickle cell trait (HbAS) is the best-characterized genetic polymorphism known to protect against falciparum malaria.
Although the protective effect of HbAS against malaria is well known, the mechanism(s) of protection remain
unclear. A number of biochemical and immune-mediated mechanisms have been proposed, and it is likely that
multiple complex mechanisms are responsible for the observed protection. Increased evidence for an immune
component of protection as well as novel mechanisms, such as enhanced tolerance to disease mediated by HO-1
and reduced parasitic growth due to translocation of host micro-RNA into the parasite, have recently been
described. A better understanding of relevant mechanisms will provide valuable insight into the host-parasite
relationship, including the role of the host immune system in protection against malaria.
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Background
Malaria, especially that caused by Plasmodium falciparum,
has been a major cause of morbidity and mortality through-
out human history. As a result, malaria has exerted
extraordinary evolutionary pressure on the human gen-
ome and appears to have selected for multiple genetic
polymorphisms that provide protection against severe
disease [1-4]. The best-characterized human genetic poly-
morphism associated with malaria results in sickle haemo-
globin (HbS). The high prevalence of HbS in sub-Saharan
Africa and some other tropical areas is almost certainly
due to the protection against malaria afforded to heterozy-
gotes [1-3,5]. Since the protective effect of sickle cell trait
on malaria was first described over 60 years ago [6-8] our
understanding of the epidemiology and mechanisms of
protection of this genotype have continued to expand, as
will be discussed below.
Sickle haemoglobin, sickle cell disease and sickle cell trait
Sickle haemoglobin (HbS) is a structural variant of normal
adult haemoglobin. Adult haemoglobin (HbAA) is made
up of two alpha and two beta globin chains. HbS is the re-
sult of a single point mutation (Glu→Val) on the sixth
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codon of the beta globin gene [9]. Homozygotes for
haemoglobin S (HbSS) with two affected beta chains de-
velop sickle cell disease, in which polymerized haemo-
globin causes red blood cells to sickle and occlude blood
vessels. Vaso-occlusion affects many organs and tissues,
and results in high morbidity and mortality. Heterozygotes
for sickle haemoglobin (HbAS) have sickle cell trait and
are generally asymptomatic [10].
HbAS and protection against malaria
Despite the obvious deleterious nature of HbSS, it is now
widely accepted that the persistence of the sickle mutation
in human populations is due to the protection from
malaria afforded to heterozygous individuals. Haldane
first proposed the concept of a heterozygote advantage
against malaria in 1949 [11]. In this seminal paper, Haldane
suggested that individuals heterozygous for thalassaemia,
another haemoglobinopathy, were protected against malaria.
Contemporaneous to this hypothesis, epidemiologic

evidence for protection against malaria in those with HbS
was emerging. In 1946, a British medical officer reported
that the prevalence of malarial parasitaemia was lower in a
cohort of 'sicklers” compared to “non-sicklers” in Northern
Rhodesia [6], findings corroborated in 1952 [8]. The first
true test of Haldane’s hypothesis came in 1954 through the
work of Alison linking HbAS to protection against malaria
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in Uganda [7]. This study showed a reduced prevalence
of parasitaemia (particularly P. falciparum) in Ugandans
with HbAS compared to those with HbAA. In addition,
after experimental infection Ugandans with HbAS had
reduced parasitaemia and less clinical malaria than those
with HbAA. Since these observations, strong evidence for
the protective effects of HbAS against malaria has been
generated in multiple case control and cohort studies
[12-17]. Recently, an evidence-based map of the global
distribution of the sickle cell variant has been created
in a bayesian geostatistical framework and compared to
the global prevalence of P. falciparum [5]. These data
provide comprehensive evidence for a global geographical
association between malaria burden and HbS allele fre-
quency, particularly in sub-Saharan Africa. Furthermore,
evidence for the protective effects of other red blood cell
polymorphisms against malaria, including haemoglobin C,
haemoglobin E, thalassaemias, and ovalocytosis have also
been described [17-28].
In endemic countries, infection with P. falciparum causes

a range of outcomes, including asymptomatic parasitaemia,
uncomplicated disease and severe malaria, which com-
monly progresses to death. HbAS provides significant
protection against both severe and uncomplicated malaria.
Case–control and cohort studies in multiple African
countries have consistently found that HbAS is 70-90%
protective against severe malaria [12-16] and 75% pro-
tective against hospitalization for malaria [29]. A recent
meta-analysis reviewed 44 studies of children with HbAS
and reported significant protection from severe malaria
syndromes, including greater than 90% protection from
severe malaria, cerebral malaria and severe malarial an-
aemia [17]. In addition, a cohort study showed a 60% re-
duction in overall mortality in HbAS children aged two
to 16 months, compared to HbAA children, in an area
of high malaria transmission [30]. Children with HbAS
are also protected from uncomplicated malaria, with co-
hort studies showing that HbAS is 30-50% protective
[15,17,27,31-36].
While associations between HbAS and protection against

malaria are clear, data from clinical studies aiming to
identify mechanism(s) of protection have been less con-
sistent. Older studies found a lower prevalence of para-
sitaemia in HbAS individuals irrespective of symptoms
[7,37], suggesting HbAS exerts protection against the es-
tablishment of parasitaemia. Multiple other reports failed
to identify an association between HbAS and the preva-
lence of asymptomatic parasitaemia [29,31,38-40], but
three recent studies found that HbAS children had sig-
nificantly less asymptomatic parasitaemia than HbAA
children [41-43]. Further, HbAS children in Ghana had
significantly lower parasite densities and a higher propor-
tion of submicroscopic P. falciparum infection compared
to HbAA children [41]. Data on associations between
HbAS and the multiplicity of infection, the number of
genetically distinct parasites causing an infection, are
limited and results have been conflicting [26,35,44,45].
A potential reason for these discrepancies is that, de-
pending on the epidemiological context, high multipli-
city of infection may reflect either lack of protection
against infection, allowing the establishment of a larger
number of patent parasites, or protection against symp-
tomatic disease, allowing parasite clones to “stack up”
since patients are less likely to seek care and receive
antimalarial therapy. To further investigate the effect of
HbAS on parasitaemia, another study followed a cohort
of Ugandan children aged one to ten years for asymp-
tomatic parasitaemia and symptomatic malaria, using geno-
typing to detect and follow individual parasite clones
longitudinally [35]. This study found that HbAS protected
against the establishment of parasitaemia by decreasing
the force of infection, or the average number of parasite
strains causing blood stream infections, and the probabil-
ity of developing clinical symptoms once parasitaemic.
HbAS children were also protected against high parasite
densities during symptomatic malaria, consistent with
prior studies [26,29-31,33,35,41,46], likely contributing
importantly to protection against severe malaria. These
discrepancies suggest that the mechanism of protection
afforded by HbAS is complex, with impacts on both the
development of parasitaemia and the control of parasit-
aemia once it is established.

Molecular mechanism of protection
Some decades ago, investigators found that P. falciparum
parasites induced sickling of HbAS red blood cells
in vitro. In the 1970s, two groups showed that parasit-
ized HbAS cells sickled at a two to eight times higher
rate than non-parasitized cells [47,48]. One group also
visualized polymerized haemoglobin in parasitized red
blood cells and hypothesized that an increase in the
polymerized haemoglobin or a reduced intracellular pH
might cause increased sickling [48]. Increased sickling
of parasitized red blood cells in HbAS individuals may
promote enhanced phagocytosis of infected cells and,
therefore, result in reduced parasitaemia compared to
that in HbAA individuals (Table 1).
Later in the 1970s, multiple studies found that P. falcip-

arum ring-stage parasites did not grow in HbAS red blood
cells under low oxygen tension [48-50]. Parasite growth
was inhibited in both sickled and non-sickled HbAS red
blood cells [50] suggesting that factors in addition to
sickling affected parasite growth. It has been hypothe-
sized that specific intra-erythrocytic conditions of HbAS
red blood cells, such as low intracellular potassium [49],
high concentrations of haemoglobin [51] or osmotic
shrinkage of the red blood cell [52] cause an inhospitable
environment for parasites. A study also demonstrated that



Table 1 Hypothesized protective mechanisms of sickle cell trait (HbAS) against malaria

Hypothesized mechanism of protection Evidence

Biochemical HbAS changes how P. falciparum
establishes an infection in the
human host

P. falciparum induces sickling of red
blood cells

Luzzatto 1970; Roth 1978

Reduced intra-erythrocytic growth of
P. falciparum in HbAS red blood cells

Friedman 1978; Pasvol 1978; Roth 1978;
La monte 2012

Reduced P. falciparum invasion of
HbAS red blood cells

Luzatto 1970

P. falciparum induces changes in
the red blood cell resulting in
altered disease progression.

Reduced rosette formation Carlson 1999

Reduced cytoadherence Cholera 2008

Immunological Improved innate immune response Enhanced phagocytosis of parasitized
HbAS red blood cells

Ayi 2004; Urban 2006; Lang 2009

Improved acquired immune
response

Epidemiologic evidence of an increase
in protection against malaria with age
in HbAS children

Guggenmoss-Holzmann 1981;
Williams 2005; Gong 2012

Increased cell mediated immune
response

Increased lymphoproliferative response
in HbAS children

Bayoumi 1990; Abu Zeid 1991;
Abu Zeid 1992; Le Hesran 1999

Increased humoral immune response Higher IgG levels in HbAS individuals Edozien 1960; Cornille-Brogger 1979;
Verra 2008

Higher levels of antibodies toward PfEMP-1
in HbAS individuals

Marsh 1989; Cabrera 2005; Verra 2008

Modulation of immunopathogenesis Increased levels of HO-1 reduce
inflammation irrespective of parasite load.

Ferreira 2011
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P. falciparum parasites invaded HbAS red blood cells less
efficiently than HbAA cells at low oxygen tension [47] but
subsequent studies failed to replicate these results [53].
Recent data provide support for the intriguing possibility
that human micro RNAs translocated into parasite mRNA
reduce intra-erythrocytic growth. This study found two
human micro RNAs that were highly enriched in erythro-
cytes with HbAS, and these micro RNAs inhibited trans-
lation of specific parasite mRNA transcripts negatively
impacting parasite growth in vitro [54].
Biochemical and mechanical changes in infected HbAS

red blood cells have been shown to alter disease progres-
sion. Rosette formation, which is the binding of P. falcip-
arum-infected red blood cells to uninfected red blood
cells, is thought to lead to microcirculatory obstruction
in cerebral malaria [55-59]. Rosette formation was found
to be impaired in P. falciparum-infected HbAS red blood
cells under deoxygenated conditions [57]. Impaired rosette
formation with HbAS red blood cells may be due to in-
creased sickling of these cells in deoxygenated conditions
[47,48] or to reduced expression of erythrocyte surface
adherence proteins [60]. Decreased rosette formation
and the resulting decreased circulatory obstruction might
contribute to protection against severe malaria in HbAS
individuals.
Reduced cytoadherence has also been implicated as a

mechanism of protection in HbAS individuals. Infected
red blood cells express one of a family of parasite-
encoded P. falciparum erythrocyte membrane protein 1
(PfEMP-1) molecules on the erythrocyte surface, and via
this protein adhere to endothelial cells in the microvascu-
lature [61-64] .This process, termed cytoadherence, en-
ables parasites to sequester in the vasculature and avoid
clearance by the spleen [64]. Cytoadherence also leads to
endothelial activation and associated inflammation in the
brain and other organs, important in the progression to
severe malaria [65-68]. Reduced cytoadherence was first
seen in infected red blood cells with another haemo-
globinopathy, HbC, [69] which is due to a different mu-
tation (Glu→ Lys) in the same codon on the beta chain
affected in HbS. Altered expression of PfEMP-1 was
subsequently found in HbAS red blood cells in vitro
[60]. Comparison of binding properties showed reduced
adherence to endothelial cells expressing the binding
ligand CD36 compared to HbAA red blood cells. PfEMP-1
surface signal was reduced by 14 % in HbAS and HbSS
compared to HbAA erythrocytes in flow cytometric assays,
suggesting altered surface expression of PfEMP-1, similar
to that reported in HbC [60]. In addition, dysfunctional
cytoskeletons have been visualized in HbSC erythrocytes
[70]. Oxidized haemoglobin present in erythrocytes con-
taining sickled haemoglobin may interfere with actin re-
organization in infected HbSC erythrocytes leading to
impaired vesicular transport of PfEMP-1 to the erythro-
cyte surface membrane [70]. These changes may impair
parasite-induced remodelling of the red blood cell sur-
face membrane and lead to altered PfEMP-1 surface
expression [60,69]. Reduced cytoadherence of HbAS
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and HbSS erythrocytes likely leads to increased splenic
clearance, and may in part explain lower parasite dens-
ities and a lower incidence of severe malaria in HbAS
individuals.

Role of the innate immune system
Phagocytosis by monocytes of HbAS red blood cells
infected with ring-stage P. falciparum was found to be
enhanced compared to that of infected HbAA cells, pro-
viding evidence for a role of the innate immune system
in protection against P. falciparum in HbAS individuals
[53]. Enhanced phagocytosis may be due to increased
presentation of opsonins, including membrane bound IgG,
C3c, membrane-bound hemichromes, and aggregated band
3 [53]. These opsonins, which are thought to be in-
volved in the removal of senescent red blood cells, were
first shown to be increased in G6PD deficiency [71,72],
a red blood cell enzyme deficiency also protective against
malaria [1] and were also significantly higher in infected
HbAS compared to HbAA red blood cells. Clearance by
monocytes of red blood cells with exposed phospha-
tidylserine, a surface marker of damaged erythrocytes
[73-77], was also enhanced in infected HbAS compared to
HbAA cells [73].
Enhanced opsonization and clearance of parasitized

HbAS red blood cells by the spleen may lead to in-
creased antigen presentation and earlier development of
acquired immunity compared to that in HbAA individuals.
A cross-sectional study found decreased levels of peripheral
myeloid dendritic cells and monocytes in individuals with
HbAS during healthy periods and malaria [78], suggesting
increased monocyte and dendritic cell recruitment to
the spleen.

Role of the acquired immune system
Population studies have found that the protective effect
of HbAS increases with age, suggesting an acquired com-
ponent of protection. A cross-sectional study of children
with malaria in Nigeria found a significantly lower mean
parasite density in HbAS compared with HbAA children
in those two to four years old, but not in children less
than two years old [476]. In Kenyan children, protection
afforded by HbAS against symptomatic malaria increased
from 20 % in children less than two years old to a peak of
56 % by age ten years [15]. In a recent study, protection
against the establishment of parasitaemia and the develop-
ment of symptomatic malaria once parasitaemic signifi-
cantly increased between the ages of two and nine years
[35]. Several studies shed light on possible immune bases
for acquired protection.

Role of cell mediated immunity
Cell mediated responses to P. falciparum appear to be
increased in HbAS compared to HbAA individuals. The
mean lymphoproliferative response to affinity-purified
P. falciparum soluble antigens [79-81] was found to be
significantly higher in HbAS children compared to HbAA
children [82-85] but a significant difference has not con-
sistently been found between HbAA and HbAS adults
[82,83]. Thus, available results suggest a more robust
cellular response to P. falciparum in HbAS children.
However, it is unclear whether this is a cause or effect of
the protective effects of HbAS. The lymphoproliferative
response is suppressed during and after acute malarial
infection in HbAA individuals [64,81,86-89]. Therefore,
a more robust lymphoproliferative response in HbAS
individuals could be secondary to protection against
malaria from other mechanisms.

Role of humoral immunity
Investigators have also found evidence for an enhanced
humoral response in subjects with HbAS. Increased levels
of gamma globulin were found in HbAS compared to
HbAA children [90,91]. However, higher levels of specific
antibodies directed at parasite surface antigens believed to
play a role in protective responses, including Pf155/ring
infected erythrocyte surface antigen (RESA), merozoite
surface protein 1 (MSP1), merozoite surface protein 2
(MSP2), erythrocyte binding antigen 175 (EBA175), and
glutamate-rich protein (GLURP), have not been seen in
HbAS compared to HbAA individuals in most studies
[31,85,92-96]. Recently, a study using a protein micro-
array representing 491 P. falciparum proteins found no
increase in the magnitude or breadth of the P. falciparum-
specific IgG response [97]. One study did find increased
levels of antibodies toward free parasite antigens apical
membrane antigen 1 (AMA1), EBA175, MSP1, MSP2,
MSP3, circumsporozoite protein (CSP), and parasite
schizont extract (PSE) in HbAS vs HbAA children living
in areas of low malarial transmission in Burkina Faso [98],
but not in children in an area of higher transmission.
Another study found lower levels of IgG1 and IgG3 to
MSP2 and RESA in HbAS individuals [99], possibly due to
reduced exposure to these antigens in HbAS individuals.
In contrast, higher levels of IgG directed at PfEMP-1

family proteins, which are located on the surface of the
red blood cell, have been found in individuals with HbAS
in a number of studies. On study found HbAS individuals
had a higher IgG response to the infected red blood cell
in vitro [100]. In The Gambia [31], Gabon [101], and a
low transmission area of Burkina Faso [98], HbAS chil-
dren had higher levels of IgG antibodies toward PfEMP-1
than did those with HbAA [31]. However, studies in areas
of high malaria transmission failed to find increased anti-
body response to PfEMP-1 in HbAS children [97,98,102]
perhaps because in these high malaria transmission areas
robust responses were seen in the majority of children.
Other possibilities for discrepancies between these studies
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include methods of antigen preparation and sample size
limitations. The identification of high levels of IgG toward
PfEMP-1 and not toward other parasite antigens suggests
that the enhanced humoral immune response in HbAS
individuals may be directed at proteins on the surface of
the infected red blood cell. This phenomenon may be
due to increased splenic uptake of infected red blood
cells in HbAS individuals and therefore improved presenta-
tion of surface antigens. In addition, protection against high
parasite densities seen in younger ages [26,29,30,35,41,46]
may improve the development of acquired immunity, as
parasitaemia may interfere with development of effective
immune memory [103]. Higher levels of antibodies to
PfEMP-1 may mediate protection in HbAS individuals via
enhanced opsonization and phagocytosis of infected red
blood cells, or through destabilization of cytoadherence.
Accelerated acquisition of antibodies to PfEMP-1 may
therefore underly the age-dependent increase in protect-
ive effects of HbAS found in three studies [15,35,46]. Al-
ternatively, or in conjunction, antibodies to PfEMP-1 may
be more effective in HbAS than in HbAA children due to
reduced or altered surface expression of PfEMP-1 levels in
the former.

Modulation of immunopathogenesis
In addition to direct antiparasitic effects, HbAS may con-
fer protection against severe malaria by limiting pathogen-
esis independent of effects on pathogen load. A recent
study using a well-established mouse model of sickle cell
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Figure 1 Model of mechanisms by which sickle cell trait may protect
disease implicated increased levels of hemeoxygenase-1
(HO-1), an enzyme that breaks down free haem, in the
mechanism of protection against cerebral malaria [104].
The authors concluded that sickle haemoglobin sup-
presses the pathogenesis of cerebral malaria by inducing
the expression of HO-1 and preventing the accumula-
tion of cytotoxic-free haem, limiting subsequent tissue
damage after Plasmodium berghei infection. They also
reported decreased expansion of cytotoxic CD8 T cells
that they hypothesized may also contribute to protec-
tion against severe disease. Protection was shown to be
present irrespective of parasite density. Although the
majority of human studies have shown that HbAS is,
in fact, associated with lower parasite densities during
symptomatic malaria [26,29-31,33,46] data from this
mouse model suggest that modulation of pathogenic host
inflammatory responses may be an additional mechanism
of protection against severe disease. Figure 1 summarizes
a number of these potential mechanisms.

Conclusions
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tolerance in severe disease. Oxidized haem may also
interfere with the formation of an actin cytoskeleton,
leading to altered PfEMP-1 expression on the infected red
blood cell surface membrane and reduced cytoadherence.
Reduced cytoadherence may lead to decreased endothelial
activation and decreased inflammation implicated in the
pathogenesis of severe malaria. In addition, it could also
lead to increased splenic uptake of infected erythrocytes.
Within the spleen, increased antigen presentation may
lead to accelerated development of protective immune
responses, including antibodies to PfEMP-1, potentially
augmented by biochemical protection against high para-
site densities that might otherwise dampen an effective
response. Higher levels of antibodies directed against
PfEMP-1 and possibly other surface proteins may enhance
opsonization and phagocytosis of infected red blood cells
and further destabilize the cytoadherence properties of
infected red blood cells. While there are some data to
support all of these mechanisms, it is still unclear which
ones are relevant in vivo. Together, however, it is clear
that relevant mechanisms lead to better control of para-
sitaemia in HbAS children and protect against both un-
complicated and severe malaria. Improved understanding
of the mechanisms of protection derived from this single
point mutation will give further insight into the host-
parasite relationship including how P. falciparum interacts
with the human immune system.
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