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Abstract
Background: Patterns of genetic structure among mosquito vector populations in islands have
received particular attention as these are considered potentially suitable sites for experimental
trials on transgenic-based malaria control strategies. In this study, levels of genetic differentiation
have been estimated between populations of Anopheles gambiae s.s. from the islands of Bioko and
Annobón, and from continental Equatorial Guinea (EG) and Gabon.

Methods: Genotyping of 11 microsatellite loci located in chromosome 3 was performed in three
island samples (two in Bioko and one in Annobón) and three mainland samples (two in EG and one
in Gabon). Four samples belonged to the M molecular form and two to the S-form. Microsatellite
data was used to estimate genetic diversity parameters, perform demographic equilibrium tests and
analyse population differentiation.

Results: High levels of genetic differentiation were found between the more geographically
remote island of Annobón and the continent, contrasting with the shallow differentiation between
Bioko island, closest to mainland, and continental localities. In Bioko, differentiation between M and
S forms was higher than that observed between island and mainland samples of the same molecular
form.

Conclusion: The observed patterns of population structure seem to be governed by the presence
of both physical (the ocean) and biological (the M-S form discontinuity) barriers to gene flow. The
significant degree of genetic isolation between M and S forms detected by microsatellite loci located
outside the "genomic islands" of speciation identified in A. gambiae s.s. further supports the
hypothesis of on-going incipient speciation within this species. The implications of these findings
regarding vector control strategies are discussed.
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Background
Malaria is an infectious disease that causes between 300–
500 million annual clinical cases and 1.5–3 million
deaths per year, mainly in children under five years old in
sub-Saharan Africa [1]. Classical strategies of vector con-
trol developed in endemic areas of Africa, such as impreg-
nated bed nets or indoor residual spraying, have not been
as effective as expected, and malaria incidence is increas-
ing. Among the factors involved in this failure are the lack
of sustainability of vector control programmes and the
emergence of insecticide resistance in mosquitoes [2].

Genetically based methods have been proposed for
malaria vector control. These methods focus mainly in
altering vectorial capacity through the genetic transforma-
tion of natural vector populations by means of introduc-
ing refractoriness genes or by sterile insect technologies
[3]. Knowledge of the genetic structure of vector species is,
therefore, an essential requirement as it should contribute
not only to predict the spread of genes of interest, such as
insecticide resistance or refractory genes, but also to iden-
tify heterogeneities in disease transmission due to distinct
vector populations [4]. The most effective Afrotropical
malaria vectors belong to the Anopheles gambiae complex,
that comprises seven sibling species. Within the complex,
A. gambiae sensu stricto (s.s.) is the most synanthropic
species and shows remarkable genetic heterogeneity [5,6].
Cytogenetic analysis has revealed different chromosomal
arrangements associated with paracentric inversions [5].
This has lead to the description of five chromosomal
forms based in differences in the frequencies of polymor-
phic arrangements, geographical distribution and ecolog-
ical data [5,7]. Furthermore, analysis of the X-linked
ribosomal DNA cluster suggested further genetic subdivi-
sion within A. gambiae s.s. and led to the description of
two molecular forms, provisionally named M and S,
defined based on sequence differences in transcribed and
non-transcribed rDNA spacers (IGS and ITS) [8,9].
Although the offspring between M and S forms are viable
and fertile [10], M-S hybrids or cross-mating between the
two forms are rarely observed in nature [6,11]. Genetic
differentiation between molecular forms in this primary
vector is of paramount relevance for the implementation
and monitoring of its control, as illustrated by the extreme
differences found in the distribution of knockdown resist-
ance mutations among sympatric M and S form popula-
tions [12,13].

Previous population genetic studies pointed to a shallow
population structure within major malaria vectors
throughout the African continent, possibly as a result of
recent population expansion leading to substantial reten-
tion of ancestral polymorphism [14,15]. The few cases of
significant population differentiation have been attrib-
uted to barriers to gene flow, either physical or biological

in the case of the M-S form partitioning in A. gambiae s.s.
[16-19] However, recent studies suggest further subdivi-
sion within each of the molecular forms, as evidenced by
significant levels of genetic differentiation among popula-
tions of different chromosomal forms, revealed by micro-
satellites and AFLP markers [20,21].

In Equatorial Guinea, malaria is one of the main causes of
morbidity and mortality, being transmitted mainly by
vectors of the A. gambiae complex [22]. In the island of
Bioko, as well as in mainland Equatorial Guinea, both M
and S forms are known to occur in sympatry. Different
vector control measures are being implemented, includ-
ing insecticide treated bed nets and indoors residual
spraying [23]. However, studies regarding the genetic
structure of A. gambiae s.s. remain scarce for Equatorial
Guinea. The geography of the country, formed by both
insular and continental regions, is likely to promote a
greater biological heterogeneity among its vector popula-
tions. This may have important implications for the
design and implementation of nationwide malaria vector
control programmes. In addition, islands are regarded as
potential sites for experimental releases of transgenic mos-
quitoes for malaria control, increasing the need for further
genetic studies of its populations [18,24].

In this study, microsatellite markers have been used to
estimate levels of genetic differentiation between popula-
tions of A. gambiae s.s. from the islands of Bioko and
Annobón and from continental localities of Equatorial
Guinea and Gabon, in order to determine the extent of
population substructuring and its association with barri-
ers to gene flow.

Methods
Mosquito collections and species identification
Entomological surveys took place in five localities of
Equatorial Guinea, situated in the Gulf of Guinea, West
Africa (Figure 1). In the island of Bioko, situated ca. 200
km from mainland Equatorial Guinea, landing and
indoors resting collections were conducted in 2003 in
Malabo (3°45'N/8°46'E), capital of the country, and in
the village of Sácriba (3°42'N/8°43'E) 9 km away. On the
island of Annobón, located in the South hemisphere 670
km away from Bioko and 585 km off mainland Equatorial
Guinea, samples were collected by CDC light traps and
landing catches in 2004. In the mainland, collections
were carried out in 2004 in Bata (1°52'N/9°46'E) and
Ngonamanga (2°08'N/9°46'E) 30 km apart, by the same
sampling methods. Climatic and ecological data from
these sites have been described elsewhere [22].

Mosquitoes were morphologically identified using the
identification keys of Gillies & Coetzee [25]. Specimens
were kept individually in silica gel filled tubes at 4°C,
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until DNA extraction was performed according to Collins
et al [26]. Species identification within the A. gambiae
complex was done by PCR according to Scott et al [27].
Anopheles gambiae s.s. molecular forms were determined
as described in Favia et al [28]. Although cytological anal-
ysis was not performed, the Forest cytoform of A. gambiae
s.s. is likely to be the only one present in these localities
[5,22].

An additional sample from Libreville (0°23'N/9°27'E),
Gabon, was also included in the analysis. This sample was
collected in 2000 and it is composed by S-form A. gambiae
s.s. [29].

Microsatellite analysis
Eleven microsatellite loci [17,30] were genotyped:
Ag3H128, Ag3H249, Ag3H119, Ag3H242, Ag3H577,
Ag3H555, Ag3H59, Ag3H758, Ag3H88, Ag3H93 and
45C1. Only loci of chromosome 3 were used to avoid pos-
sible bias due to selective effects associated with paracen-
tric inversions or reproductive isolation putative regions
that are known to occur in chromosomes 2 and X [31,32].
Each locus was amplified by PCR using fluorescently
labelled (FAM, NED, or HEX) forward primers [33].
Amplified fragments were separated by capillary electro-
phoresis in an automatic sequencer (ABI 3730, Applied
Biosystems) and sizes scored using the software Gene-
Marker (SoftGenetics, USA).

Collection sites in Equatorial Guinea and GabonFigure 1
Collection sites in Equatorial Guinea and Gabon.
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Data analysis
Genetic diversity by locus and sample was characterized
by estimates of unbiased expected heterozygosity (He,
[34]), and allele richness [35], available in FSTAT v 2.9.3.2
[36]. The latter estimate was used instead of the number
of alleles per locus to account for differences in sample
sizes. To account for differences in sample size, these esti-
mates were re-calculated using randomly selected sub-
samples of each locality of size equal to the smallest sam-
ple size. Genotypic frequencies were tested against Hardy-
Weinberg Equilibrium (HWE) proportions by exact prob-
ability tests performed in GENEPOP v.3.4 [37]. Linkage
disequilibrium to confirm independence between loci
was tested by exact tests on contingency tables, also avail-
able in GENEPOP.

Heterozygosity tests [38] were used to detect deviations
from mutation-drift equilibrium (MDE). These tests com-
pare two estimates of expected heterozygosity, one based
on allele frequencies (He), assuming Hardy-Weinberg pro-
portions, and another based on the number of alleles and
sample size (Heq), assuming MDE. At MDE, both esti-
mates should be similar in the majority of loci analysed
(i.e. He=Heq). If a population experiences a bottleneck, rare
alleles will be rapidly lost and therefore Heq will decrease
faster than He (i.e. He > Heq). This apparent excess of heter-
ozygosity in a significant number of loci is an indicator of
a bottleneck, whereas the converse (i.e. He <Heq) may indi-
cate a population expansion. Estimates of expected heter-
ozygosity under MDE were calculated under the Stepwise
Mutation Model (SMM) and Two Phase Models (TPM)
with 10–30% indels larger than the repeat unit. Calcula-
tions were done using the software BOTTLENECK 1.2.02.
[38].

Differentiation among populations was measured by the
fixation index FST, calculated according to Weir and Cock-
erham [39] using ARLEQUIN v.3.01 [40]. Permutation
tests (10,100 permutations) were performed in order to
determine if estimates differed significantly from zero.
The correlation between genetic and geographical dis-
tances, assuming isolation by distance, was assessed by
the regression FST/(1-FST) on the logarithm (ln) of pair-
wise geographical distances [41]. Significance of the corre-
lation coefficient was tested using Mantel tests available in
GENEPOP.

To compute the probability that an individual belonged
to each reference population, assignment tests were per-
formed on the basis of multilocus genotype data using
GENECLASS 2.0 [42]. The Bayesian method of Rannala
and Mountain [43] was used as the computation criterion
and a re-sampling algorithm based on Paetkau et al [44]
was employed. Data was run using 10,000 simulations
and a threshold of significance α = 0.01.

Finally, a Bayesian approach was used to infer the number
of clusters (K) in the data set without prior information of
the sampling locations, available in STRUCTURE 2 [45].
A model where the allele frequencies were correlated
within populations was assumed (λ was set at 1, the
default value). The software was run with the option of
admixture, allowing for some mixed ancestry within indi-
viduals, and α was allowed to vary. Twenty independent
runs were done for each value of K (K = 1 to 9), with a
burn-in period of 100,000 iterations and 100,000 replica-
tions. The method of Evanno et al [46] was used to deter-
mine the most likely number of clusters. This approach
uses an ad hoc quantity, ∆K, based on the second order rate
of change of the likelihood function between successive
values of K.

Whenever multiple tests were performed the nominal sig-
nificance level (α = 0.05) was adjusted by the sequential
Bonferroni procedure [47].

Results
Species and molecular form identification
A total of 213 female A. gambiae s.s. were analysed in this
study. Of these, 133 individuals were of the M molecular
form, corresponding to the samples of Ngonamanga (45)
and Bata (28) on the continent, Malabo (36) in the island
of Bioko and Annobón (24). The sample of Sácriba (35),
in Bioko, and the sample of Gabon (45) were composed
by S-form individuals. Both molecular forms were found
in sympatry in Ngonamanga and in both localities of
Bioko island. However, the low numbers (N <20) of S-
form individuals collected in these localities (or M-form
in the case of Sácriba) precluded further analyses. The
samples of Annobón and Bata had only M-form individu-
als and in Gabon only the S-form has been reported [29].

Within population genetic variability
Polymorphism at microsatellite loci varied, with allelic
richness per locus ranging between four (Ag3H577 and
45C1) and 11 (Ag3H128). Two loci, Ag3H555 and 45C1,
were monomorphic in Annobón. This island showed the
lowest average allelic richness (3) compared to all other
localities (7–8) and also had the lowest mean expected
heterozygosity (0.436). The lowest genetic diversity can-
not be explained by the low sample size for Annobón, as
comparable differences were obtained when data was re-
analysed using randomly selected sub-samples of N = 24
for all sites other than Annobón (Table 1). The average
expected heterozygosity across all samples ranged from
0.540 (Ag3H577) to 0.789 (AgH128), with significant
heterozygote deficits detected in four loci. Within each
sample, significant heterozygote deficits were detected
only in four occasions, in locus Ag3H88 (Malabo and
Libreville), Ag3H758 (Ngonamanga) and Ag3H93
(Sácriba) (Table 1). Linkage disequilibrium tests revealed
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a single significant association, for the pair Ag3H128/
Ag3H758 in Libreville. Altogether these results indicate
that each sample represents a single panmictic gene pool.

Cornuet and Luikart's [38] heterozygosity tests showed
significant deviations from MDE in the Annobón sample
under all mutational models, with an apparent heterozy-
gote excess indicating a recent bottleneck (Table 2). In the
Malabo sample, all tests were non-significant regardless of
the mutation model. For the remaining samples, a signif-
icant number of loci showing an apparent heterozygote
deficit were detected at least under the SMM, suggesting
recent population expansion.

Genetic differentiation and isolation by distance
Pairwise estimates of FST over all loci between samples are
presented in Table 3. The Annobón sample showed the
highest degree of differentiation from all other samples
(FST = 0.196–0.269, P < 0.001). Genetic differentiation
was higher between M and S form samples within Bioko
island (FST = 0.089, P < 0.001) than between the M-form
samples from Bioko and mainland Equatorial Guinea (FST

= 0.023–0.042, P < 0.001) or between the S-form samples
from Bioko and Gabon (FST = 0.050, P < 0.001). The only
non-significant FST estimate was the one involving the two
continental M-form samples, Bata and Ngonamanga. No
statistically significant correlations were detected between
genetic differentiation, measured by FST, and geographic
distances (Mantel tests: r = 0.62, P = 0.051), even when
tests were carried out with M-form samples only (Mantel
tests: r = 0.84, P = 0.084).

Results of the assignment tests [42] showed that on aver-
age 62.9% (134 out of 213) of the individuals were cor-
rectly assigned to their original sampling site (Table 4).
The collections from Annobón and Sácriba presented the
highest proportion of correctly assigned individuals (0.88
and 0.89, respectively). Over 81% of the 79 mis-assign-
ments occurred between samples of the same molecular
form, independent of geographic origin (within M-form:
0.62; within S-form: 0.19; between forms: 0.19). Within
the M-form, nearly half of the individuals from Malabo, in
Bioko island, were assigned to mainland Bata and nearly
60% of individuals from Ngonamanga were also mis-

Table 1: Genetic variability at microsatellite loci in A. gambiae s.s. from the localities surveyed

Locus Annobón [M] 
Far-island (24)

Malabo [M] 
Near-island (36)

Sácriba [S] Near-
island (35)

Bata [M] 
Mainland (28)

Ngonamanga [M] 
Mainland (45)

Libreville [S] 
Mainland (45)

All Samples 
(213)

Ag3H242 Rs 3 5 7 4 6 5 5
He 0.613 0.654 0.635 0.634 0.679 0.646 0.644

Ag3H128 Rs 4 10 10 16 17 7 11
He 0.659 0.849 0.721 0.919 0.921 0.666 0.789

Ag3H249 Rs 5 6 8 8 7 7 7
He 0.702 0.811 0.789 0.835 0.795 0.792 0.787

Ag3H119 Rs 2 6 10 5 7 9 7
He 0.190 0.688 0.839 0.745 0.738 0.826 0.671

Ag3H555 Rs 1 6 7 7 5 6 5
He - 0.763 0.748 0.738 0.614 0.785 0.608

Ag3H577 Rs 2 5 5 4 5 5 4
He 0.386 0.569 0.626 0.536 0.611 0.509 0.540

Ag3H59 Rs 4 7 10 7 7 7 7
He 0.727 0.652 0.873 0.705 0.763 0.746 0.744

Ag3H88 Rs 3 10 7 10 10 6 8
He 0.519 0.840 0.801 0.838 0.871 0.731 0.767

Ag3H758 Rs 2 11 9 12 13 7 9
He 0.500 0.882 0.787 0.886 0.896 0.669 0.770

Ag3H93 Rs 2 5 7 7 7 12 7
He 0.504 0.757 0.675 0.731 0.718 0.862 0.708

45C1 Rs 1 5 5 5 4 5 4
He - 0.701 0.651 0.722 0.694 0.593 0.560

All loci Rs 3 7 8 8 8 7 7
He 0.436 0.742 0.740 0.754 0.755 0.711 0.690

N = 24 Rs 3 8 7 8 7 7 9
He 0.436 0.768 0.744 0.763 0.740 0.706 0.693

First row indicates collection sites and location (island or mainland), molecular form in square brackets [M or S] and sample size in parenthesis; Rs: 
Allele richness; He: Nei's unbiased estimate of expected heterozygosity. All loci/samples: mean values over loci or populations; In bold: significant 
heterozygote deficits according to exact tests against Hardy-Weinberg proportions after corrections for multiple testing by the sequential 
Bonferroni procedure. N = 24: estimates made with a sample size of 24 individuals for all localities.
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assigned to Bata. Similarly, within the S-form over 30% of
the individuals from Libreville were mis-assigned to
Sácriba, in Bioko.

Bayesian cluster analysis performed with STRUCTURE
[45] showed that the most likely K value identified was K
= 3 (Figure 2a). This corresponds to three distinct genetic
clusters (Figure 2b): (1) M-form A. gambiae s.s. from
Annobón Island; (2) M-form samples from Bioko island
(Malabo) and the mainland (Bata and Ngonamanga); (3)
S-form samples from Bioko island (Sácriba) and the
mainland (Libreville).

Discussion
Genetic diversity varied among island A. gambiae s.s.pop-
ulations from Equatorial Guinea. In Bioko, levels of
genetic variation in both M and S-forms were quite similar
to those observed in the three continental samples. When
compared with neighbouring mainland countries, mean
expected heterozygosity values were similar to those
reported for both molecular forms in Cameroon (He:
0.77–0.81; [16]), Nigeria (He: 0.76–0.79; [48]) and
Ghana (He: 0.71–0.82; [49]). In other islands in close

proximity with mainland, genetic diversity was also simi-
lar to that of adjacent continental ones [24]. In contrast,
the sample from the island of Annobón showed much
lower levels of genetic diversity than Bioko samples.
Bioko and Annobón lie at the opposite extremes of a vol-
canic chain in the Gulf of Guinea, which also includes the
archipelago of São Tomé and Príncipe (STP). In these
islands, estimates of genetic diversity were intermediate to
those found in Bioko and Annobón (He: 0.45–0.55; [18]).
These findings overall agree with principles of island bio-
geography, in which biological (and genetic) diversity is
positively correlated with the size of the island and nega-
tively correlated with distance from mainland [50].

The heterozygosity tests suggested an expansion process in
both M and S-form continental populations of A. gambiae
s.s., in agreement with previous works based on mainland
populations of this species [51]. Within the island of
Bioko, the differences found between M and S samples
may indicate different historical processes. While the M-
form was found at MDE, the S-form appears to be expand-
ing. This pattern could be due to different timings of
arrival of the two molecular forms on the island. The M-

Table 3: Estimates of pairwise FST among populations of A. gambiae s.s. from Equatorial Guinea and Gabon.

Annobón Malabo Sácriba Bata Ngonamanga

Annobón [M] (far-island) -
Malabo [M] (near-island) 0.212 -
Sácriba [S] (near-island) 0.269 0.089 -
Bata [M] (mainland) 0.196 0.023 0.080 -
Ngonamanga [M] (mainland) 0.187 0.042 0.079 0.003 -
Libreville [S] (mainland) 0.267 0.109 0.050 0.100 0.099

First column indicates collection sites and location (island or mainland), and molecular form in square brackets [M or S]. In Bold: significant estimate 
according to permutation tests (10,100 permutations)

Table 2: Cornuet and Luikart's heterozygosity tests in A. gambiae s.s. from Equatorial Guinea and Gabon

SMM TPM (90%) TPM (80%) TPM (70%)

Annobón [M] (far-island) He > Heq 8 8 8 8
P (He > Heq) 0.005 0.003 0.002 0.002

Malabo [M] (near-island) He > Heq 3 6 7 8
P (He > Heq) 0.913 0.517 0.289 0.160

Sácriba [S] (near-island) He > Heq 1* 2* 3 4
P (He > Heq) 1.000 0.998 0.991 0.926

Bata [M] (mainland) He > Heq 4* 4 4 5
P (He > Heq) 0.992 0.794 0.585 0.382

Ngonamanga [M] (mainland) He > Heq 2* 2 5 5
P (He > Heq) 0.998 0.966 0.768 0.740

Libreville [S] (mainland) He > Heq 1* 2* 4 5
P (He > Heq) 1.000 0.995 0.912 0.768

First column indicates collection sites and location (island or mainland), and molecular form in square brackets [M or S]. SMM: stepwise mutation 
model; TPM: two-phase mutation model with indels larger than one repeat of 10%, 20% and 30%, respectively; He > Heq: number of loci showing a 
heterozygote excess (11 polymorphic loci in all localities except Annobón with 9); P(He > Heq): P-value of Wilcoxon tests to determine the significance 
of the number of loci in which He > Heq. In bold are P-values that remained significant after adjustment by the sequential Bonferroni procedure. *: 
Significant number of loci in which He <Heq by Wilcoxon tests, also after adjustment of the nominal significance value.
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form A. gambiae s.s. individuals might have been the first
to be introduced and thus have reached MDE, while the
genetic signature of population expansion in the S-form
sample could be due to its more recent establishment on
the island.

The signature of population contraction detected in
Annobón may be a consequence of several factors that
need further examination. These may include a more

recent colonization of this island, periodical strong fluctu-
ations in effective population size, or a synergistic combi-
nation of these factors. Historical data indicates that
whilst the first humans arrived to Bioko island ca. 3,000
years ago, Annobón was colonized only in the 15th cen-
tury by slaves from Angola and São Tomé and Príncipe
[52]. Periodic demographic oscillations occur in Anno-
bón, associated with seasonal migrations of workers to
Bioko island. In addition, most of the human population
from the main village (Pale) moves to smaller inland vil-
lages during the hurricane season. These demographic
fluctuations in the human population might lead to peri-
odical changes in the effective size of the local mosquito
populations.

Significant genetic differentiation was observed between
M and S-form samples that are less than 10 km apart
within Bioko island. The estimate of FST was 2 to 4-fold
greater than those among M-form samples from Bioko
and the continent (210–236 km apart) and nearly 2-fold
greater than the one obtained between the S-form samples
of Bioko and Libreville (378 km apart). Similarly, higher
FST values were obtained in all comparisons between the
S-form from Libreville and M-form samples from main-
land or Bioko island, when compared to the estimate
between island and continental S-form. It is unlikely that
FST estimates may have been influenced by the different
time of collections between the sample of Libreville
(2000) and those from Equatorial Guinea (2003–2004).
Microsatellite allele frequencies in A. gambiae s.l. tend to
vary little over generations, reflecting large effective popu-
lation sizes [53,54]. The higher differentiation between M
and S forms was also evident from the assignment tests
performed in the present study, in which most mis-assign-
ments were shared between samples of the same molecu-
lar form regardless of its geographic origin. Bayesian
cluster analysis further supported this partitioning, by
grouping together M and S form samples in two separate
clusters, again independently of sample location. In a pre-
vious study, a significant FST estimate (0.070) had also
been obtained by microsatellite analysis, between sym-
patric M and S forms from Malabo [55].

Bayesian cluster analysis using STRUCTUREFigure 2
Bayesian cluster analysis using STRUCTURE. A: estimates of 
∆K, based on the second order rate of change of the likeli-
hood function with respect to K, to determine the most 
likely number of clusters (K) in the data set. In this case K = 
3. B: graphical representation of the data set for the most 
likely K = 3, where each colour corresponds to a suggested 
cluster and each individual is represented by a vertical bar. 
The numbers in the X-axis correspond to a specific sample: 
1- Annobón, 2- Bata, 3- Malabo, 4- Ngonamanga, 5- Sácriba 
and 6- Libreville. The Y-axis represents the probability of 
assignment of an individual to each cluster.
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Table 4: Results of assignment tests based on microsatellite gene frequencies among samples of A. gambiae s.s. from Equatorial Guinea 
and Gabon.

Annobón [M] Malabo [M] Sácriba [S] Bata [M] Ngonamanga [M] Libreville [S]

Annobón [M] (far-island) 0.88 - - 0.12 - -
Malabo [M] (near-island) - 0.44 0.08 0.42 0.06 -
Sácriba [S] (near-island) - - 0.89 0.03 0.05 0.03
Bata [M] (mainland) - - 0.07 0.82 0.11 -
Ngonamanga [M] (mainland) - - 0.16 0.57 0.27 -
Libreville [S] (mainland) - - 0.31 - - 0.69

First column indicates collection sites and location (island or mainland), and molecular form in square brackets [M or S]. Values are proportions of 
individuals from the original sample (lines) assigned to each locality (columns). Proportions of individuals correctly assigned are shown in bold;
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Altogether, these results agree with the notion of a biolog-
ical discontinuity within A. gambiae s.s., and that M and S
forms are likely to be the result of an on-going incipient
speciation process [6]. Evidence of limited gene flow
between molecular forms has been described in other
West African countries, with different genetic markers
[4,8,13,56,57]. However, several studies, some of which
based on microsatellites, suggest that the highest genetic
differentiation between M and S forms appears to be
restricted mainly to certain genomic regions, particularly
in the low-recombination centromeric regions of chromo-
some X and chromosome 2L [32,58-61]. This led the
authors to hypothesise that these regions contain genes
responsible for reproductive isolation. In this study, high
differentiation between M and S-forms was detected by
the analysis of microsatellites mapped in chromosome 3,
i.e. outside regions where putative isolation genes are
thought to occur, reinforcing the idea of high levels of
genetic isolation between molecular forms in this geo-
graphic region. Similarly, Wondji et al [16] also observed
high differentiation between sympatric M and S-forms in
Cameroon, with the analysis of microsatellites located
outside the centromeric regions of chromosomes 2L and
X. Whilst their results may appear conflicting with those
from Turner et al [59], given that both studies were based
on samples from Cameroon, this may not be case as dif-
ferent genetic markers (i.e. microsatellites and microarray
probes) were used. Microsatellites detect allele frequency
differences in highly polymorphic regions of the genome,
while hybridization approaches using microarrays will
detect differentiation in regions where polymorphism is
relatively low within each form relative to differences
between forms, such as the case of centromeric regions.
On the other hand, in a recent microsatellite-based study
carried out in Ghana, levels of population differentiation
in A. gambiae s.s.were more attributable to ecological
zones rather than to the M-S molecular form partitioning
[49]. These apparent differences may suggest that,
although it is clear that incipient speciation is on-going
within A. gambiae s.s., the degree of isolation between its
reproductive units is likely to vary throughout the species
eco-geographic distribution range.

Within the M-form, the low levels of differentiation
between the sample of Bioko and those from continental
Equatorial Guinea suggest that gene flow between this
island and the mainland is likely to occur. Reimer et al
[55] detected slightly higher levels of population differen-
tiation between Bioko island (Malabo) and sites from the
nearest continental country, Cameroon (FST: 0.038–
0.057). Being the capital of the country, connections with
continental Equatorial Guinea (Bata), by air or sea at a
daily frequency, may promote gene flow through human-
mediated transportation of mosquitoes. Several studies
provided evidence of human activities promoting gene

flow in mosquito populations between islands or
between islands and mainland [62]. Conversely, the high-
est levels of population differentiation were found in all
comparisons that involved the M-form sample of Anno-
bón island. This supports a higher degree of isolation of
this island and agrees with previous studies demonstrat-
ing the ocean and other extensive water-bodies as a phys-
ical barrier to gene flow in anopheline species
[18,19,24,63]. Similarly, microsatellite-based studies con-
ducted in the neighbouring STP islands also showed high
levels of differentiation with the continent (FST: 0.118–
0.250) [18] and subsequent sequencing analysis of rDNA
and mitochondrial DNA regions suggests only two main
colonization events of A. gambiae s.s. into these islands
[Marshal et al, unpublished].

Conclusion
In the present study, strong levels of population substruc-
ture were detected in A. gambiae s.s. from Equatorial
Guinea. Patterns of genetic differentiation are most likely
governed by the presence of both physical/geographic
(the ocean) and biological (the M-S form discontinuity)
barriers to gene flow. These findings have important prac-
tical implications for the management of vector control
strategies. The biological partitioning between M and S-
forms may influence the evolution of genes of interest
such as insecticide resistance genes. An unusual frequency
of knockdown resistance (kdr) mutations has been
detected in the M-form population of Bioko, contrasting
with the absence of these alleles in the S-form of this
island [55]. This implies that a detailed characterization of
the distribution of M and S forms at a local level and con-
tinuous monitoring of kdr mutations within each form
would be desirable for a rational management of insecti-
cides for malaria control. The closest proximity and lowest
differentiation with mainland coupled with the genetic
isolation found between sympatric M and S form popula-
tions in Bioko, could make this island inappropriate for
initial experimental releases of genetically modified mos-
quitoes, as only part of the vector population might be
affected. On the other hand, in Annobón the presence of
a single molecular form coupled with its higher geo-
graphic and genetic isolation, might render this island
comparatively more suitable for transgenic-based malaria
control.
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