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Abstract

Background: Plasmodium falciparum EBA175 and PfRh2 belong to two main families involved in parasite invasion,
and both are potential vaccine candidates. Current knowledge is limited regarding which target antigens and
subclasses of antibodies are actually important for protection, and how naturally acquired immunity is achieved.

Methods: Repeated blood samples were collected from individuals in Nigeria over a period of almost one year.
ELISA was used to analyse subclasses of IgG responses.

Results: For both EBA175 (region III-V) and (a fragment of) PfRh2, the dominant antibody responses consisted of
IgG1 and IgG3 followed by IgG2, while for PfRh2 there was also a relatively prominent response for IgG4. High levels
of IgG1, IgG2 and IgG3 for EBA175 and total IgG for PfRh2 correlated significantly with a lower parasitaemia during
the study period. Children with HbAS had higher levels of some subclasses compared to children with HbAA, while
in adults the pattern was the opposite. The half-lives of IgG2 and IgG4 against EBA175 were clearly shorter than
those for IgG1 and IgG3.

Conclusion: EBA175 and PfRh2 are potential targets for protective antibodies since both correlated with lower
parasitaemia. The shorter half-lives for IgG2 and IgG4 might explain why these subclasses are often considered less
important in protection against malaria. Triggering the right subclass responses could be of critical importance in a
successful vaccine. Further studies are needed to evaluate the role of haemoglobin polymorphisms and their malaria
protective effects in this process.

Keywords: Plasmodium falciparum, Malaria, EBA175, PfRh2, Merozoite, IgG, Subclass, Antibody, HbAA, HbAS
Background
The protozoa Plasmodium falciparum still remains a
major global health problem. It is a leading cause of
death among children under the age of five and pregnant
women in sub-Saharan Africa [1,2]. The increasing prob-
lem of drug resistance and the limited effect of vector
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control interventions make a call for a malaria vaccine
urgent [3].
The P. falciparum blood stage invasion involves many

complex interactions between merozoite antigens and
erythrocyte receptors. There are two main merozoite in-
vasion families: erythrocyte binding-like (EBL) proteins
and reticulocyte binding protein homologue (RBP/PfRh)
proteins [4,5]. The EBL proteins include the erythrocyte
binding antigens (EBAs), which are found in the micro-
nemes of the merozoite and include EBA140, EBA175
and EBA181. The PfRh proteins are located in the
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rhoptries of the merozoites and include PfRh1, PfRh2a/
2b, PfRh4, and PfRh5 [4-8]. PfRh2a and PfRh2b share
the same amino acids for the first 88% of the protein [9].
EBA175 and PfRh2 are representatives of the sialic acid-
dependent and non-sialic acid-dependent invasion path-
ways, respectively [10,11], and both are potential vaccine
candidates. EBA175 binds to glycophorin A on the
erythrocyte surface [4], but the receptor for PfRh2 is not
yet known.
Acquired immunity to malaria develops only after re-

peated exposure in individuals living in endemic areas,
and it has been suggested that young children are less able
to induce long-lived antibody secreting cells [12-15]. How-
ever, it seems that some antibodies, such as those against
MSP1, can have a half-life that spans over many years
[16]. It is known that antibodies are an important compo-
nent of acquired immunity, and it has been shown that
passive transfer of antibodies from immune donors to in-
dividuals with P. falciparum infections reduced parasit-
aemia and clinical symptoms [17]. Antibodies against
several merozoite antigens, including EBAs and PfRhs,
have been shown to be associated with protection against
malaria in prospective longitudinal studies [13,18-21]. Cy-
tophilic immunoglobulins, IgG1 and IgG3 have been con-
sidered more important for protection as non-cytophilic
IgG2 and IgG4 may block the protective activity of the cy-
tophilic antibodies [20-25]. IgG1 and IgG3 are believed to
neutralize parasites directly by inhibiting the parasite, or
indirectly by opsonization [24-27].
There are several genetic polymorphisms that have been

described to be protective against the severe forms of mal-
aria, and one of these is sickle haemoglobin (HbS), of
which there is a high prevalence in sub-Saharan Africa
[28-30]. In the homozygous form it can be deleterious to
the individual, but protective against malaria in the hetero-
zygous form (HbAS), as described over 60 years ago [31].
Since then, several studies have shown the protective ef-
fects of HbAS on malaria [30,32,33]. A recent meta-
analyses study of children with HbAS showed more than
90% protection from severe malaria [33]. Other studies
have shown HbAS to give 30-50% protection from un-
complicated malaria [30,33-36]. The mechanism behind
the protective effect is still unclear, but it probably involves
both the impaired development of the parasite inside the
erythrocyte and a better immunological response, and it
has also been suggested that a mechanism of impaired
cytoadherence could be of importance [37].
In this study, naturally acquired antibody responses,

total IgG as well as IgG subclasses, were investigated
against EBA175 and PfRh2, as representatives of two dif-
ferent invasion pathways. Combinations of the two anti-
gens together have been suggested to be more effective
as vaccines, compared to using individual antigens [38].
Furthermore, associations between different haemoglobin
genotypes and the presence of acquired antibodies against
these antigens were investigated. Samples used were col-
lected at least once a month from children and adults liv-
ing in Igbo-Ora, a rural area of Nigeria, over a period of
almost one year. Very few studies have looked at immuno-
globulin subclass responses and the half-lives of the anti-
bodies directed against these antigens, but this knowledge
is important to evaluate the effect of using merozoite anti-
gens as vaccines [19,39-42].
Methods
Study area and participants
A longitudinal study was conducted in Igbo-Ora, a rural
town in Nigeria. Malaria is endemic with higher transmis-
sion during the rainy season (April to October) with a
mean seasonal entomological inoculation rate (EIR) of 131
[43]. Individuals (200) between five and 70 years old were
enrolled in the study from July 2009 to July 2010. Venous
blood samples were collected at baseline for blood group
typing, blood genotyping and immunological studies. Thick
and thin smears were made for parasitological investiga-
tions. The participants were followed up clinically and para-
sitologically at least once a month for a period of eight
months. Only participants who were permanent residents
were included in the study. Pregnant women, children
under the age of five, and those with signs of severe hepatic
or renal dysfunction, sickle cell disease, G6PD or seroposi-
tivity for HIV were excluded. Participants who fell ill with
malaria were treated with oral artemisinin-lumefantrine for
clinical malaria and blood films were monitored until nega-
tive. Children diagnosed for severe malaria were admitted
to hospital and treated with i/v quinine according to WHO
recommendations. Written informed consent by adult par-
ticipants or parent/guardian was received, and ethical per-
missions were granted for the study from University of
Ibadan and Ethics Committee in Nigeria (UI/IRC/06/0038)
and the Stockholm Ethical Review Board (2013/4:8). From
the original 200 individuals that were recruited for the long-
itutinal study, 40 were randomly selected to be used in this
study, with a total of 302 samples used. Eighteen of the in-
dividuals were children (aged five to 13 years, 17 were
parasite positive at some stage during the eight-month
sample collection time) and 22 were adults (21 were para-
site positive).
Recombinant proteins
The recombinant merozoite antigens used in this study
have been described in detail previously [44]. In brief,
regions III to V of EBA175 (3D7; aa 761 to 1298) [19] and
PfRh2A9 (3D7; aa 2027 to 2533, common region for both
PfRh2a and PfRh2b) [42] were expressed in E. coli as GST-
tagged fusion proteins.



Figure 1 Total IgG responses to EBA175 in individuals five to
70 years old (number of individuals = 40) from July 2009 to
June 2010 (number of samples = 302). The bars show mean ±
SEM optical density (OD) value at 414 nm. (April not shown, no sample
collection). (Black bars = rainy season; white bars = dry season).
PfRh2: Data not shown.
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Measuring total IgG and subclasses against recombinant
antigens
Enyme-linked immunosorbent assay (ELISA) for total IgG
against EBA175 and PfRh2A9 were performed as de-
scribed previously [41]. The antibody reactivity against
subclasses IgG1-IgG4 was measured as follows: Flat bot-
tom, 96-well plates (Nunc-immunoplate, Thermo Scien-
tific) were coated with 1 μg/ml recombinant antigen in
coating buffer (15 mM Na2CO3 and 35 mM NaHCO3;
pH 9.6), washed 3x with PBS Tween 20 (PBS with 0.05%
v/v Tween 20), blocked with 10% skimmed milk (Sigma-
Aldrich M7409) in PBS-Tween 20 and washed 3x. Plasma
samples diluted in 5% skimmed milk PBS-Tween 20 (1:25)
were incubated for 1.5 hours (37°C), washed 3x, and
mouse anti human antibodies were added (IgG1 A10630,
IgG2 05-3500, IgG3 05-3600, IgG4 A10651 (all from Invi-
trogen Corp, CA, USA)) and diluted in 5% skimmed milk
in PBS-Tween 20 (1/500 for IgG1 and IgG3, and 1/250 for
IgG2 and IgG4, dilutions chosen after optimization) and
incubated for 1.5 hours at 37°C. After washing (3x) goat
anti-mouse IgG (H + L) horseradish peroxidase (HRP)
(G21040, Invitrogen Corp, CA, USA) was added at 1/500
for IgG1 and IgG3, and at 1/1,000 for IgG2 and IgG4,
incubated for 1.5 hours at 37°C, washed 3x and antibody
reactivity was detected with azino-bis(3-ethylbenthiazo-
line-6-sulfonic acid) (ABTS) tablet (Sigma Aldrich) dis-
solved in phosphate citrate buffer pH 5.0 (Sigma Aldrich);
30% H202 was added just before use. Plates were incubated
at room temperature for 1 hour and optical density (OD)
read at 414 nm. All assays were run in duplicate and OD
was subtracted for non-specific binding of the fusion tag,
GST. Positive (pools of immune samples) and negative
(Swedish non-immune) controls were included on all
plates to allow for standardization. Non-immune samples
gave OD values below 0.06. Antibody reactivity was con-
sidered positive when the absorbance was greater than the
mean plus three standard deviations of the value for the
non-immune Swedish samples.

Statistical analyses
Data analyses were performed using GraphPad Prism Ver-
sion 5.0a software. Antibody levels were compared by
using Mann-Whitney t-test or ANOVA. The Spearman
rank correlation was used to assess the association be-
tween two continuous variables. Two-tailed P-values were
considered significant if they were <0.05. Data analyses
were performed on data from time point follow-up dur-
ing the study period. Antibody levels and subsequent
levels of parasitaemia over the whole study period were
analysed.
Under the assumption that antibodies decay at a con-

stant rate, the half-lives of antibody decay were esti-
mated for individuals where decreasing antibody levels
were observed for at least three consecutive samples.
The rate of antibody decay and half-life was estimated
via linear regression of log antibody titre against the
time of sampling.

Results
Total IgG and IgG subclass responses to EBA175
and PfRh2
IgG and subclass responses to the recombinant merozo-
ite antigens EBA175 and PfRh2, were measured by
ELISA. For EBA175, the total IgG levels in the study
group increased from August with peak in November
(followed by decline in the following months (Figure 1).
The IgG levels for PfRh2 showed a similar pattern, and
when the different subclass responses (IgG1-4) for both
EBA175 and PfRh2 were studied, the fluctuations over
time were similar to the values for total IgG. All patterns
were also similar whether children or adults were inves-
tigated separately or together. All 40 individuals included
were tested between seven and eight times during the
study period. All individuals (100%) had IgG antibodies
against EBA175 and PfRh2 at some stage during the
eight months of follow-up (Table 1).
When the subclass responses were studied, it was

noted that for both EBA175 and PfRh2 the response was
dominated by the cytophilic IgG1 and IgG3, but there
was also some IgG2 response (Figure 2). For PfRh2 there
was also a relatively strong response for IgG4. When the
values were correlated to each other, it was found that
total IgG levels against EBA175 and PfRh2 showed a
weak to moderate, but significant positive correlation
with each other (R2 = 0.22, p = 0.0002), and this was also



Table 1 The prevalence of antibodies against EBA175 and
PfRh2 during the study period

Prevalence
(%)a

PfRh2 EBA175

5-13 years 14-70 years 5-13 years 14-70 years

(18 children) (22 adults) (18 children) (22 adults)

Total IgG 100% 100% 100% 100%

IgG1 83% 95% 94% 82%

IgG2 86% 86% 94% 82%

IgG3 83% 77% 94% 91%

IgG4 89% 77% 94% 95%
a= Positive prevalence when antibody titers (OD) were greater than the mean
plus 3 SD of the value for the non-immune Swedish donors.

Figure 2 IgG subclass responses to Plasmodium falciparum
merozoite antigens (A) EBA175 and (B) PfRh2 in individuals five
to 70 years old, followed over almost one year. The scatter plot
shows mean ± SEM OD for values at 414 nm; all samples (n = 302)
from all individuals (n = 40) are included.
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noted for the IgG1 levels (R2 = 0.25 and p <0.0001), indicat-
ing co-acquisition of different antibodies with malaria ex-
posure. No significant correlations were observed in IgG2,
IgG3 or IgG4 between EBA175 and PfRh2 OD values
(IgG2, R2 = 0.1 and p = 0.1; IgG3, R2 = 0.05 and p = 0.4;
IgG4, R2 = 0.02 and p = 0.7). Furthermore, when the total
IgG and subclass responses within EBA175 and PfRh2
were investigated it was observed that there were good cor-
relations for EBA175, but less so for PfRh2 (Table 2).
When male and female subjects were analysed separ-

ately, samples from females showed slightly higher
values for total IgG (p = 0.0025), IgG3 (p = 0.04) and
IgG4 (p = 0.03) for EBA175, and IgG2 (p = 0.02) and
IgG4 (p = 0.006) for PfRh2. Male individuals showed
higher values only for IgG1 EBA175 (p = 0.03).
Table 2 Correlations of total IgG and subclass IgG1-IgG4
responses against EBA175 and PfRh2

Antigen-IgG Spearman r p-value

EBA175 Total IgG vs

IgG1 0.57 <0.0001

IgG2 0.46 <0.0001

IgG3 0.49 <0.0001

IgG4 0.38 <0.0001

EBA175 IgG1 vs

IgG2 0.5 <0.0001

IgG3 0.63 <0.0001

IgG4 0.25 <0.0001

EBA 175 IgG2 vs

IgG3 0.48 <0.0001

IgG4 0.40 <0.0001

EBA175 IgG3 vs

IgG4 0.34 <0.0001

Rh2 Total IgG vs

IgG1 0.55 <0.0001

IgG2 0.07 0.26

IgG3 0.04 0.48

IgG4 0.1 0.08

Rh2 IgG1 vs

IgG2 0.07 0.23

IgG3 0.09 0.13

IgG4 0.1 0.07

Rh2 IgG2 vs

IgG3 0.27 <0.0001

IgG4 0.21 0.004

Rh2 IgG3 vs

IgG4 -0.05 0.35
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Correlation of antibody responses with age
When age was correlated to the levels of antibodies, it was
found that there were significant positive correlations with
total IgG (R2 = 0.12 and p = 0.036), IgG1 (R2 = 0.29 and
p = <0.0001) and IgG3 (R2 = 0.33 and p <0.0001) for
EBA175. IgG2 and IgG4 against EBA175 did not show any
correlations with age (IgG2, R2 = 0.01, p =0.8; IgG4, R2 =
0.03, p = 0.6). There were no significant correlations be-
tween age and levels of antibodies against PfRh2 (p-values
0.3-0.8).

Correlation of antibody responses with parasitaemia
The parasitaemia in the study group was monitored dur-
ing the whole study period. The highest peak in parasit-
aemia was observed in the month of October (mean:
749.7 parasites/μl), while the lowest number was seen in
May (mean: 3.7 parasites/μl) (Figure 3). There was no
significant difference in parasitaemia between children
(5-13 years) and adults (14-70 years) (p = 0.3).
To assess whether the antibody responses in this study

group were associated with protection, the relationship be-
tween antibody levels and parasitaemia was investigated.
Higher IgG1, IgG2 and IgG3 levels for EBA175 and total
IgG for PfRh2 correlated significantly with lower parasit-
aemia (R2 = 0.19, p = 0.002; R2 = 0.19, p = 0.002; R2 = 0.21,
p = 0.0008; R2 = 0.24, p <0.0001, respectively). There were
no significant differences between IgG levels measured be-
fore and after an episode of parasitemia (not shown).
Additionally, individuals with the highest quartiles of

levels of total IgG against EBA175 or PfRh2 showed an
even higher correlation with reduction of parasitaemia
(EBA175, R2 = 0.54, p <0.0001; PfRh2, R2 = 0.42, p = 0.002,
Figure 3 Parasitaemia in individuals (n = 39) five to 70 years
old from July 2009 to June 2010. The bars show mean ± SEM
parasitaemia (parasites/μl). (April not shown, no sample collection;
June: one individual who had very high parasitaemia, 15 168
parasites/μl, was excluded from this figure. (Black bars = rainy season,
white bars = dry season).
Spearman rank correlation comparing levels of antibodies
with parasitaemia for every sample), and when individuals
with high total levels of both antibodies against EBA175
and PfRh2 were considered (number of individuals = 11,
number of samples = 78) they had a lower parasitaemia
compared to those with raised levels of only one of the
antibodies (p = 0.03).

The impact of HbAA and HbAS carriage on the levels
of IgG
Out of the 40 patients included in this study, 30 had
HbAA (normal, adult haemoglobin), nine had HbAS and
one had HbAC. There was no significant difference in
parasitaemia or age between the HbAA and HbAS groups
(p = 0.27 and 0.32, respectively).
When all individuals were considered together, total

IgG, IgG1 and IgG3 against EBA175 were significantly
higher in individuals with HbAA compared to HbAS (IgG,
p = 0.008; IgG1, p = 0.048; IgG3, p = 0.0001). For PfRh2,
only the IgG1 response was significantly higher in HbAA
(p = 0.0001).
When the samples where divided into the two groups

children (n = 18, age 5-13) and adults (n = 21, age 14-70),
children with HbAS had significantly higher levels of IgG,
IgG1, IgG2, and IgG3 against EBA175 and higher levels of
IgG against PfRh2 compared to HbAA (Figure 4). When
adults were considered, the pattern was the opposite with
higher levels of IgG, IgG1 and IgG3 against EBA175 in
HbAA individuals (there were no significant differences
for PfRh2).

Comparison of half-lives of total IgG and subclasses
For EBA175, IgG2 and IgG4 showed significantly
shorter half-lives compared to IgG1 (p <0.05/<0.01), to
IgG3 (p <0.05/<0.01), and to total IgG (p <0.01 for both)
(Figure 5). For PfRh2, a similar trend was seen as for
EBA175, but the only significant differences seen were
those that showed shorter half-lives for IgG1, IgG2 and
IgG4 compared to total IgG, and a shorter half-life for
IgG4 compared to IgG1 (p <0.05 for all comparisons).
There were no significant associations between half-lives
and ages of the tested individuals.
For total IgG, half-lives of parasite positive and parasite

negative individuals were compared. For EBA175, the
period of antibody decay was 98 days for parasite positive
individuals and 64 days for parasite negative individuals.
For PfRh2, the half-life was 120 days for parasite positive
and 82 days for parasite negative individuals. However,
due to the small number of parasite negative individuals,
it is difficult to estimate the value of these differences.

Discussion
In this study, total IgG and subclass responses against
EBA175 and PfRh2 were investigated, and the effects of



Figure 4 The total IgG and subclass levels to EBA175 (A, B) and PfRh2 (C, D) in HbAA and HbAS for children (n = 18) and adults (n = 22)
are shown; the number of samples = 302. The bars show mean ± SEM of OD at 414 nm. (*, p <0.05; **, p <0.01; ***, p <0.001).
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HbAS in children and adults living in Igbo-Ora, a rural
area of Nigeria, over a period of almost one year. These
antigens were chosen because they are potential vaccine
candidates, and they use different invasion pathways.
EBA175 uses a sialic acid (SA)-dependent invasion path-
way with glycophorin A as its main receptor. PfRh2
plays a role in SA-independent invasion (with an as yet
Figure 5 The half-lives of IgG2 and IgG4 were shorter than
those for IgG1 and IgG3.
unknown receptor ‘Z’) [4], but some data suggest PfRh2
can also bind SA on the erythrocyte surface [45,46]. The
EBAs and PfRhs play a vital role in merozoite invasion
[47]. It has been suggested that a vaccine could be more
efficient if antigens from different invasion pathways are
used [38,48], and it is therefore of interest to study the
combined response in individuals who have acquired im-
munity by natural exposure to the P. falciparum para-
site. Very few studies have investigated the subclass
response to merozoite antigens over time.
The response for each subclass approximately followed

the pattern of total IgG for both EBA175 and PfRh2,
with a peak in antibody levels arising just after the peak
in parasitaemia. This goes in line with the transmission
intensity being highest during the rainy season, which
ends in October. IgG1, IgG2 and IgG3 for EBA175 were
positively associated with lower parasitaemias, indicating
that all of these antibodies are possibly important for
protection against malaria. These findings are in line
with earlier studies that showed high levels of IgG, in-
cluding IgG1 and IgG3 to EBA175, to be associated with
protection from malaria [19,49,50]. Individuals with high
levels of both total IgG against EBA175 and PfRh2 had a
lower parasitaemia compared to those that had high
levels of only one of the antibodies. This observation of
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combined antibody responses against two antigens un-
derlines the importance of using combinations of anti-
gens in vaccine trials [38,48]. When results from male
and female individual were analysed, they were often
slightly higher levels of antibodies in women. The reason
for this is not clear, perhaps it is because of slightly dif-
ferent exposure.
In the studies that have been done before, looking at

subclass responses against merozoite antigens, the re-
sponses have been dominated by IgG1 and IgG3
[19-21,25,42,51-53]. However, in this study, there was
some response against both IgG2 and IgG4. IgG1 and
IgG3 are considered cytophilic [23,51] but in malaria
non-cytophilic antibodies could also be of major import-
ance. Even though the levels are low, the quality of the
antibodies might be of more importance [54]. A study
showed that high levels of IgG2 against RESA and MSP2
were associated with a lower risk of infection, indicating
that IgG2 may be important, while IgG4 was suggested
to block the cytophilic activity [22]. IgG4 has also before
been shown to be of doubtful effect, in the response
against MSP1-19, and it is especially interesting since
this study was done in the same area of Nigeria as this
study [55]. Omosun et al. [55] found dominating IgG1
and IgG3 responses to MSP1-19. While both IgG2 and
IgG4 against MSP1-19 correlated positively with age,
there was also a positive correlation of parasite density
with IgG2 and IgG4 levels. Even though relatively high
levels of IgG4 (especially against PfRh2) was found, there
was no protective effect of this subclass when associated
with parasitaemia. In an earlier study of subclass re-
sponses in children against PfRh2, mostly IgG1 and
IgG3 were seen [42]. The reason for why the results
from this study are slightly different might be because
the population is different (Papua New Guinea com-
pared to Nigeria), but also because all ages were in-
cluded in this study. To elucidate whether IgG4 is
protective or actually counter-acting protection, further
studies are needed, but this study indicates that more
subclass analysis should be included in studies of im-
munity in malaria.
For EBA175, IgG2 and IgG4 showed significantly

shorter half-lives compared to IgG1 and IgG3. This is in-
teresting since the half-life of IgG3 is normally consid-
ered to be considerably shorter than the other subclasses
[56]. The short half-life noted here for IgG2 and IgG4
might help in explaining why IgG1 and IgG3 are often
considered the most important ones in protection
against malaria. It was also noted that parasite positive
individuals had longer half-lifes of their IgG for both
EBA175 and PfRh2, compared to individuals who were
parasite negative all throughout the study period, which
makes sense since the parasite positive individuals are
exposed to parasites under a longer time period.
In this Nigerian population, the response in general to-
wards EBA175 seemed stronger than against PfRh2. The
subclass IgG1-IgG4 response against PfRh2 was low in
this group. It has been shown before [45] that the ex-
pression of PfRh2 can vary between parasites, and it is
not known which parasites were circulating in the area
at the time. It might be that the recombinant antigen of
EBA175 was more similar to the circulating parasites
than the version of PfRh2 that was used. The results
might also vary depending on which part of the protein
was used. Region III-V of EBA175 was used in this study
[19], and previous studies suggest that antibodies to re-
gion II of this protein have a lower protective association
[13]. Antibodies to EBA and PfRh invasion ligands are
thought to act primarily by inhibiting erythrocyte inva-
sion, and studies have shown that vaccine-induced anti-
bodies in animal studies [57,58], and in humans for
EBA175 [41,59], can inhibit parasite growth in vitro. In
previous studies of Kenyan children and adults, there
has been evidence for that EBA175 and other EBAs, and
PfRh invasion ligands are important targets of inhibitory
antibodies, and variation in the function of these ligands
can facilitate evasion of inhibitory antiobodies [41,54].
Recent studies have also demonstrated that affinity-
purified human antibodies to EBA175, PfRh2, PfRh4,
and PfRh5 can effectively inhibit invasion in vitro
[59-62]. As a continuation of the studies in this paper,
there are plans to compare invasion inhibition results to
the subclass responses to elucidate whether any of the
IgG subclasses could be more inhibitory than others.
When individuals with different haemoglobin were

compared, there were different responses in children
and adults, with higher levels of antibodies for HbAS in
children. Children with HbAS had significantly higher
levels of IgG, IgG1-3 against EBA175, and higher IgG
levels against PfRh2. For adults the pattern was the op-
posite with higher IgG and IgG1-3 levels against
EBA175, and higher IgG against PfRh2 in HbAA. It has
been suggested before that the haemoglobin can affect
the antibody response in malaria, but then the discus-
sion has mainly concerned surface molecules on the
erythrocyte [63,64]. Previous studies in Nigeria [65] and
in other African countries [30,66,67] have shown lower
parasite densities as well as lower prevalence of both un-
complicated and severe malaria in individuals with
HbAS compared to HbAA. Even though this study is
based on a relatively small number of samples, the re-
sults indicate that further studies on differences between
HbAS and HbAA individuals should be done for mero-
zoite antigens and not only erythrocyte surface antigens.

Conclusions
Subclasses of IgG against both EBA175 and PfRh2 could
be protective against malaria since they correlated with a
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lower parasitaemia. There were shorter half-lives of
IgG2 and IgG4 against EBA175, which might explain
why these subclasses are usually considered to be less
important in protection against malaria. In evaluation of
vaccine studies it might be important also to consider
haemoglobin polymorphisms in different populations,
especially in an area where HbAS is relatively common.
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