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Abstract
Background: Indoor residual spraying and insecticide-treated nets (ITN) are essential
components of malaria vector control in Africa. Pyrethroids are the only recommended
compounds for nets treatment because they are fast-acting insecticides with low mammalian
toxicity. However, there is growing concern that pyrethroid resistance may threaten the
sustainability of ITN scaling-up programmes. Here, insecticide susceptibility was investigated in
Anopheles gambiae sensu lato from an area of large scale ITN distribution programme in south-
western Chad.

Methods: Susceptibility to 4% DDT, 0.05% deltamethrin, 0.75% permethrin, 0.1% bendiocarb and
5% malathion was assessed using the WHO standard procedures for adult mosquitoes. Tests were
carried out with two to four days-old, non-engorged female mosquitoes. The An. gambiae Kisumu
strain was used as a reference. Knockdown effect was recorded every 5 min and mortality scored
24 h after exposure. Mosquitoes were identified to species and molecular form by PCR-RFLP and
genotypes at the kdr locus were determined in surviving specimens by Hot Oligonucleotide Ligation
Assay (HOLA).

Results: During this survey, full susceptibility to malathion was recorded in all samples. Reduced
susceptibility to bendiocarb (mortality rate of 96.1%) was found in one sample out of nine assayed.
Increased tolerance to pyrethroids was detected in most samples (8/9) with mortality rates ranging
from 70.2 to 96.6% for deltamethrin and from 26.7 to 96.3% for permethrin. Pyrethroid tolerance
was not associated with a significant increase of knock-down times. Anopheles arabiensis was the
predominant species of the An. gambiae complex in the study area, representing 75 to 100% of the
samples. Screening for kdr mutations detected the L1014F mutation in 88.6% (N = 35) of surviving
An. gambiae sensu stricto S form mosquitoes. All surviving An. arabiensis (N = 49) and M form An.
gambiae s.s. (N = 1) carried the susceptible allele.
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Conclusion: This first investigation of malaria vector susceptibility to insecticides in Chad revealed
variable levels of resistance to pyrethroid insecticides (permethrin and deltamethrin) in most An.
gambiae s.l. populations. Resistance was associated with the L1014F kdr mutation in the S form of
An. gambiae s.s.. Alternative mechanisms, probably of metabolic origin are involved in An. arabiensis.
These results emphasize the crucial need for insecticide resistance monitoring and in-depth
investigation of resistance mechanisms in malaria vectors in Chad. The impact of reduced
susceptibility to pyrethroids on ITN efficacy should be further assessed.

Background
Vector control is a major component of the global strategy
for malaria control which aims to prevent parasite trans-
mission mainly through interventions targeting adult
anopheline vectors [1]. Ongoing strategies rely heavily on
the use of safe and effective insecticides through indoor
residual spraying (IRS) or insecticide-treated nets (ITNs).
Successful implementation of these strategies requires
sound knowledge of vectors distributions, biology and
susceptibility to available insecticide compounds. Cur-
rently, the National Malaria Control Programme (NMCP)
of Chad is promoting large scale use of ITNs as the main
vector control tool but little is known on the vectors
responsible for malaria transmission in the country. Back
to the 1960's, thirteen anopheline species were recorded
[2], with mosquitoes from the Anopheles gambiae complex,
including An. gambiae s.s. and Anopheles arabiensis being
the most abundant and widespread. However, these data
have never been updated and susceptibility to insecticides
used for net treatment has never been assessed in Chad.

In many African countries, An. gambiae s.l. is developing
resistance to all classes of insecticides used for mosquito
control. Among these, pyrethroids are the only option for
nets treatment due to their relative safety for humans at
low dosage, excito-repellent properties, rapid rate of
knock-down and killing effects [3]. The emergence and
rapid spread of pyrethroid resistance in An. gambiae com-
plex populations may be a threat for the sustainability of
malaria vector control activities across Africa. Compre-
hensive knowledge of the factors underlying resistance is
needed for the implementation of efficient vector control
programmes including resistance management strategies.
This raises the need for countrywide and regular surveys
for monitoring the insecticide susceptibility status of
major vectors, detecting resistance genes and assessing
their implications on vector control activities [4]. Anophe-
line mosquitoes exhibit two major mechanisms of pyre-
throids resistance: increased insecticide detoxification
(metabolic resistance) and target site insensitivity [5].
Metabolic resistance to pyrethroids is usually associated
with increased oxidases and esterases activity [6] while tar-
get site insensitivity results from point mutations in the
voltage-gated sodium channel gene [7,8]. The latter mech-
anism also termed kdr (knock-down resistance) induces

cross resistance to DDT. Two alternative kdr mutations
have been described in An. gambiae s.l. populations,
resulting in either a leucine-phenylalanine (L1014F), or a
leucine-serine (L1014S) mutation at amino acid position
1014 of the sodium channel [7,8]. The former is widely
distributed in the M and S forms of An. gambiae in West
Africa, and the latter, originally described from Kenya, has
been recently found in the S form of An. gambiae from
Central Africa (see [9] for a recent review).

Metabolic and target site resistance have been found alone
or occurring together in many countries bordering Chad
as Cameroon [10-12], Central African Republic [13],
Nigeria [14-16] and Sudan [17,18]. Pyrethroid insecti-
cides are commonly used in Chad for crop protection and,
more recently, for malaria vector control through large-
scale ITN distribution programmes (NMCP, unpublished
reports). In such a context, the emergence and spread of
pyrethroid resistance is extremely likely in Chad. The
present survey was hence designed to investigate the sus-
ceptibility of An. gambiae s.l. to the four classes of insecti-
cides used in public health. It was carried out in Western
Chad, in three health districts where ITNs distribution
programmes are being implemented.

Methods
Study area
The study was carried out in August and September 2006
in the health districts of Bongor, Guelendeng and Kélo
(Figure 1), where programmes for scaling up the use of
ITNs are being implemented through mass treatment of
nets available in the community and distribution of Long-
Lasting Insecticidal Nets (LLINs) to children under one
year of age and to pregnant women during immunization
campaigns. The health district of Bongor lies along river
Logone and is located in an area where rice cultivation is
the main agricultural activity. Insecticide application is
limited to individual use, often without respect of doses
and frequencies of treatments, the products being pur-
chased from small providers on the ground of informal
advices, availability of the product and price. Bongor
belongs to the sudanian climatic domain with annual
rainfall about 700 mm. Mosquitoes were sampled in Bon-
gor city (10.28°N; 15.37°E) and in the rural villages of
Goulmoun (10.39°N; 15.20°E) and Tchinfoko
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Map of Chad showing the three health districts and their major cityFigure 1
Map of Chad showing the three health districts and their major city. Pie chart give the relative proportion of mem-
bers of the Anopheles gambiae in each district.
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(10.22°N; 15.27°E). The health district of Kélo belongs to
the same bio-climatic domain and is situated in a cotton-
growing area with a long tradition of insecticide use under
supervision of the Government Agency for Agriculture
Development. The mean annual rainfall in Kélo is about
800 mm. Mosquitoes were sampled in Kolon (9.24°N;
15.59°E), Bologo (9.08°N; 15.48°E) and Kélo city
(9.19°N; 15.48°E). The health district of Guelendeng
belongs to a transitional sudano-sahelian climatic
domain with mean annual rainfall about 600 mm. The
pattern of agricultural use of insecticide is the same as in
Bongor but insecticides are only used for market garden-
ing. Mosquitoes were sampled in Mbéré (10.47°N;
15.46°E), Witi-Witi (10.57°N; 15.32°E) and Guelendeng
city (10.56°N; 15.32°E).

Mosquito sampling
Wild Anopheles gambiae s.l. mosquitoes were collected as
larvae from a range of breeding sites representative of the
diversity of productive anophelines development sites in
each locality, including puddles, foot and hoof prints on
pond margins, shallow wells, tire tracks and rice fields.
Larval collections were conducted in each of the nine
localities during the raining season 2006. To limit consan-
guinity within samples, no more than 30 larvae (any
instars) were collected per larval development site. All lar-
vae from each location were then pooled together and
reared locally until emergence. Emerging adults were pro-
vided with a 10% sugar solution. Adult mosquitoes were
sexed and identified morphologically [2] and only
females An. gambiae s.l. were used for insecticide suscepti-
bility tests.

Insecticide susceptibility tests
Insecticide susceptibility tests were performed using the
WHO standard procedures and test kits for adult mosqui-
toes [19]. Impregnated papers with recommended diag-
nostic concentrations of 4% DDT, 0.05% deltamethrin,
0.75% permethrin, 0.1% bendiocarb and 5% malathion
were purchased from the Vector Control Research Unit,
University Sains, Malaysia [19]. Tests were carried out
with two to four days-old, non engorged female mosqui-
toes. For each insecticide, 4 batches of 20 to 25 females
were exposed to impregnated papers for 1 h. Control tests
consisted of a group of 25 mosquitoes exposed to
untreated papers. The An. gambiae Kisumu strain (pro-
vided by OCEAC, Yaoundé) was used as the reference
strain and tested concomitantly. The number of knock-
down mosquitoes were recorded every five minutes dur-
ing the exposure period. Mosquitoes were then transferred
into holding tubes and supplied with a 10% sugar solu-
tion. Mortality was recorded 24 h after exposure. The tests
results were discarded if mortality in the control group
was over 20%. If it was between 5 and 20%, mortality
rates were corrected using Abbott's formula [20]. Dead

and alive mosquitoes were kept separately in 1.5 ml tubes
with silica gel and stored at -20°C for molecular analysis.

Molecular identification and detection of the kdr 
mutations
For each village, a random sample of 40 mosquitoes
drawn from the pool of unexposed mosquitoes (bioassays
controls) considered as representative of the population
being tested were identified using the PCR-RFLP tech-
nique described by Fanello et al [21] after DNA extraction
according to Collins et al [22]. All mosquitoes surviving
the bioassays were also identified in the same way and
their genotype at the kdr locus was determined using the
method of Lynd et al [23].

Data analysis
The resistance/susceptibility status of the tested popula-
tions was determined for each insecticide according to
WHO criteria. By the said criteria, a resistant population is
defined by mortality rates less than 80% after the 24 h
observation period while mortality rates greater than 98%
are indicative of susceptible populations. Mortality rates
between 80–98% suggest a possibility of resistance (sus-
pected resistance) that requires confirmation. Times for
50% and 95% knockdown (KDT50 and KDT95) of tested
mosquitoes were estimated using Win DL [24], a log-time
probit software based on Finney [25].

Results
Susceptibility to insecticides
A total of 43 susceptibility tests were performed using 4%
DDT, 0.05% deltamethrin, 0.75% permethrin, 0.1% ben-
diocarb and 5% malathion. Abott's formula was used to
correct mortality rates of the Kisumu strain and the Mbéré
sample to permethrin because mortalities in the control
group were respectively 8.7 and 8%. No correction was
required for the others populations, mortalities in control
groups being always less than 5%.

The reference strain showed 100% mortality at diagnostic
concentrations of deltamethrin, permethrin, bendiocarb
and malathion. With 4% DDT, the mortality rate was
79.2%. Consequently, batches of impregnated papers
with DDT were discarded from later use. All field collected
An. gambiae s.l. were fully susceptible to malathion. Like-
wise, all tested populations were susceptible to bendio-
carb, showing 100% mortality to this compound except in
Mbéré where the mortality rate was 96.1%. Complete sus-
ceptibility to pyrethroids was only recorded in Guelend-
eng where mortality rates to deltamethrin (Table 1) and
permethrin (Table 2) were respectively 98.9 and 100%.
All other populations showed reduced susceptibility to
both pyrethroids tested with mortality rates ranging from
70.2 to 96.6% for deltamethrin (Table 1) and from 26.7
to 96.3% for permethrin (Table 2). Resistance to deltam-
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ethrin was found in all villages in the Bongor district and
in one village of the Kélo district (Kolon). Permethrin
resistance was found in the three health districts, affecting
all villages in the Bongor district, two villages in the Kélo
district (Bologo, Kélo) and 1 village in the Guelendeng
district (Mbéré).

Pyrethroid resistance was not associated to a significant
increase of knock-down times: in most cases, all mosqui-
toes were knocked down before the end of the exposure
period, almost as quickly as the susceptible strain, even
within resistant populations (Tables 1 and 2). This is
examplified by the low values of KDT50 ratios and the
overlapping of both KDT50 and KDT95 confidence inter-
vals for the samples from several localities with those of

the susceptible strain. Compared to that of the reference
strain, a slight increase in KDT50 for deltamethrin was
observed in Bongor, Bologo and Kolon. This increase in
KDT50 was more noticeable with permethrin, affecting
more populations, but it was only in the district of Bongor
where the ratio was slightly over 2.0.

Mosquito species, molecular forms and the kdr mutation
Out of 360 An. gambiae s.l. from control (unexposed)
samples examined by PCR, 357 were successfully identi-
fied to species and molecular forms (Table 3). All speci-
mens from the health district of Bongor were An.
arabiensis. The samples from the health districts of Gue-
lendeng and Kélo comprised respectively 98.3 and 77.3%
of An. arabiensis. Only the M form of An. gambiae s.s. was

Table 1: Knockdown times (KDT) and mortality rates of An. gambiae s.l. populations exposed to 0.05% deltamethrin

District Village N Mortality
(%)

% KD after
1 h exposure

KDT50 in min
(95% CI)

KDT95 in min
(95% CI)

KDT50R*

Bongor Bongor 91 72.5(3) 93.4 27.5 (26.0–29.0) 72.5 (65.7–81.7) 1.70
Goulmoun 85 72.9(3) 100 17.1 (16.1–18.1) 34.4 (32.0–37.5) 1.05
Tchinfogo 94 70.2(3) 100 15.5 (14.7–16.3) 27.4 (25.6–29.7) 0.96

Guelendeng Guelendeng 91 98.9(1) 100 13.4 (12.5–14.3) 29.0 (26.8–31.8) 0.83
Mbéré 89 86.5(2) 100 11.2 (9.9–12.4) 20.4 (18.0–24.5) 0.69
Witi-Witi 89 96.6(2) 100 9.5 (8.7–10.2) 20.3 (18.5–22.7) 0.59

Kélo Kélo 100 88.0(2) 98.0 12.8 (11.8–13.7) 35.2 (32.3–38.9) 0.79
Bologo 87 85,1(2) 96.6 25.2 (24.0–26.4) 50.6 (47.3–54.8) 1.56
Kolon 99 74.8(3) 100 21.3 (20.4–22.2) 36.3 (34.3–38.7) 1.31

Kisumu Susceptible strain 82 100(1) 100 16.2 (14.6–17.7) 29.9 (26.7–34.9)

* KDT50R: KDT50 of the tested population divided by KDT50 of the Kisumu reference strain (1): susceptible; (2): resistance suspected; (3): resistant 
(WHO, 1998)

Table 2: Knockdown times (KDT) and mortality rates of An. gambiae s.l. populations exposed to 0.75% permethrin

District Village N Mortality
(%)

% KD after
1 h exposure

KDT50 in min
(95% CI)

KDT95 in min
(95% CI)

KDT50R*

Bongor Bongor 87 59.8(3) 87.4 35.1 (33.6–36.7) 74.1 (68.0–82.4) 2.17
Goulmoun 90 26.7(3) 98.9 34.2 (33.1–35.3) 55.9 (53.1–59.6) 2.11
Tchinfogo 94 48.9(3) 85.1 32.6 (30.7–34.4) 88.4 (78.2–103.6) 2.02

Guelendeng Guelendeng 92 100(1) 100 14.6 (13.6–15.5) 27.3 (25.4–29.9) 0.9
Mbéré 92 67.9(3) ** 98.9 16.9 (15.6–18.1) 38.2 (35.2–42.1) 1.04
Witi-Witi 82 96.3(2) 100 18.3 (17.4–19.2) 31.1 (29.2–33.6) 1.13

Kélo Kélo Urbain 97 76.3(3) 90.7 22.4 (20.2–24.5) 57.0 (49.9–67.8) 1.38
Bologo 73 64.4(3) 94.5 24.8 (23.4–26.2) 54.8 (50.4–60.5) 1.54
Kolon 88 89.8(2) 100 19.5 (18.5–20.5) 37.2 (34.8–40.2) 1.21

Kisumu Susceptible strain 100 100(1) ** 100 16.2 (15.2–17.1) 29.2 (27.3–31.7)

* KDT50R: KDT50 of the tested population divided by KDT50 of the Kisumu reference strain (1): susceptible; (2): resistance suspected; (3): resistant 
(WHO, 1998)
** Corrected with Abott's formula
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found in Guelendeng (N = 2), while collections from Kélo
revealed a mixture of the two molecular forms. PCR exam-
ination of surviving mosquitoes revealed that all speci-
mens from Guelendeng (N = 43) and Bongor (N = 225)
were An. arabiensis. In Kélo, both species of the An. gam-
biae complex were found within survivor mosquitoes.
Overall, among the 36 An. gambiae s.s. specimens that sur-
vived insecticide exposure, one was of the M molecular
form and the others belonged to the S form. Molecular
assays detected the L1014F kdr mutation in 31 out of these
35 S form mosquitoes, with kdr frequency (in survivors)
ranging from 60 to 90.5%, depending on the village con-
sidered (Table 4). The L1014S kdr mutation was not
detected in any specimen. All surviving An. arabiensis and
the M form specimen carried the susceptible allele.

Discussion
This study revealed the existence of permethrin and del-
tamethrin resistance in several An. gambiae s.l. popula-
tions from south-western Chad. Full susceptibility to
malathion and bendiocarb was recorded in all samples

tested, except in Mbéré, a village of the health district of
Guelendeng where some level of tolerance to bendiocarb
was observed. Full susceptibility to all insecticides tested
was only observed with the sample from the urban area of
Guelendeng. These various levels of insecticide suscepti-
bility may reflect differential insecticide selection pressure
exerted on field mosquito populations. The health district
of Kélo is situated in a cotton growing area with intensive
use of pyrethroid and organophosphorous compounds.
The situation is quite different in Guelendeng and Bongor
since chemical crop protection is not common in these
areas. In fact, cotton cultivation in these two districts have
ceased since the civil unrest in 1979. Before this date,
organochlorines including DDT and dieldrin were regu-
larly sprayed in the cotton fields. These regions experi-
enced also chemical treatment against locust in the
seventies [26]. Dieldrin, DDT, HCH and pyrethroids have
also been used in the irrigated rice fields in Bongor but
due to a lack of archives, appropriate information regard-
ing doses and frequencies of treatment is not available.
Some of these insecticides may have persisted in the envi-

Table 3: Composition of the Anopheles gambiae complex among pools of unexposed mosquitoes.

District Village Number tested Species* Molecular forms (%)

An. arabiensis
N (%)

An. gambiae
N (%)

M
N (%)

S
N (%)

Bongor Bongor 40 40 (100) 0 - -
Goulmoun 40 40 (100) 0 - -
Tchinfogo 40 39 (100) 0 - -

Guelendeng Guelendeng 40 39 (97.5) 1 (2.5) 1 (100) 0
Mbéré 40 39 (97.5) 1 (2.5) 1 (100) 0
Witi-Witi 40 39 (100) 0 (0.0) 0 0

Kélo Kélo 40 30 (75.0) 10 (25.0) 7 (70.0) 3 (30.0)
Bologo 40 31 (79.5) 8 (20.5) 2 (25.0) 6 (75.0)
Kolon 40 31 (77.5) 9 (22.5) 4 (44.4) 5 (55.6)

* 3 specimens could not be identified (one each in Tchinfogo, Witi-Witi and Bologo).

Table 4: Distribution of the L1014F mutation in mosquitoes surviving pyrethroid insecticide exposure in Kélo district.

kdr 
genotype

a

Kélo Bologo Kolon Total

An. 
gambiae S
(n = 21)

An. 
arabiensis
(n = 9)

An. 
gambiae S

(n = 9)

An. 
arabiensis
(n = 24)

An. 
gambiae M

(n = 1)

An. 
gambiae S

(n = 5)

An. 
arabiensis
(n = 16)

An. 
gambiae M

(n = 1)

An. 
gambiae S
(n = 35)

An. 
arabiensis
(n = 49)

SS 1 9 1 24 1 2 16 1 4 49
SR 2 0 1 0 0 0 0 0 3 0
RR 18 0 7 0 0 3 0 0 28 0

f(Kdr)b 90.5 0.0 83.3 0.0 0.0 60.0 0.0 0.0 84.3 0.0

a SS: Homozygote for the 1014L susceptible (wild type) allele; RR: Homozygote for the L1014F resistant allele; RS: Heterozygote (1014L/L1014F).
b Frequency of the L1014F mutation in mosquitoes that survived after 1 hour of exposure to pyrethroid insecticides.
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ronment, leading to subsequent selection of various resist-
ance mechanisms in vector populations. In many African
countries, resistance to pyrethroids has been attributed to
extensive use of these compounds in agriculture [27,28],
resistance levels being more important in cotton cultiva-
tion areas than in others agricultural schemes [12,29,30].
This is consistent with pyrethroid resistance being
detected in the cotton growing area of Kélo. However,
increased tolerance to pyrethroids in Bongor and, to a
lesser extent in Guelendeng suggests additional selection
pressure. Insecticide use for vector control interventions
and/or personal protection against nuisances has been
suggested as an additional putative source of selective
pressure for pyrethroid resistance in malaria vectors, espe-
cially in urban cities and irrigated areas [30-32]. Indeed, in
Bongor and adjacent areas, in addition to the recently
introduced ITNs, coils and bomb sprays are frequently
used for personal protection [33]. Further studies involv-
ing social scientists, chemical ecologists and environmen-
tal biologists would be needed to document the amount,
frequency and diversity of insecticides used in these areas
in order to explore in greater details the putative selective
pressures leading to the selection of insecticide resistance
in malaria vectors.

Anopheles arabiensis was found to be the predominant spe-
cies of the An. gambiae complex in the study area. It con-
stituted nearly 100% of the samples in Guelendeng and
Bongor where the mean annual rainfall is the lowest.
Anopheles gambiae s.s. was more abundant southwards in
Kélo, where its two molecular forms were found to occur
together with An. arabiensis, the latter still being predomi-
nant whatever the village. The species distribution within
the An. gambiae complex is consistent with literature data
for whole sub-Saharan Africa [34,35].

One of the main findings of the present study is the first
report of the L1014F kdr mutation in wild An. gambiae
populations from Chad. The resistant allele was found
only in the S molecular form of An. gambiae s.s. in all vil-
lages sampled in the health district of Kélo. This finding is
of paramount importance given recent evidences that kdr-
based resistance mechanisms can jeopardize the efficacy
of ITNs and IRS [36,37]. However, the strength of the cor-
relation between the genotype at the kdr locus and the
expression of insecticide resistance has been shown to
vary in different genetic backgrounds an under different
ecological settings [38,39]. Integrated investigations,
using a more complete range of methodologies which
allow detection of target sites mutations along with explo-
ration of metabolic detoxification should be imple-
mented in order to provide a more comprehensive
overview of the genetic bases and mechanisms responsi-
ble for the resistance phenotype detected in these mos-
quito populations. Currently, the development of more

sensitive tools is underway, greatly facilitated by recent
advances in genomics. Some of these tools have been suc-
cessfully tested, leading to more comprehensive knowl-
edge of the molecular mechanisms of metabolic resistance
[40,41]. Nevertheless, this new report of the L1014F
mutation in An. gambiae from Chad further witnesses the
ongoing spread of kdr mutations in Africa [9].

Absence of the kdr mutations in all surviving An. arabiensis
suggests alternative resistance mechanisms, probably of
metabolic origin are at play. This finding is not surprising
because although both kdr mutations have been docu-
mented to occur in An. arabiensis, they are usually very
scarce and are found floating at much lower frequencies
than in its sibling, An. gambiae [12,17,32,42,43].
Increased monooxygenase activities were reported to be
associated with pyrethroid resistance in major malaria
vectors including An. arabiensis in East and Central Africa
[6,11,44]. More recently, some general mechanisms
occurring through a set of constitutively over-expressed
genes with ability to control oxidative stress and other
broad metabolic disorders was suggested to act as a gen-
eral defence mechanism against deltamethrin in An. arabi-
ensis populations from a neighbouring area of cotton
cultivation in North Cameroon [12,41]. Similar mecha-
nisms might occur in the An. arabiensis populations sam-
pled in this study and further research into the
mechanism(s) responsible for the high levels of resistance
to pyrethroids occurring in western Chad are ongoing.

Conclusion
This is the first investigation of malaria vectors susceptibil-
ity to insecticides in Chad. Variable levels of resistance to
pyrethroids were found in most An. gambiae s.l. popula-
tions and the L1014F kdr mutation was detected in An.
gambiae s.s. of the S molecular form. This finding provides
additional evidence of the rapid spread of kdr mutations
in An. gambiae throughout Africa. The mechanisms con-
ferring pyrethroid tolerance in the sibling species, An. ara-
biensis need to be investigated. Pyrethroid resistance may
seriously jeopardize the efficacy of IRS and ITNs on which
most African countries, including Chad, rely to reduce
malaria transmission. Careful monitoring of insecticide
susceptibility and early reports of resistance in local
malaria vectors are of considerable value for National
Malaria Control Programmes, in order to properly devise
and implement efficient and sustainable vector control
strategies. Comprehensive implementation of vector con-
trol operations taking into account resistance manage-
ment strategies is indeed required given the very few
insecticidal compounds that are actually available for
public health.
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