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Abstract

Background: Assessing the Plasmodium vivax burden in India is complicated by the potential threat of an
emerging chloroquine (CQ) resistant parasite population from neighbouring countries in Southeast Asia. Chennai,
the capital of Tamil Nadu and an urban setting for P. vivax in southern India, was selected as a sentinel site for
investigating CQ efficacy and sensitivity in vivax malaria.

Methods: CQ efficacy was evaluated with a 28-day in vivo therapeutic study, while CQ sensitivity was measured
with an in vitro drug susceptibility assay. In both studies, isolates also underwent molecular genotyping to investigate
correlations between parasite diversity and drug susceptibility to CQ. Molecular genotyping included sequencing a 604
base pair (bp) fragment of the P. vivax multidrug resistant gene-1 (Pvmdr1) for single nucleotide polymorphisms (SNPs)
and also the amplification of eight microsatellite (MS) loci located across the genome on eight different chromosomes.

Results: In the 28-day in vivo study (N=125), all subjects were aparasitaemic by Day 14. Passive case surveillance
continuing beyond Day 28 in 22 subjects exposed 17 recurrent infections, which ranged from 44 to 148 days
post-enrollment. Pvmdr1 sequencing of these recurrent infections revealed that 93.3% had identical mutant
haplotypes (958M/Y976/1076L) to their baseline Day 0 infection. MS genotyping further revealed that nine
infection pairs were related with ≥75% haplotype similarity (same allele at six or more loci). To test the impact
of this mutation on CQ efficacy, an in vitro drug assay (N=68) was performed. No correlation between IC50 values
and the percentage of ring-stage parasites prior to culture was observed (rsadj: -0.00063, p = 0.3307) and the distribution
of alleles among the Pvmdr1 SNPs and MS haplotypes showed no significant associations with IC50 values.

Conclusions: Plasmodium vivax was found to be susceptible to CQ drug treatment in both the in vivo therapeutic drug
study and the in vitro drug assay. Though the mutant 1076L of Pvmdr1 was found in a majority of isolates tested, this
single mutation did not associate with CQ resistance. MS haplotypes revealed strong heterogeneity in this population,
indicating a low probability of reinfection with highly related haplotypes.
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Background
Assessing the Plasmodium vivax burden in India is compli-
cated by the potential threat of an emerging chloroquine
(CQ) resistant parasite population [1]. Plasmodium vivax
resistance to CQ is rampant in some regions of Southeast
Asia [2,3] and Western Pacific [4], while the emergence of
CQ resistance within other regions of the world, including
Central and South America [5-7], Southern Asia [8] and
even the Indian Subcontinent [9-13] is less evident and rep-
resented in the literature mainly in the form of medical case
reports. Similar to other countries (reviewed in [14]), CQ
resistant Plasmodium falciparum emerged in India in the
1970s [15,16]. Decades of research have linked P. falcip-
arum drug resistance with a variety of single nucleotide
polymorphisms (SNPs) causing non-synonymous amino
acid substitutions in the P. falciparum CQ resistance trans-
porter gene (Pfcrt) [17] and copy number variation in the
P. falciparum multidrug resistance gene 1 (Pfmdr1) [18].
However, mutations within Pfcrt appear to be more associ-
ated with CQ resistant phenotypes than copy number
variation in Pfmdr1 [19-23]. Comparative studies be-
tween Pfcrt and the P. vivax ortholog, P. vivax candidate
gene 10 (Pvcg10), have not revealed similar functionality
[24]. Yet, there is some evidence that specific SNPs caus-
ing non-synonymous amino acid substitutions within the
P. vivax multidrug resistance protein 1 (Pvmdr1), the
ortholog to Pfmdr1, may be associated with drug resist-
ant phenotypes [25].
The Pvmdr1 gene has been characterized in several

global genetic diversity studies in Thailand, Indonesia,
Azerbaijan, Turkey, French Guyana, Brazil, Madagascar,
Mauritania and most recently in China and India [26-36].
Over a dozen non-synonymous amino acid mutations have
been reported [26-35]; of these, Y976F and F1076L are
most frequently reported and correlated with CQ resistance
[27,34,35,37], although much work remains to irrefutably
link these mutations with CQ resistance. In India, a recent
study in Kolkata reported an absence of the Y976F muta-
tion in 25 P. vivax samples determined to be CQ sensitive
taken from patients enrolled in a 28-day in vivo efficacy
study [29]. Despite the fact that most drug resistant cases
remain confined to specific regions in Southeast Asia and
the Western Pacific, the impact of long-term CQ exposure
on a parasite population is indisputable and has been stud-
ied extensively in P. falciparum. Recently, Mallick et al.
[38] showed that a mutant (SVMNT) SNP haplotype of
Pfcrt was found to predominate during 2002-2006 in re-
gions with high P. vivax transmission, in conjunction with
high CQ exposure during this time. Due to the fact that
CQ remains the first line of defense against P. vivax, this
highlights the epidemiological impact on the selection of
drug resistant parasites in mixed species infections and the
maintenance of genetic diversity in a population through
inbreeding [38]. Though only a few cases of P. vivax CQ
resistance have been observed in India [9-13], a selective
sweep with a CQ resistant parasite population would
have serious consequences for the control of vivax
malaria [39-41].
Tamil Nadu, a state located in southern India, is one

of several that are heavily burdened by P. vivax. The
capital city, Chennai, has historically seen high P. vivax
transmission. For these reasons, Chennai was selected as
the sentinel site for investigating CQ sensitivity in P.
vivax. In this study, the therapeutic efficacy of CQ was
evaluated with an in vivo study, while CQ sensitivity was
measured with an in vitro CQ drug assay. In both stud-
ies, isolates also underwent molecular genotyping to in-
vestigate if a correlation exists between parasite genetic
diversity and drug susceptibility to CQ. Molecular geno-
typing included sequencing a 604 base pair (bp) frag-
ment of Pvmdr1 for SNP haplotype generation and the
amplification of eight microsatellite (MS) loci located
across the genome on eight different chromosomes. No
detectable CQ resistance was found in the patient sam-
ples tested in this study, and there was no evidence of
previously correlated Pvmdr1 resistance alleles gaining
in frequency in the parasite population. However, valu-
able population level genetic diversity information was
obtained, and this pilot study paves the way for future
studies on the impact of primaquine (PQ) on relapsing
infections.

Methods
Field location and study design
Samples were collected from patients attending the
Central Malaria Laboratory (CML) in George Town,
Chennai, in the state of Tamil Nadu, southeast India.
George Town, a predominantly residential/commercial
area of the city, is densely populated (~51,000 people/km)
and mainly comprised of business community members
of a high socio-economic status. However, this area also
attracts a large number of laborers mainly from the
southern districts of Tamil Nadu, and the population is
also composed of different ethnic groups from other
states of India such as Rajasthan, Bihar, Gujarat, Haryana,
Maharashtra, Uttar Pradesh and Nepal. Immigration
combined with rapid urbanization within the catchment
area of the CML (~2 km or 100,000 residents) maintains
local endemicity in this region. The CML is under the
administrative control of the Health Department of the
Municipal Corporation of Chennai and serves individuals
from all economic strata through passive case detection
(PCD). Approximately 15,000 blood smear examinations
are performed each year.
Samples collected for this study had ethical clearance

from the Ethical Committee of the National Institute of
Malaria Research (ICMR) and the Institutional Review
Board of New York University Langone Medical Center.
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All participants provided informed consent and/or assent.
Inclusion criteria were specific for each study and are
detailed below. Patients were treated as per the National
Vector Borne Disease Control Programme (NVBDCP)
guidelines in India as given in the study methods.

In vivo therapeutic efficacy study
A total of 856 patients were screened for malaria at the
CML Malaria Clinic between the start of enrollment in
mid-July 2010 and the completion of this study in mid-
November 2010. Of these patients, 125 were enrolled in
the 28-day in vivo therapeutic efficacy study (Figure 1A).
Inclusion criteria included: >10 and <70 years of age,
non-gravid women, patients with no existing concurrent
infection(s) (including mixed species determined by mi-
croscopy), parasitaemia >500 asexual parasites/μl blood
(to ensure enough parasite DNA for downstream experi-
ments), no administration of anti-malarials or antibiotics
within three weeks of enrollment and consent for 28-day
follow up. The CML utilizes convenience sampling, which
often results in an over-representation of males in the study
population; a higher frequency of women and children seek
treatment at private clinics. Subjects were enrolled on Day
0 and administered 1,500 mg of CQ over 3 days adminis-
tered by the CML clinic. Subjects were followed on Days 1,
A. In vivo therapeutic efficacy study 

Withdraws (n = 5);  
Loss to follow up (n = 13) 

Pv+ on D0 only (n = 74, 74 isolates)

PQ completed (n = 7) 

Pv+ on D0, 2 only (n = 15, 30 isolates)

PQ completed (n = 2) 

Pv+ D0 and Rec (n = 14, 28 isolates)

PQ not completed (n = 7) 

Pv+ on D0, 2, Rec (n = 2, 6 isolates)

Pv+ on D0, 2, 7 only (n = 1, 2 isolates)

Selected for genotyping (D0, n = 33; D2, n = 19; 
DRec, n = 17)

MS fragment analysis (n = 50) 

Pv+ on D0, 2, 7, Rec (n = 1, 3 isolates) 

PQ completed (n = 1) 

958M/Y976/1076L (D0, n = 33; 
DRec, n = 14)

958M/Y976/F1076 (DRec, n = 1) 

Failed to amplify (D2, n = 19;  
DRec, n = 2) 

Subjects enrolled on D0, administered CQ (N = 125)

Completed 28-day follow up, administered PQ (n = 107)

Sample collection and treatment:

Genotype processing:

Pvmdr1 sequencing (n = 69)

Full allelic haplotypes (D0, n =  
33; DRec, n = 17) 

Failed to amplify (D2, n = 19) 

Figure 1 Study profiles for in vivo therapeutic efficacy study (A) and i
and sample utilization for both studies. Abbreviations: CQ (chloroquine), PQ
pvmdr1 (Plasmodium vivax multidrug resistance gene 1).
2, 3, 7, 14, 21, 28 and by passive case surveillance for any
clinic visits beyond Day 28 (Day of Recurrence), ranging
from 44 to 148 days post-enrollment. PQ (0.25 mg/kg) for
radical cure was given on Day 28 and administered for 14
days under direct observation of a medical officer. For each
subject, thick and thin smears were collected on Days 0, 2,
7, 14, 21 and 28 and examined by expert microscopists.
Blood spots for DNA extraction and isolate genotyping
were collected before treatment on Day 0 and on any sub-
sequent day when the subject presented with fever.
To investigate patterns in genetic diversity between in-

fection pairs, DNA was extracted from blood spots and
used for (i) amplification and sequencing of a 604 base
pair (bp) fragment of Pvmdr1 to determine the presence of
SNPs previously associated with CQ resistance (T958M,
Y976F and F1076L) [35] and (ii) MS genotyping to describe
the relatedness between the pairs [42], described below.

In vitro CQ drug assay
The in vitro drug study, carried out in August 2009 and
August-September 2010, enrolled 96 subjects (Figure 1B).
Inclusion criteria included: >1 and <70 years of age, non-
gravid women, patients with no existing concurrent infec-
tion(s) (including mixed species determined by microscopy)
and no administration of anti-malarials or antibiotics within
B. In vitro drug assay 

Subjects enrolled, , administered CQ (N = 96)  

Isolates excluded due to time 
delay in processing (n = 15) 

Isolates processed (n = 81)

Invalid IC50 results (n = 13)

Valid IC50 results (n = 68)

Selected for genotyping (n = 20) 
Genotype processing:

Sample collection and treatment:

MS fragment analysis (n = 20) 

958M/Y976/1076L (n = 17)

958M/Y976/F1076 (n = 1) 

Failed to amplify (n = 2)  

Full allelic haplotypes 
(n = 20)

Pvmdr1 sequencing (n = 20)

n vitro drug assay (B). Profiles detail enrollment, experimental design
(primaquine), MS (microsatellites), D (day), and Rec (recurrence) and
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3 weeks of enrollment. Due to the quantity of material col-
lected, no inclusion criterion was established for parasit-
aemia level. For each subject, thick and thin smears and 3-4
ml of intravenous blood were collected. For each 3-4 ml of
patient venous blood, host white blood cells were removed
by CF11 filtration within three hours of collection [43], and
the packed red blood cells were divided as follows: 1 ml
was cryopreserved in Glycerolyte 57 solution (Baxter,
Deerfield, IL), 200 μl were spotted onto filter paper
and 800 μl was used for the in vitro drug susceptibility
assay as described [44,45]. Parasite counts taken before
and after CF11 filtration revealed a significant reduc-
tion in mature blood stage parasites; consequently, no
additional synchronization was performed in an effort
to maximize immature ring-stage count.
Drug plates were prepared by coating the wells with

CQ di-phosphate (Sigma) dissolved in water, serially di-
luted from a maximum concentration of 514 ng/ml to a
minimum of 8 ng/ml, dried in a non-humidified incuba-
tor overnight at 37°C, and stored in the dark at 4°C.
Batches of plates were tested for efficacy of the drug by
using two P. falciparum lab strains from the National
Institute of Malaria Research (NIMR) Parasite Bank,
MRC2 (CQ sensitive) and RKL9 (CQ resistant). Approxi-
mately 200 μl of a 2% haematocrit blood medium mixture
consisting of McCoy’s 5A media (Gibco) and 20% AB + hu-
man serum was added to each well, including control wells,
and patient samples were tested in duplicate. Plates were
incubated at 37°C in a candle jar for 36 hours, a thick smear
prepared for each of the wells, stained with Giemsa or
Jaswant-Singh-Bhattacherji (JSB) stain and parasitaemia
quantified by microscopy. The number of schizonts per 200
asexual stage parasites was determined for each slide and
the result for each drug concentration normalized to the
control well. Only healthy schizonts with six or more dis-
tinct chromatin dots were quantified. Dose-response data
were then analyzed using nonlinear regression analysis
(HN-NonLin v.1.1, USAMC-AFRIMS, Bangkok, Thailand),
and the 50% inhibitory concentration (IC50) obtained.
A selection of isolates used in the in vitro drug assay

was identified for further characterization by genotyping.
Similar to the in vivo assay isolates, DNA was extracted
from blood spots and used for (i) amplification and se-
quencing of a 604 base pair (bp) fragment of Pvmdr1
[35] and (ii) MS genotyping to describe the relatedness
between the pairs [42], as described below.

Genetic diversity analysis
DNA extraction and species-specific PCR
DNA extraction was performed using QIAamp® DNA
Mini Kit (Qiagen Inc., Valencia, CA). Species-specific
polymerase chain reaction (PCR) [46] was used to con-
firm P. vivax microscopy diagnosis and rule out mixed
species infections.
Amplification and sequencing of Pvmdr1
Previously published primers and methods were used to
amplify a 604 base pair (bp) fragment of Pvmdr1 [35],
capturing three single nucleotide polymorphisms that cause
non-synonymous amino acid changes (T958M, Y976F and
F1076L) associated with CQ resistance in P. vivax in some
studies. PCR products were analyzed by gel electrophoresis
and sequenced on an ABI 3730xl sequencer (Applied
Biosystems, Foster City, CA) with ≥ 2x coverage using
BigDye Terminator v 3.1 and using both forward and re-
verse primers. Sequences were viewed using Chromas 2.33
(Technelysium Pvt Ltd), and subsequently aligned using
Seaview 4 [47].

Microsatellite amplification and analysis
Eight MS markers [42] were selected from the literature
(Additional file 1) after consideration of recommended
guidelines [48]. Using previously published methods and
PCR conditions, MS were amplified in 20 μl reactions
with ~ 40 ng of extracted DNA using. All reactions were
performed individually and not in multiplex. Forward
(5′-3′) oligonucleotides were labeled with the phosphora-
midite conjugate 6-FAM (Eurofins MWG Operon,
Huntsville, AL) and the P. vivax laboratory strain Salvador
I was used as a positive control. PCR amplicons were ana-
lyzed on an ABI 3730xl sequencer using GeneScan-500 LIZ
size standard (Applied Biosystems, Foster City, CA) for size
determination. Bands <200 relative fluorescence units (rfu)
were excluded and used to define the background. Isolates
with greater than one locus having multiple peaks were de-
fined as multiclonal infections, and minor peaks less than
1/3 the height of the major peak were excluded [49].
Expected heterozygosity (He) was used to quantify the

amount of genetic diversity within each MS locus in this
study, but not across compiled haplotypes of loci due to
low sample size. He was calculated with the following
standard formula:

He ¼ n
n−1

#
1−

Xn
i¼1

p2i

" #
;

"

where n is the number of infections sampled and pi is
the frequency of the ith allele. For the maximum ex-
pected probability of allelic combinations ranging from
one to eight loci, let P equal the maximum probability of
A, highest frequency alleles, to the nth locus, defined as:

Ρ Α1∩Α2⋯∩Αnð Þ ¼ Ρ Α1ð ÞΡ Α2ð Þ⋯Ρ ΑnÞð Þ:
Due to the small sample size, it is not possible to ac-

curately estimate the allele frequencies for the popula-
tion. To account for this potential error, the standard
deviation (SD) of the allele frequency was estimated by a
parametric bootstrap procedure, which generates ran-
dom samples from a population assumed to have allele
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frequencies equal to their maximum-likelihood values.
The SD of each allele frequency was then estimated
from the resulting distribution of allele frequencies
[50,51]. The resulting SD was used to calculate the
standard error (SE) by: SE ¼ SD

√n
�

, where n is equal to
the number of samples with a specific allele.
Results
In vivo therapeutic efficacy study
To determine the in vivo therapeutic efficacy of CQ, 125
patients were enrolled in a 28-day follow up study at the
Table 1 Demographic and clinical data for the in vivo therape

A. In vivo therapeutic efficacy study

Characteristics (N = 125)

Sex [n (%)] Male 120 (95.0)

Female 5 (5.0)

Wt (kg)

Mean 52.8

Range 5.0-77.0

SD ±10.4

95% CI 51.0-54.7

Age (yr)

Mean 25.9

Range 13-66

SD 10.5

95% CI 24.0-27.8

Body temperature (°F)

Mean 98.5

Range 95.4-104.4

SD 2.2

95% CI 98.1-98.9

Haemoglobin (g/dl)

Mean 14.4

Range 12.0-16.6

SD 1.0

95% CI 14.2-14.6

Parasite count (n/μl)

Mean 9049.2

Range 1,000-57,200

SD 6697.3

95% CI 5,243.4-7,624.4
CML in George Town, Chennai. Demographic and clin-
ical data is provided in Table 1A. A total of 107 (85.6%)
subjects completed the 28-day follow up, five subjects
(4.0%) withdrew from the study and 13 (10.4%) were lost
to follow up (Figure 1A). No fever was observed after 48
hours (Day 2) for all 107 subjects completing the study.
Eighty-eight (82.2%) subjects had no sexual or asexual
parasites by Day 2, and 17 subjects (15.9%) had no sex-
ual or asexual parasites by Day 7. Two (1.9%) subjects
remained positive for sexual stage parasites until a time
between Day 7 and Day 14, at which point all patients
remained negative for P. vivax for the remainder of the
utic efficacy study (A) and the in vitro drug assay (B)

B. In vitro drug assay

Characteristics (N = 96)

Sex [n (%)] Male 85 (88.5)

Female 11 (11.5)

Age (yr)

Mean 23.9

Range 7-53

SD 8.3

95% CI 22.2-25.6

Parasite count (n/μl)

Mean 6348.6

Range 480-21,522

SD 4390.8

95% CI 5,172.8-7,524.5

Parasitaemia (%)

Mean 0.163

Range 0.032-0.445

SD 0.094

95% CI 0.122-0.203

Rings (%)

Mean 3.2

Range 0.0-33.3

SD 5.9

95% CI 1.9-4.6

Trophozoites (%)

Mean 91.0

Range 58.3-100.0

SD 11.6

95% CI 88.4-93.6

Schizonts (%)

Mean 5.8

Range 0.0-33.3

SD 1.1

95% CI 3.6-7.9
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28-day study (Figure 2). Though the study was com-
pleted on Day 28, passive case surveillance continued to
monitor the enrolled subjects until four months post-
enrollment. Twenty-two of the subjects who had com-
pleted the 28-day follow up presented with malaria-like
symptoms at a time-point after Day 28. These 22 subjects
were tested for malaria by microscopy and 17 subjects were
found to have recurrent P. vivax infections on a day
ranging from 44 to 148 post-enrollment (termed “Day of
Recurrence”) (Figure 1A).

Genetic diversity and Pvmdr1 genotyping of in vivo
isolates
Day 0 infections that were subsequently positive on Day
2 and/or Day of Recurrence were genotyped. Despite de-
tecting two positive cases on Day 7, no blood was col-
lected due to an absence of fever (see Methods), so these
infections were excluded from genotyping experiments.
In total, 69 isolates (33 Day 0, 19 Day 2 and 17 Day of
Recurrence) were selected for genotyping in the follow-
ing combinations: (1) Day 0 and 2 paired-infection
(n = 15, 30 isolates); (2) Day 0, 2 and 7 paired-infection
(n = 1, 2 isolates); (3) Day 0, 2, 7 and Day of Recurrence
paired-infection (n = 1, 3 isolates); (4) Day 0, 2 and Day
of Recurrence (n = 3, 6 isolates); and (5) 14 Day 0 and
Day of Recurrence paired-infection (n = 14, 28 isolates)
(Figure 1A). No Day 2 isolates successfully amplified for
genotyping or sequencing, despite successful amplifica-
tion by species-specific diagnostic PCR. Consequently, the
Primary infection
Recurrent infection

Figure 2 Clearance and recurrence plot of the infections
observed in the in vivo therapeutic efficacy study. Of the 125
subjects enrolled in this study 107 completed the 28-day follow up.
An absence of fever within 48 hours (Day 2) was observed for all
107 subjects completing the study. Eighty-eight (82.2%) subjects
were aparasitaemic for both sexual and asexual morphological
stages by Day 2 and 17 (15.9%) by Day 7 (Primary infection, red line).
Two (1.9%) subjects remained positive for sexual stage parasites until
a time between Day 7 and Day 14, at which point no parasites
remained detectable by microscopy (Primary infection, red line). Of
these 107 subjects, 17 subjects were parasite positive at a time point
beyond the 28-day enrollment period, ranging from 44-148 days
post-enrollment (Recurrent infection, blue line).
only paired-infection suitable for genetic analysis were Day
0 (n = 33) and Day of Recurrence (n = 17) (Figure 1A).
A 604bp fragment of Pvmdr1 was successfully ampli-

fied and sequenced for all Day 0 isolates (n = 33); all iso-
lates (100%) were identified as having the mutant 958M/
Y976/1076L haplotype. For the Day of Recurrence iso-
lates, 15 of the 17 isolates successfully amplified and
were sequenced; 14 (93.3%) of these were identified as
the mutant 958M/Y976/1076L haplotype and 1 (6.7%) as
the mutant 958M/Y976/F1076 haplotype (Table 2). No
new SNPs were detected and sequences have been depos-
ited in GenBank (Accession nos: KC818367-KC818412).
Eight MS markers were used to determine the genetic

diversity of the Day 0 (n = 33) and Day of Recurrence
(n = 17) isolates (Figure 1A). MS haplotypes were found
to be extremely diverse with no common haplotypes
within a single group (within the Day 0 samples or
within the Day of Recurrence samples). However, when
comparing paired isolates collected from the same indi-
vidual (on Day 0 paired with Day of Recurrence), there
were distinct patterns of relatedness, likely indicating
relapsing or recrudescing parasite infections. Of the 17
subjects that were parasite positive on Day of Recurrence,
MS haplotypes revealed that 58.8% (n = 9) of the infection
pairs were related to the Day 0 sample with ≥75% haplo-
type similarity (same allele at six or more loci) between
samples. In fact, there were six instances where all eight
(100%) MS alleles matched exactly, one instance where
seven (87.5%) alleles matched and two instances with six
(75.0%) alleles matched (Table 3). The probability of de-
tecting identical allelic combinations was calculated for
each paired sample based on the number of alleles re-
peated and the observed frequency of each specific allele
present within the population (see Methods for calculation
parameters and equation). Due to the extensive genetic di-
versity within the local P. vivax parasite population, it
seems unlikely that any Day of Recurrence infection identi-
fied as having ≥75% relatedness between sample pairs was
due to a new infection, with a probability ranging from
0.001 to 1.98E-05; rather it is more likely to be the result of
a relapsing or recrudescing parasite infection.
Although all 17 subjects with recurrent infections

began the 14-day PQ drug regimen during their enroll-
ment in the 28-day in vivo study, only 10 were known to
complete the recommended therapy. MS data from this
study indicated that six of the nine subjects with highly
related paired-infections did complete radical PQ ther-
apy. This finding may support recurrence via recrudes-
cence if the parasite population remains susceptible to
the drug, or recurrence via relapse if the parasite popula-
tion has become tolerant or resistant (Table 3).
Of these 17 paired-infections, 13 (76.5%) were single

infections on both Day 0 and Day of Recurrence, while
two (11.8%) were single on Day 0 and then multiclonal



Table 2 Genotyping results from isolates in the in vivo therapeutic efficacy study and in vitro drug assay

Study Subjects
enrolled (N)

Pvmdr1 haplotypesa Microsatellite genotyping

Isolates successfully
genotyped (n)

958M/Y976/
1076L (n (%))

958M/Y976/
F1076 (n (%))

Isolates successfully
genotyped (n)

Multiclonal
infections
(n (%))

Clones
(n)

Multiplicity of
infectionc

in vivo therapeutic efficacy:

Day 0 125 33 33 (100) 0 (0.0) 33 5 (15.2) 38 1.15

Day 3 19 0 - - 0 - - -

Day
Other

17 15 14 (93.3) 1 (6.7) 17 3b (17.6) 21 1.24

Total 125 48 47 (97.9) 1 (2.1) 50 8 (16.0) 59 1.18

in vitro drug assay:

Group
1

51 9 8 (88.9) 1 (11.1) 10 4 (40.0) 14 1.40

Group
2

17 9 9 (100) 0 (0.0) 10 2 (20.0) 12 1.20

Total 68 18 17 (94.4) 1 (5.6) 20 6 (30.0) 26 1.30
aGenBank accession nos: KC818349-KC818412; Pvmdr1 haplotype of the CQ sensitive Salvador I reference strain is T958/Y976/F1076.
bOf the three multiclonal infections, two had two alleles at more than one locus (double infection) and one had three alleles at more than one locus
(triple infection).
cMultiplicity of infection is the total number of clones detected divided by the total number of infections.
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on Day of Recurrence, one (5.9%) was multiclonal on
Day 0 and then single on Day of Recurrence, and one
(5.9%) was multiclonal on both Day 0 and Day of Recur-
rence. In all four cases, all possible haplotype combinations
were made and compared between paired-infections. Given
the high allelic diversity, only two of the four multiclonal
infections shared ≥75% haplotype similarity, with both cases
sharing six of eight alleles (Table 3).
In vitro CQ drug assay
A total of 96 subjects were enrolled by PCD at the CML
to assay for susceptibility to CQ in vitro. Demographic
and clinical data is provided in Table 1B. An in vitro CQ
drug assay completed on 81 isolates gave reliable IC50

values for 68 isolates (Figure 1B). IC50 values were low
for all isolates, ranging from 7.8-30.2 nM. When plot-
ted the distribution of the IC50 values is a non-linear
Table 3 Microsatellite allele sharing between paired-infection
sharing a specific combination of alleles

Possible alleles shared
between pairs (n/total)

Infection(s) with allele pair
profile (n/total)

1/8 4/17

2/8 1/17

3/8 1/17

4/8 1/17

5/8 1/17

6/8 2/17

7/8 1/17

8/8 6/17
curve, with a geometric mean of 16.3 nM (95% CI:
14.9-17.8 nM).
Unlike reports from other vivax malaria endemic re-

gions, the percentage of ring-stage parasites upon collec-
tion and processing was low. The mean parasitaemia
was 0.163% (95% CI: 0.122-0.203%) and was largely domi-
nated by trophozoite-stage parasites (90.0%, 95% CI: 88.4-
93.6%). This resulted in a reduced ring-stage inoculation of
in vitro culture (Mean: 3.23%, 95% CI: 1.90-4.58%). After 36
hours of in vitro culture, no correlation between IC50 values
and the percentage of ring-stage parasites prior to culture
was observed (rsadj: -0.00063, p = 0.3307).

Genetic diversity and Pvmdr1 genotype of in vitro
samples
The interquartile range of the IC50 values was used to
group isolates into either Group 1 (n = 40, IQR <75% = 7.8
to 21.9) or Group 2 (n = 18, IQR ≥75%= 22.1 to 30.2), and
s, and the calculated maximum expected probability of

Maximum expected
probability (SE)

Subject completing PQ
treatment (n/total)

0.422 (0.410, 0.434) 2/4

0.119 (0.11, 0.128) 0/1

0.032 (0.028, 0.036) 0/1

0.008 (0.007, 0.010) 1/1

0.002 (0.001, 0.003) 1/1

5.23E-04 (3.90E-04, 6.92E-04) 1/2

1.23E-04 (8.60E-04, 1.72E-04) 1/1

2.68E-05 (1.76E-05, 4.00E-05) 4/6
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a total of 20 isolates (10 from each group) were selected for
further analysis (Figure 1B). Genotyping isolates across
a range of IC50 values helped to gather evidence of
Pvmdr1 resistance alleles gaining in frequency in the
parasite population.
Pvmdr1 was successfully amplified and sequenced for

nine of the 10 isolates in Group 1; eight of these (88.9%)
were identified as having the mutant 958M/Y976/1076L
haplotype and 1 (11.1%) as having the mutant 958M/Y976/
F1076 haplotype. A similarly dominant pattern of the mu-
tant 958M/Y976/1076L haplotype was observed in nine of
the Group 2 isolates (100%). These sequences have been
deposited in GenBank (Accession nos: KC818349-
KC818366).
The same 20 isolates were genotyped using eight poly-

morphic MS to obtain background genetic diversity data
in the form of the mean number of alleles per locus, the
distribution of alleles per locus and the multiplicity of
infection (MOI) (Table 2). Both groups had high levels
of genetic diversity with no common MS haplotypes
within or between the two groups. Though expected
given the small sample size, there was no significant dif-
ference between the mean number of alleles per locus
for Group 1 isolates was 5.89 (range = 4 to 9, SD = 1.55)
and for Group 2 isolates 6.5 (range = 3 to 8, SD = 1.93).
The distribution of specific alleles between the two
groups also did not differ significantly (ranging from
r2 = 0.17 and p = 0.18, to r2 = 0.06 and p = 0.60); that is,
there did not appear to be a distribution of alleles that was
specific to either group. Similarly, there was no significant
difference between the total number of clones, multiclonal
infections or MOI between Group 1 (n = ≥14, n = 4 and
MOI = 1.40, respectively) and Group 2 (n = ≥12, n = 2 and
MOI = 1.20, respectively) (Table 2).

A city-wide view of P. vivax genetic diversity in Chennai
Since the subjects for the in vivo and in vitro studies
were collected from the same clinic, with sample collec-
tion occurring during the same period (2009-2010), MS
data were collated into one database to provide a more
comprehensive perspective of the parasite population-
Table 4 Genetic diversity of eight P. vivax microsatellite loci i

Locus No. of alleles Size range Frequency of mo

MS2 10 188-250 0.2

MS3 10 169-199 0.2

MS6 15 197-269 0.2

MS7 5 131-143 0.4

MS9 15 137-197 0.2

MS10 17 159-250 0.2

MS12 14 183-311 0.2

MS20 20 160-223 0.2
level diversity. In total 70 samples were genotyped, 20
from the in vitro CQ drug assay and 50 samples from
the in vivo therapeutic efficacy study. For each locus the
number of alleles, size range, frequency of the most
common allele, expected heterozygosity (He) and the
MOI was calculated (Table 4). On the whole, the mean
number of alleles per locus was high (Mean = 13.3, SD =
4.71, range = 5 to 20), indicating high levels of P. vivax
genetic diversity, which was confirmed by calculating He

(Mean = 0.856, SD = 0.063, range = 0.729 to 0.912). As
expected, the number of alleles per locus was positively
correlated with the He (p = 0.0008, r2 = 0.86, ANOVA)
and negatively correlated with the frequency of the most
common allele per locus (p = 0.0029, r2 = 0.79, ANOVA).
Consistent with this order, the frequency of the most
common allele per locus was also negatively correlated
with the He (p = 0.0002, r2 = 0.92, ANOVA) and the MOI
(p = 0.0206, r2 = 0.62, ANOVA). MOI was only signifi-
cantly correlated with the frequency of the most common
alleles for each locus, indicating that it is not necessarily the
amount of diversity present within a high transmission
population, but rather how the diversity is dispersed within
the population that influences the accumulation of multiple
clones within a single infection.

Conclusions
In this study, P. vivax CQ sensitivity was investigated
among infected patients in Chennai, Tamil Nadu. A lon-
gitudinal in vivo efficacy study was used to monitor the
clearance of parasites and recurrence of infection, and
an in vitro CQ drug assay was used to monitor the dose-
response effect on parasites isolated from patient sam-
ples (Table 1 and Figure 1). Molecular genotyping was
used in both studies to investigate the genetic structure
of the parasites and to determine if a correlation be-
tween parasite genetic diversity and drug susceptibility
to CQ existed.
The in vivo efficacy study demonstrated P. vivax sen-

sitivity to CQ in Chennai. Of the 125 subjects enrolled,
107 completed follow up and were microscopy nega-
tive for asexual parasites by Day 7; however, two
n the study population

st common allele (SD) Multiplicity of infection He

81 (0.057) 1.15 0.807

50 (0.055) 1.13 0.852

50 (0.055) 1.09 0.882

22 (0.062) 1.01 0.732

26 (0.056) 1.18 0.860

19 (0.052) 1.13 0.906

66 (0.056) 1.10 0.862

34 (0.053) 1.14 0.882
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subjects remained positive for sexual parasites until a
time prior to the Day 14 collection. Seventeen subjects
remained microscopy negative until a time point after
Day 28, called Day of Recurrence, which ranged from
44 to 148 days after the initial enrollment (Day 0)
(Figure 2). Isolates from Day 0 and Day of Recurrence
were genotyped to determine relatedness between the
infecting clones. Of the 17 paired-infections, nine were
found to share ≥75% of the same alleles. Six (66.7%) of
the nine subjects experiencing recurrent infections
were known to take PQ radical treatment beginning on
Day 28 of this study (Table 3). Though no distinction
can be made on whether or not these recurrent infec-
tions were due to a relapse, recrudescence or reinfec-
tion, microscopy examination indicated parasite
clearance by Day 7 and the time-to-recurrence for
these infections was within the expected timeframe of
a tropical relapse [52,53]. Other studies in India have
reported variable P. vivax relapse rates, between 2.2
and 40.1%, which may be linked with the geographic
distribution of relapsing phenotypes [54-57]. However,
as recently highlighted by White (2011), little is known
about these relapsing phenotypes in India, which is a
serious cause for concern given that India harbors a
significant global P. vivax burden [58,59]. In an effort
to understand these phenotypes, cross-sectional, longi-
tudinal and clinic epidemiological studies are under-
way at three sentinel sites in India, as part of the
Center for the Study of Complex Malaria in India
(CSCMi), an International Center of Excellence in
Malaria Research [60].
Results from the in vitro CQ drug assay, which mea-

sures the inhibitory concentration (IC50) of drug needed
to prevent parasite growth, also revealed P. vivax sensi-
tivity to CQ in the parasite isolates collected from
Chennai. IC50 values from this study ranged from 7.8-
30.2 nM (N = 68), which is significantly lower than the
220 nM cutoff for CQ resistance define by Suwanarusk
et al. [35] in Indonesia and Thailand, as well as the 100
nM cutoff for CQ resistance defined by Druilhe et al.
[61] in isolates from Myanmar. Regional differences in
the above cutoff values are most likely due to methodo-
logical differences. Fragment sequencing of Pvmdr1 in
both studies revealed that the mutant 958M/Y976/1076L
was the dominant haplotype, while the mutant 958M/
Y976/F1076 was the minor haplotype (Table 2). The
majority of isolates containing the 1076L mutation,
which is highly prevalent across the globe, is actually
predominantly found in regions with P. vivax CQ-
sensitivity [26-28,35,37,62,63]. The detection of these
two haplotypes is consistent with a recent report in
nearby Nepal, which may indicate relatedness between
the parasite populations in India and Nepal [63]. Simi-
lar to a genotyping study in Kolkata [29], the mutant
976F was not detected in any of the Chennai isolates
tested in these two studies (Table 2). Previous studies
have reported that this mutation is linked with drug
resistance [35,63]; however, subsequent studies have
been unable to confirm this association [64-66]. MS
genotyping of these P. vivax isolates revealed an un-
constrained and highly diverse population of parasites,
with no correlation to Pvmdr1 haplotypes or IC50

values. Rather, valuable information was gained about
the population-level genetic diversity of extant P.
vivax, which will help to direct future population di-
versity studies with larger sample sizes.
Considering the highly endemic nature of P. vivax in

India and proximity to other countries such as Myanmar,
Thailand and Indonesia, the emergence of P. vivax CQ re-
sistance is a persistent threat. Although there are few case
reports of P. vivax resistance to CQ in India, the potential
for a similar devastating situation as happened with the
emergence of CQ resistant P. vivax in Southeast Asia
should encourage constant surveillance. Urban malaria epi-
centers, like Chennai, are of particular interest because the
local incidence is not only shaped by common environmen-
tal factors, such as the seasonality of monsoons and the de-
velopment of insecticide resistance, but also by population
density, rapid urbanization, sanitation practices and in-
accessibility to many sites for continuous monitoring.
Though it is not completely understood why P. vivax
drug resistance has yet to sweep across India, further
investigation on this subject is currently underway as
part of CSCMi. As India moves into the pre-elimination
phase, the need for increased surveillance of drug resistance
has never been more important.
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