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Abstract
Background: Anopheles nili is a widespread efficient vector of human malaria parasites in the humid savannas and 
forested areas of sub-Saharan Africa. Understanding An. nili population structure and gene flow patterns could be 
useful for the development of locally-adapted vector control measures.

Methods: Polymorphism at eleven recently developed microsatelitte markers, and sequence variation in four genes 
within the 28s rDNA subunit (ITS2 and D3) and mtDNA (COII and ND4) were assessed to explore the level of genetic 
variability and differentiation among nine populations of An. nili from Senegal, Ivory Coast, Burkina Faso, Nigeria, 
Cameroon and the Democratic Republic of Congo (DRC).

Results: All microsatellite loci successfully amplified in all populations, showing high and very similar levels of genetic 
diversity in populations from West Africa and Cameroon (mean Rs = 8.10-8.88, mean He = 0.805-0.849) and much lower 
diversity in the Kenge population from DRC (mean Rs = 5.43, mean He = 0.594). Bayesian clustering analysis of 
microsatellite allelic frequencies revealed two main genetic clusters in the dataset. The first one included only the 
Kenge population and the second grouped together all other populations. High Fst estimates based on microsatellites 
(Fst > 0.118, P < 0.001) were observed in all comparisons between Kenge and all other populations. By contrast, low Fst 
estimates (Fst < 0.022, P < 0.05) were observed between populations within the second cluster. The correlation 
between genetic and geographic distances was weak and possibly obscured by demographic instability. Sequence 
variation in mtDNA genes matched these results, whereas low polymorphism in rDNA genes prevented detection of 
any population substructure at this geographical scale.

Conclusion: Overall, high genetic homogeneity of the An. nili gene pool was found across its distribution range in 
West and Central Africa, although demographic events probably resulted in a higher level of genetic isolation in the 
marginal population of Kenge (DRC). The role of the equatorial forest block as a barrier to gene flow and the 
implication of such findings for vector control are discussed.

Background
The recent shift in strategic emphasis from malaria con-
trol to elimination and eradication has highlighted major
gaps in knowledge that need to be addressed before such
achievement is contemplated [1-3]. Vector control is a
cornerstone of malaria prevention strategies and it has
been widely acknowledged that renewed efforts in this
field should be considered a central aspect of the new
malaria eradication strategy [4-6]. Basic knowledge in

mosquito vectors biology, ecology and genetics is cru-
cially needed for the development of innovative, inte-
grated and biologically lucid vector management
strategies. This is especially true in the malaria heartlands
of sub-Saharan Africa, where a number of mosquito spe-
cies efficiently transmit malaria to humans simultane-
ously, or replace each other seasonally sustaining year-
round transmission [7-9]. Any strategy aiming at reduc-
ing transmission down to the level where elimination is
within reach will need to transcend the relevant biodiver-
sity of the malaria vector system. However to date, most
studies in Africa focused on Anopheles gambiae s.l. and,
to a lesser extent, Anopheles funestus whereas research on
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other important vectors has critically lagged behind.
Here, the first results of a large-scale population genetics
analysis of the level and distribution of (neutral) genetic
diversity in the mosquito Anopheles nili are presented.

Anopheles nili is a widespread efficient vector of Plas-
modium parasites in the humid savannas and forested
areas of sub-Saharan Africa [9-14]. It is the nominal taxon
of a group of closely related species including An. nili
sensu stricto, Anopheles somalicus, Anopheles carnevalei
and Anopheles ovengensis [7,15]. The members of this
group can be distinguished through slight morphologic
diagnostic characters observable at the larval and/or
adult stages [15,16] and a molecular diagnostic tool based
on segregating sequence differences in the Internal Tran-
scribed Spacer 2 (ITS2) of the ribosomal DNA (rDNA)
[17]. Of these four species, An. nili s.s. (hereafter An. nili)
is the most important malaria vector although An. car-
nevalei and An. ovengensis have been found infected with
Plasmodium falciparum in natural conditions [9,15,18].
Anopheles somalicus is mainly zoophilic and is not
involved in human malaria transmission [19,20]. Infec-
tion rates reaching 3% have been observed in An. nili and
the species was shown to sustain entomological inocula-
tion rates over 200 infected bites per man per year in vil-
lages close to fast running streams and rivers where its
larvae develop [9-11,18]. Recent investigations of the eco-
logical requirements of An. nili in Cameroon, a country
in Central Africa at the core of the species range, showed
that lotic rivers exposed to sunlight, with vegetation or
debris were the best predictors of An. nili larval abun-
dance [21] and that habitats characterized by high water
vapor pressure and rainfall, as typically observed in for-
est-savanna transition areas were of highest quality for
the development of the species [14]. Anopheles nili how-
ever is scarce in deep forest environments, where it is
replaced by other members of the group, namely An. car-
nevalei and An. ovengensis [18,21]. The strong reliance of
An. nili on permanent aquatic habitats for larval develop-
ment suggests a patchy geographic distribution through-
out the species' range, owing to the discontinuous nature
of the hydrographic networks. This may lead to signifi-
cant population genetic structure and behavioural differ-
entiation. However, to date, very few studies have
addressed the level and extent of genetic structuring
within and between An. nili populations in sub-Saharan
Africa. Sequence variation in two nuclear loci within the
rDNA cluster (e.g., ITS2 and D3 domain in the 28S rDNA
subunit, [17]) and isoenzymes [22] did not reveal any sig-
nature of genetic heterogeneity among An. nili popula-
tions collected throughout south Cameroon. However,
the low polymorphism of the genetic markers used and
the limited geographical scales covered by these studies
precludes extrapolation of these findings outside of the
study area and calls for further investigations.

Here, genetic polymorphism in An. nili was investi-
gated and compared among collections from nine loca-
tions from throughout its distribution range in West and
Central Africa using 11 recently described nuclear micro-
satellite DNA markers [23] and sequence variation in two
nuclear (rDNA) and two mitochondrial (mtDNA) genes.
It is shown that recently developed microsatellite markers
are suitable tools to explore the population genetic struc-
ture of wild An. nili in Africa. All molecular markers sug-
gested that An. nili populations from West Africa are
genetically homogeneous with very low levels of genetic
differentiation between them, whereas the rainforest
domain in Central Africa might act as a geographical bar-
rier to gene flow. Implications of these findings for vector
control are discussed and areas for future research are
highlighted.

Methods
Mosquito sampling and field processing of specimens
Mosquitoes were collected between June 2006 and March
2008 in nine localities across six countries from West and
Central Africa (Figure 1), including Kedougou (12°38'N,
12°14'W) in Senegal, Soumousso (11°01'N, 4°03'W) in
Burkina Faso, Gansé (8°37'N, 3°54'W) in Ivory Coast,
Akaka (6°58'N, 3°44'E) in Nigeria, Simbock (3°49'N,
11°28'E), Mbébé (4°10'N, 11°04'E), Magba (5°57'N,
11°13'E) and Tibati (6°28'N, 12°36'E) in Cameroon and
Kenge (5°19'S, 19°58'E) in the Democratic Republic of
Congo (DRC). All these sites are located along different
river systems in humid savanna areas except Simbock and
Mbébé situated in the degraded forest area of southern
Cameroon. The closest localities were Simbock and
Mbébé situated 60 km apart, and the most distant ones
were Kedougou and Kenge situated c.a. 3,000 km apart
(Figure 1).

Anopheline female mosquitoes were collected by
human landing catches and/or indoor pyrethrum spray
catches. In the field, An. nili s.l. specimens were visually
sorted from other anophelines according to morphologi-
cal identification keys [19,24]. All specimens were stored
individually in tubes containing a desiccant. All tubes
were kept at -20°C until further analysis.

DNA extraction and molecular identification
Genomic DNA was extracted from whole mosquito using
a standard protocol described earlier [25]. Since distinc-
tion between members of the An. nili group is often diffi-
cult in the field because of very slight and stage-specific
diagnostic differences between species, the molecular
diagnostic PCR-based assay [17] was then performed to
confirm morphological identification. Only An. nili mos-
quitoes were included in the analysis.
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Microsatellite genotyping and analysis
Anopheles nili mosquitoes were genotyped at eleven mic-
rosatellite loci (Table 1) [23]. All microsatellite loci are
dinucleotide repeats. One primer of each pair was labeled
with a 5' fluorescent dye (NED, PET, VIC or 6-FAM) to
allow multiplex electrophoresis. PCR amplifications were
carried out in 15 μL reaction volume from approximately
2 μL of template DNA (1/50 of the crude extract). The
reaction mixture contained 1× PCR buffer (5 Prime Inc.,
Gaithersburg, USA), 1 mM MgCl2, 0.2 mM of each dNTP,
8 pmoles of each primer and 0.15 unit of Taq DNA Poly-
merase (5 Prime Inc.). Amplification runs were per-
formed under the following conditions: an initial
denaturation step at 94°C for 4 min followed by 35 cycles
of 30 s at 94°C, 30 s at the appropriate annealing tempera-
ture (52°C to 56°C, see [23]) and 30 s at 68°C, followed by
a final elongation step of 20 min at 68°C. PCR products
were pooled with other compatible products according to
allele size range and fluorescent dye. Mixtures were run
on an ABI 3130XL DNA sequencer (Applied Biosystems,
Foster City, USA) using 500 Liz internal size standard.
Fragments (allele) sizes and genotypes were scored using
GENEMAPPER V4.0 software (Applied Biosystems).

Genetic diversity by locus, within each geographical
population and overall was assessed by estimates of allelic
richness [26] and allelic frequencies using FSTAT V2.9.3
[27]. Allelic richness was used instead of the number of
alleles per locus to account for differences in sample
sizes. Estimates of expected heterozygosity under Hardy-
Weinberg equilibrium [28] were obtained using
GENETIX V4.02 [29].

Goodness-of-fit to Hardy-Weinberg equilibrium
(HWE) for each locus and linkage disequilibrium
between all pairs of loci were assessed using FSTAT, for
each geographical population and overall. Whether devi-
ations from HWE resulted from a deficit or an excess of
heterozygotes was tested using F-statistics [30]. Signifi-
cance tests were conducted using a randomization
approach as implemented in FSTAT. The frequency of
null alleles at each locus within each population was
determined using GENEPOP V4.0 [31,32], and the allele
and genotype frequencies were then adjusted accordingly
in MICROCHECKER V2.2.3 [33]. The null allele adjusted
dataset was compared to the original dataset to explore
the effect of null alleles on estimations of genetic differen-
tiation.

Figure 1 Map of West and Central Africa showing collection sites.
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Table 1: Genetic variability at 11 microsatellite loci in nine An. nili populations from sub-Saharan Africa

Senegal B. Faso Ivory C. Nigeria Cameroon DRC All

Locus Kedougou Soumousso Gansé Akaka Tibati Magba Mbebe Simbock Kenge samples

(44) (40) (41) (14) (41) (42) (36) (42) (41) (341)

1D80

Rs 10.52 10.14 10.39 12.43 10.87 10.63 7.62 8.07 6.23 9.99

He 0.918 0.908 0.911 0.952 0.920 0.910 0.831 0.815 0.754 0.880

Fis 0.071 -0.014 0.043 0.048 0.214**
*

0.123* -0.102 -0.007 0.072 0.077***

1A27

Rs 12.80 12.42 13.17 13.41 12.70 10.93 11.47 11.36 6.98 12.39

He 0.946 0.943 0.953 0.953 0.949 0.926 0.930 0.930 0.831 0.929

Fis 0.281*** 0.245*** 0.229*** 0.04 0.032 0.144** 0.049 0.182*** 0.416**
*

0.204***

2Ateta

Rs 9.10 9.71 9.03 9.62 9.33 8.49 9.29 8.77 4.55 9.00

He 0.895 0.901 0.876 0.879 0.875 0.866 0.896 0.879 0.395 0.829

Fis -0.031 0.017 -0.028 -0.146 0.053 0.043 0.165* 0.03 -0.012 0.083***

A14

Rs 5.87 6.63 6.60 4.31 6.34 6.92 5.38 5.47 1.61 5.84

He 0.695 0.745 0.737 0.499 0.732 0.772 0.655 0.675 0.077 0.621

Fis 0.318*** 0.295*** 0.036 -0.247 0.101 -0.052 -0.051 -0.017 -0.028 0.121***

A154

Rs 8.46 8.92 9.25 8.17 9.88 8.79 9.10 7.48 8.41 9.68

He 0.796 0.830 0.837 0.841 0.854 0.788 0.778 0.736 0.800 0.807

Fis 0.406*** 0.274*** 0.194*** 0.243*** 0.252**
*

0.08 0.194*** 0.016 -0.126* 0.203***

2C157

Rs 5.55 4.83 4.82 5.99 4.70 5.32 5.47 5.73 2.25 5.04

He 0.728 0.707 0.657 0.651 0.713 0.743 0.702 0.778 0.505 0.687

Fis 0.074 0.058 -0.067 -0.102 -0.017 0.044 0.079 -0.049 0.211 0.046

F56

Rs 9.89 9.33 10.56 10.06 10.06 9.61 10.02 7.80 4.56 9.36

He 0.904 0.890 0.918 0.900 0.903 0.898 0.903 0.847 0.561 0.858

Fis 0.07 0.059 0.08 -0.117 0.179**
*

0.054 0.116* 0.050 0.409**
*

0.131***

B115

Rs 8.29 8.03 7.32 6.99 6.92 7.63 6.92 7.98 3.49 7.23

He 0.857 0.852 0.843 0.723 0.831 0.854 0.824 0.859 0.395 0.782

Fis 0.084 0.091 0.006 -0.179 -0.057 -0.021 0.227 -0.052 0.074 0.089***

F41

Rs 12.53 12.96 12.83 12.41 12.49 12.42 12.54 12.62 8.47 12.62

He 0.945 0.947 0.947 0.942 0.944 0.943 0.943 0.944 0.755 0.923

Fis 0.028 -0.001 0.038 -0.064 0.023 -0.033 -0.061 -0.005 0.007 0.022
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To investigate biased genetic differentiation caused by
demographic instability such as bottlenecks and/or popu-
lation expansion, heterozygosity tests were implemented
to test for Mutation-Drift Equilibrium (MDE) using
BOTTLENECK V1.0.02 [34]. BOTTLENECK compares
two estimates of expected heterozygosity, one based on
allele frequencies (He) and the other based on the num-
ber of alleles and sample size (Heq). In a population at
MDE, both estimates should not differ significantly (He ≈
Heq). If a population experiences a bottleneck, rare alleles
will be lost by genetic drift, and Heq will decrease faster
than He (He > Heq). The resulting apparent excess of
heterozygotes is an indicator of recent bottleneck event,
whereas the opposite (He <Heq) may signal an expansion
process. Estimates of Heq were computed using two
mutation models for microsatellites evolution: the Two-
Phased Mutation model (TPM) [35] with fractions of
multistep mutations set to 30%, 20% and 10%, and the
Stepwise Mutation Model (SMM) [36]. Wilcoxon signed-
rank tests were used to determine whether deviations
from MDE were statistically significant.

Population genetic differentiation was measured by the
fixation index Fst [30,37] and statistical significance was
assessed by the exact test of genotypic differentiation
available in FSTAT. Isolation by distance was investigated
as a potential cause of genetic structuring using the Man-
tel test implemented in GENEPOP. The correlation
between pairwise genetic differentiation and geographi-
cal distance was assessed by the regression of Fst/1-Fst on
the logarithm of geographical distances between sam-
pling sites [38]. The Bonferroni correction was used
throughout to account for multiple testing [39].

Finally, a Bayesian clustering analysis was carried out
using STRUCTURE V2.1 to cluster individuals into K
groups while minimizing Hardy-Weinberg disequilib-
rium and gametic phase disequilibrium between loci
within groups, with no a priori assumptions [40,41]. The
software was run with the option of admixture, allowing
for some mixed ancestry within individuals, and α was
allowed to vary. Ten independent runs were done for each
value of K (1 to 5), with a burn-in period of 100,000 itera-
tions and 100,000 replications. The method implemented
by Evanno et al [42] was used to estimate the most likely
number of clusters in the dataset.

DNA sequencing and analysis
Sequence variation was examined in the second Internal
Transcribed Spacer (ITS2) and Domain-3 (D3) of nuclear
28S rDNA, and in the Cytochrome oxidase subunit II
(COII) and the NADH deshydrogenase subunit IV (ND4)
genes on mitochondrial DNA (mtDNA). Ten specimens
per sites, among those used for microsatellite analysis,
were randomly selected for sequencing. The ITS2, D3,
COII and ND4 regions were amplified in 25 μL reaction
mixtures containing 2.5 μL of 10× reaction buffer (QIA-
GEN, Courtaboeuf, France), 200 μM of each dNTP
(Eurogentec, Angers, France), 0.5 unit of Taq DNA poly-
merase, and 10 pmol each of the forward and reverse
primers. ITS2 and D3 rDNA regions were amplified using
the primers sets ITS2a/ITS2b and D3a/D3b described in
Kengne et al [17]. COII and ND4 were amplified using
the following primers:

COIIF: 5'-TCTAATATGGGAGATTAGTGC-3' (For-
ward)

1F43

Rs 6.25 7.16 7.12 4.00 7.06 6.37 7.27 7.52 8.50 7.35

He 0.768 0.793 0.787 0.768 0.836 0.821 0.832 0.846 0.874 0.814

Fis 0.023 0.209* -0.052 -0.182 0.080 0.064 0.176*** 0.115* -0.008 0.081***

1G13

Rs 6.75 7.54 6.18 6.33 6.82 6.36 6.06 6.27 4.68 6.45

He 0.796 0.827 0.773 0.743 0.790 0.784 0.753 0.780 0.657 0.767

Fis 0.125 0.142* -0.057 -0.128 -0.068 -0.186 -0.063 0.031 -0.014 -0.008

All loci

Rs 8.73 8.88 8.84 8.52 8.83 8.50 8.28 8.10 5.43 8.63

He 0.840 0.849 0.840 0.805 0.850 0.845 0.822 0.826 0.594 0.808

Fis 0.128*** 0.122*** 0.044 -0.063* 0.075**
*

0.026 0.068*** 0.029 0.098**
*

0.097***

Rs: Allele richness; He: Nei's unbiased estimate of expected heterozygosity [28]. All loci/All samples: mean values across loci/populations; *P < 0.05, 
**P < 0.01 and ***P < 0.001 (single test level); In bold: significant (P < 0.05) heterozygote deficits according to exact tests against Hardy-Weinberg 
proportions after correction for multiple testing by the sequential Bonferroni procedure [39]; Fis was calculated according to [30]; In parenthesis: 
sample size. B. Faso: Burkina Faso, Ivory C.: Ivory Coast, DRC: Democratic Republic of Congo.

Table 1: Genetic variability at 11 microsatellite loci in nine An. nili populations from sub-Saharan Africa (Continued)
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COIIR: 5'-ACTTGCTTTCAGTCATCTAATG-3'
(Reverse)

ND4F: 5'-TGATTGCCTAAGGCTCATGT-3' (For-
ward)

ND4R: 5'-TTCGGCTTCCTAGTCGTTCAT-3'
(Reverse)

The PCR conditions included an initial denaturation
step at 94°C for 3 min, followed by 35 cycles at 94°C for 30
s, 55°C for 30 s, and 72°C for 45 s, with a final extension
step at 72°C for 10 min. After DNA analysis by electro-
phoresis, PCR products were purified and used for
sequencing in both directions with the previous primers,
on an ABI 3130XL DNA sequencer (Applied Biosystems).
Sequences were inspected and corrected, where neces-
sary, using SEQSCAPE software (Applied Biosystems).
Multiple sequence alignments for each gene were per-
formed using MEGA V3.0 [43] and CLUSTALX [44].
Summary DNA sequence polymorphism statistics and
measures of divergence were computed using DnaSP
V4.10.9. [45]. Statistical tests of Tajima [46], Fu and Li
[47] and Fu [48] also implemented in DnaSP were used to
test for non neutral evolution and deviation from MDE.
Phylogenetic relationships between An. nili haplotypes
were inferred in NETWORK V4.5.1.0 software to create
an unrooted haplotype network, using star contraction
[49].

Results
Microsatellite analysis
Genetic diversity
Genotypes at 11 microsatellites loci were analysed in a
total of 341 An. nili specimens originated from nine local-
ities in six countries across West and Central Africa (Fig-
ure 1, Table 1). Individual genotypes are available upon
request to the corresponding author. All loci amplified
successfully and were highly polymorphic in all popula-
tions. Mean allelic richness (Rs) across populations
ranged from 5.04 at locus 2C157 to 12.62 at locus F41,
and average expected heterozygosity (He) across all sam-
ples ranged from 0.621 at locus A14 to 0.929 at locus
1A27 (Table 1). Populations from West Africa and Cam-
eroon displayed very similar mean allelic richness (Rs =
8.10-8.88) and mean expected heterozygosity (He =
0.805-0.849) (ANOVA: P > 0.05). Both estimates were sig-
nificantly lower (ANOVA: P < 0.05) in the Kenge popula-
tion from DRC (Rs = 5.43, He = 0.594) (Table 1).

Departure from HWE (P < 0.05 after correction for
multiple testing) were detected in 8 of 11 (72.72%) loci
when all samples were pooled and considered as a single
gene pool. All significant deviations were associated with
a deficit in heterozygotes (positive values of Fis), suggest-
ing population substructure (Table 1). When samples
were split into geographical populations, 11 tests of 99
(11%) remained significant after the sequential Bonfer-

roni procedure was applied. Three loci 1A27, A154 and
A14 were particularly involved in nine of these devia-
tions. No deviation was detected in three of the four sam-
ples from Cameroon (Magba, Mbebe and Simbock). The
populations from Burkina Faso and Senegal with three
deviations each had the highest number of loci out of
HWE. All these deviations were attributed to the pres-
ence of null alleles, with frequency of unobserved alleles
ranging from 0.088 to 0.184 in loci with significant
heterozygote deficiency (see Additional file 1). However,
null alleles did not significantly bias our interpretation, as
re-analysis of adjusted datasets returned similar results.

Linkage disequilibrium (LD) tests were performed
between all pairs of loci in all populations. Out of 495
comparisons, 7 (1.41%) were found significant at the sin-
gle test level (P < 0.05): one in Gansé (1F43 × 1G13) and
Kenge (A154 × F56), two in Simbock (1A27 × F41 and
F56 × 1G13) and three in Tibati (2 Ateta × F56, A154 ×
B115 and 2C157 × 1G13). None of these tests remained
significant after the sequential Bonferroni procedure was
applied. These results suggest that loci segregate inde-
pendently and confirm that null alleles are the most likely
cause of the heterozygote deficiencies observed. Accord-
ingly, all loci were included in the analysis and each geo-
graphical population was considered as a panmictic unit.

Heterozygosity tests were performed to explore demo-
graphic stability in An. nili populations and compliance
to MDE. No signature of a recent bottleneck event was
detected in any population. However, significant devia-
tions (P < 0.01) from MDE which may suggest population
expansion (He < Heq) were found in all populations
under the SMM. In Kenge, deviations associated with
strong heterozygote deficiencies were detected under all
mutation models (Table 2).
Population genetic structure and isolation by distance
A Bayesian clustering analysis performed with the soft-
ware STRUCTURE revealed that the most likely number
of genetic clusters in the dataset is 2. The first cluster
included the sample from Kenge (DRC) and the second
cluster grouped together all other samples (Figure 2).
Clustering analysis was repeated without the Kenge pop-
ulation to examine whether any further sub-structuring
was present within the second cluster and did not detect
any additional sub-structuring.

All populations displayed similar allele profiles, with a
lack of rare alleles in the An. nili population from Kenge,
which appeared highly differentiated from the rest (Table
3). High Fst estimates (Fst = 0.119-0.153, P < 0.001) were
observed between this population and all the other ones.
In contrast, low genetic differentiation (at least one order
of magnitude lower) was detected among the remaining
populations (i.e., within cluster 2 identified above). To
verify whether genetic differentiation between Kenge and
the rest was specific to particular loci, jackknifed Fst esti-
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mates were calculated after excluding one locus at a time.
This analysis provided consistent results reflecting
homogeneity of Fst estimates across the set of loci (Table
4).

Because geographical isolation is often the main force
driving population differentiation, the level of genetic dif-
ferentiation which could be attributable to the geographi-
cal distance between collection sites was assessed using
Mantel tests. A positive and significant correlation was
found between Fst/(1-Fst) and logarithm of geographic
distance (Mantel test: P < 0.05) when all samples were
included in the analysis (Figure 3), suggesting that geo-

graphic distance between sites is responsible for part of
the differentiation observed. Nevertheless, the correla-
tion was not significant (Mantel test, P > 0.05) when
Kenge was excluded from the analysis.

Sequence analysis
rDNA polymorphism
In total, 76 sequences were generated for ITS2 and D3
each. These sequences perfectly matched those published
by Kengne et al. [17]. Of the 451 bp of ITS2, no variable
sites were found, whereas only one variable site (muta-
tion) was found in one specimen in Kenge (DRC) among
the 392 pb of the D3 domain (GenBank Accession Num-
ber:GU947798). These results are consistent with the fact
that all An. nili populations analysed belonged to the
same taxonomic unit.
mtDNA polymorphism and divergence
The nucleotide sequence was determined along 603 bp of
the COII gene (coding region) in a total of 78 individual
mosquitoes. In addition, a fragment of 320 bp within the
coding region of ND4 gene was obtained for 84 mosqui-
toes. All segregating sites and the sequence variants (hap-
lotypes) are shown in Figure 4 and summary statistics for
both genes are given in Table 5.

Overall, low polymorphism was found in both mito-
chondrial genes. Across the whole dataset, there were
only 6 (0.99%) and 8 (2.5%) polymorphic sites for COII
and ND4, respectively. This low number of variable sites
resulted in low nucleotide diversity (π < 0.001 in all sam-
ples, Table 5) and low haplotype diversity (hd < 0.42,
Table 5) across samples. Among the 78 COII sequences,
seven haplotypes (overall hd = 0.375) were found and
three of them appeared in a single copy (singleton) in the
dataset. The most frequent haplotype was identical to the
reference sequence published by Marshall et al [50] (Gen-
Bank Accession Number: DQ069720). GenBank Acces-
sion numbers for the other 6 COII haplotypes are

Table 2: Heterozygosity tests in An. nili populations from sub-
Saharan Africa. 

Country Locality TPM SMM

70% 80% 90%

Senegal Kedougou 5 5 7 8**

B. Faso Soumousso 5 5 9* 10**

Ivory C. Gansé 6 6 6 9**

Nigeria Akaka 7 7 7 9*

Cameroon Tibati 4 5 5 9**

Magba 5 5 6 9**

Mbebe 5 5 6 9**

Simbock 4 7 8 9**

DRC Kenge 8** 9** 9** 10***

TPM: Two-Phase mutation Model with a % single step mutations, 
SMM: Stepwise Mutation Model; *P < 0.05, **P < 0.01 and ***P < 0.001 
(two-tailed Wilcoxon signed-rank test P-values for deviation from 
MDE) after correction for multiple testing. B. Faso: Burkina Faso, Ivory 
C.: Ivory Coast, DRC: Democratic Republic of Congo.

The number of microsatellite loci showing heterozygote deficiency 
(e.g., He < Heq, see text) out of 11 test loci is given.

Figure 2 Genetic cluster analysis using STRUCTURE based on multilocus microsatellites genotypes of An. nili specimens. Graphical represen-
tation of the data set for the most likely number of genetic clusters (K = 2), where each color corresponds to a suggested cluster and each individual 
is represented by a vertical bar. The numbers in the X-axis correspond to a specific sample: 1-Kenge, 2-Magba, 3-Tibati, 4-Mbebe, 5-Simbock, 6- Akaka, 
7-Soumousso, 8-Gansé and 9-Kedougou. The Y-axis represents the probability of assignment of an individual to each cluster.
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GU947799 to GU947804. Similarly to COII gene, 4 of 8
ND4 haplotypes (overall hd = 0.331, GenBank Accession
Numbers: GU947805 to GU947812) were singletons.
Tajima's DT , Fu & Li's F and D, and Fu's Fs statistics were
all negative for both genes, although only Fs reached sta-
tistical significance when all samples were pooled (Table
5). Negative values of these statistics might reflect either
a selective sweep or a recent demographic expansion [48],
a finding that is in agreement with data obtained from the
microsatellite analysis.

For either gene, eight of nine populations (excluding
Kenge) shared their most frequent haplotype and the fre-
quency of this haplotype ranged from 78% to 90% (Figure
4). No haplotype was shared between Kenge and the

other samples. The sequences of specimens from Kenge
differed from the rest by one and two fixed mutations in
COII and ND4, respectively (Figure 4). Graphical analysis
of the genealogical relationships among all mtDNA
sequences using haplotype networks showed that all An.
nili haplotypes derived from a single common ancestral

Table 3: Pairwise Fst estimates between An. nili populations from sub-Saharan Africa using 11 microsatellite loci.

Senegal B. Faso Ivory C Cameroon DRC

Kedougou Soumousso Gansé Akaka Tibati Magba Mbebe Simbock Kenge

Senegal Kedougou -

B. Faso Soumousso 0.0000 -

Ivory C. Gansé 0.0017 0.0000 -

Nigeria Akaka 0.0111 0.0107* 0.0058 -

Cameroon Tibati 0.0018* 0.0014*** 0.0000 0.0031 -

Magba 0.0024* 0.0058*** 0.0025* 0.0073* 0.0000 -

Mbebe 0.006*** 0.0075*** 0.004* 0.0133*** 0.0013 0.0037 -

Simbock 0.0091*** 0.0128*** 0.0114*** 0.0222*** 0.0063*** 0.0049*** 0.0000 -

DRC Kenge 0.1251*** 0.1328*** 0.124*** 0.1531*** 0.1242*** 0.1356*** 0.1275*** 0.1189*** -

*P < 0.05, **P < 0.01, ***P < 0.001. In bold: significant Fst values after corrections for multiple testing using the sequential Bonferroni procedure. 
B. Faso, Burkina Faso; Ivory C., Ivory Coast; DRC, Democratic Republic of Congo.

Table 4: Jackknifing over loci for the estimation of overall genetic 
differentiation between the two An. nili clusters.

Locus removed Fst P-value

1A27 0.121 P < 0.0001

1D80 0.121 P < 0.0001

1F43 0.118 P < 0.0001

1G13 0.120 P < 0.0001

2Ateta 0.101 P < 0.0001

2C157 0.120 P < 0.0001

A14 0.110 P < 0.0001

A154 0.108 P < 0.0001

B115 0.102 P < 0.0001

F41 0.117 P < 0.0001

F56 0.112 P < 0.0001

None 0.114 P < 0.0001

Figure 3 Correlation between average Fst estimates and loga-
rithm of geographic distance between collection sites for pair-
wise comparisons of An. nili populations from sub-Saharan Africa
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haplotype (Figure 5). This star-like network of haplotype
again suggested recent population expansion.

Discussion
This is the first study using microsatellite markers to
explore An. nili population genetic structure. All loci suc-
cessfully amplified in each population and were highly
polymorphic compared to the isoenzyme markers previ-
ously used [22]. This is consistent with previous studies
comparing microsatellite to isoenzymes markers in
anophelines species [e.g., [51-53]]. Likewise, microsatel-
lite loci were more polymorphic than the rDNA and the
mtDNA genes used in this study. This pattern may reflect
the small sample sizes used for sequencing and/or insuffi-
cient resolution of the molecular markers [54]. Moreover,
a biological process such as different evolutionary rates of
the markers or locus/region-specific selective constraints
could also be involved [55,56]. Nonetheless, despite this
heterogeneity in overall polymorphism across molecular
markers, the same trends emerged whereby An. nili pop-
ulations from West and Central Africa (i.e., from Senegal
to Cameroon) appeared genetically homogeneous,
whereas mosquitoes sampled in DRC were highly differ-
entiated from the species' core populations. In addition,

although individual inferences were rather weak, all
markers showed a pattern of diversity and distribution of
molecular polymorphisms that is consistent with recent
demographic expansion of An. nili throughout its distri-
bution range in West/Central Africa.

Genetic homogeneity within the rDNA genes is not
surprising, given the particular evolutionary dynamics of
the rDNA operon subject to concerted evolution [e.g.
[57]], rendering it extremely useful for the resolution of
deep phylogenies and/or to distinguish between cryptic
species but conversely, of little use for within-species
population genetics analysis [55,58]. Mitochondrial DNA
evolves faster than the nuclear genome and has been
widely used for population genetics and phylogenetics,
including arthropod vectors of human diseases
[54,55,59]. Because of strongly biased AT content, this
non-recombining molecule is however subject to satura-
tion, leading to a rapid lost of phylogenetic signal through
homoplasy [55,59]. On the other hand, its lower effective
population size (1/4th that of nuclear markers due to
maternal inheritance and haploidy) together with
increased selection against slightly deleterious mutations
[60] can rapidly increase divergence between lineages
within species and reduce local genetic diversity due to

Table 5: Summary statistics for mtDNA genes polymorphism and neutrality tests in An. nili from sub-Saharan Africa

Senegal B. Faso Ivory C Nigeria Cameroon DRC All

Gene Kedougou Soumousso Gansé Akaka Tibati Magba Mbebe Simbock Kenge samples

COII

n 10 7 8 10 9 9 8 5 10 76

s 1 1 1 1 0 2 1 0 0 6

hd 0.200 0.286 0.250 0.200 0.000 0.417 0.250 0.000 0.000 0.383

π 0.0003 0.0005 0.0004 0.0003 0.0000 0.0007 0.0004 0.0000 0.0000 0.0007

DT -1.111 -1.006 -1.055 -1.111 nc -1.362 -1.055 nc nc -1.564

D -1.243 -1.048 -1.126 -1.243 nc -1.505 -1.126 nc nc -1.632

F -1.347 -1.101 -1.203 -1.347 nc -1.626 -1.203 nc nc -1.896

Fs -0.339 -0.095 -0.182 -0.339 nc -1.081 -0.182 nc nc -4.999**

ND4

n 10 10 8 10 10 10 10 6 10 84

s 1 1 1 1 0 1 1 0 1 8

hd 0.200 0.200 0.250 0.200 0.000 0.200 0.200 0.000 0.200 0.338

DT -1.111 -1.111 -1.055 -1.111 nc -1.111 -1.111 nc -0.111 -1.302

D -1.243 -1.243 -1.126 -1.243 nc -1.243 -1.243 nc -1.243 -1.914

F -1347 -1347 -1.205 -1347 nc -1347 -1347 nc -1347 -2.100

Fs -0.339 -0.339 -0.181 -0.339 nc -0.339 -0.339 nc 0.356 -3.414*

π 0.0006 0.0006 0.0008 0.0006 0.0000 0.0006 0.0006 0.0000 0.0010 0.0023

n: number of sequences; s: number of polymorphic sites; hd: haplotype diversity; π : nucleotide diversity; DT: Tajima's D; D: Fu and Li's D; F: Fu and 
Li's F; Fs: Fu's Fs statistics; nc : not computed; *: P < 0.05; **: P < 0.01; B. Faso: Burkina Faso, Ivory C.: Ivory Coast, DRC: Democratic Republic of Congo.
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Figure 4 Frequency and distribution of haplotypes in COII (above) and ND4 (below) genes in nine An. nili populations

COII 

Country Locality Haplotype Frequency 
Sequence 
Position 

    13445 
    619192 
    487883 
Senegal Kedougou H1 9/10 GCGAAG 
  H7 1/10 A..... 
B. Faso Soumousso H1 9/10 ...... 
  H5 1/10 .T.... 
Ivory C. Ganse H1 7/8 ...... 
  H5 1/8 .T.... 
Nigeria Akaka H1 9/10 ...... 
  H4 1/10 ....G. 
Cameroon Tibati H1 9/9 ...... 
 Magba H1 7/9 ...... 
  H2 1/9 ..A... 
  H3 1/9 ...G.. 
 Mbebe H1 7/8 ...... 
  H2 1/8 ..A... 
 Simbock H1 5/5 ...... 
DRC Kenge H6 10/10 .....A 

 

ND4 

 
Country Locality Haplotype Frequency 

Sequence 
Position 

    11112 
              66733687 
    03528209 
Senegal Kedougou   H1 10/10 GAATTGAT 
B. Faso Somousso   H1 9/10 ........ 
  H8 1/10 ..G..... 
Ivory C. Ganse      H1 7/8 ........ 
     H7 1/8 .......C 
Nigeria Akaka      H1 9/10 ........ 
      H6 1/10 ......G. 
Cameroon Tibati     H1 10/10 ........ 
 Magba      H1 9/10 ........ 
     H4 1/10 .G...... 
 Mbebe      H1 9/10 ........ 
      H5 1/10 A....... 
 Simbock    H1 6/6 ........ 
DRC Kenge      H2 8/10 ...CCA.. 
       H3 2/10 ....CA.. 
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enhanced genetic drift and/or molecular hitchhiking
resulting in selective sweep throughout the mitochon-
drial genome [61,62]. This is in agreement with increased
differentiation of the An. nili population from DRC
observed with both mtDNA genes. Apparent segregation
of different haplotypes between these two genetic clus-
ters in An. nili prompts for further investigation to
increase sample sizes and the geographic span of sam-
pling eastwards and southwards of the present study area.

Reduced variability and increased differentiation of the
DRC population was also detected using nuclear DNA
microsatellite markers. Within each geographical popula-
tion, HWE was generally respected. Evidence for null
alleles at certain loci, as formerly observed by
Berthomieu et al [23], did not obscure the pattern of dif-
ferentiation between populations, suggesting the set of
loci used in this study were able to capture the main pat-
terns of genetic variability within the dataset. Extensive
allele sharing between populations and homogeneity
across loci in the level of genetic differentiation suggests
enhanced genetic drift in the DRC population, rather
than selection was responsible of the pattern observed.
Unfortunately, the chromosomal locations of the markers
remain unknown in the absence of a reliable chromo-

somal map for An. nili but linkage equilibrium between
markers suggests that they are, at least statistically inde-
pendent and the results might reflect a genome-wide pat-
tern. Reduced variability and increased differentiation is
typically observed in populations leaving in marginal
habitats at the edge of species' ranges [63] and the
sparsely populated evergreen forest block of Central
Africa is known to be of low overall quality for the devel-
opment of An. nili which is more frequent at the savanna/
forest ecotone [14,21]. Deviation from MDE observed
under a range of mutation models in this isolated popula-
tion indeed suggests unstable demography, although no
evidence for a recent bottleneck was obtained. All molec-
ular markers suggested recent demographic expansion in
the Kenge and, to a lesser extent, in all other An. nili pop-
ulations sampled. Detection of this pattern in multiple
independent loci make it possible to distinguish it from
the effect of selection, which is locus-specific, and attri-
bute it to past demographic change. This is reminiscent
of the situation observed in other major vectors of human
malaria in Africa and elsewhere [64], and prompts for
further studies to disentangle the confounding effect of
shared ancestral polymorphism from that of ongoing
gene flow between geographical populations [59]. More-
over, the role of the evergreen forest block as a geo-
graphic barrier to gene flow between An. nili populations
needs to be further explored, given the low dispersal abil-
ity of this mosquito in this environment [65]. Clearly,
extending the sampling area eastwards and southwards is
needed to provide an overall picture of the level and dis-
tribution of genetic diversity within An. nili throughout
its distribution range on the continent, and identify both
geographic barriers that prevent gene flow between pop-
ulations and areas of extensive gene exchange as seems to
be the case throughout West Africa. Such knowledge is
needed to devise efficient, locally adapted and sustainable
strategies for the management and control of these vector
populations. It is interesting to note that recent investiga-
tions of the population genetic structure of An. moucheti
sampled in the same localities as presented here (at least
in Cameroon and the DRC) did not detect such high level
of population differentiation within and across the forest
block [53,66]. Combined analysis of genetic and ecologi-
cal data in a comparative framework should reveal fur-
ther insights into the population biology and
demographic history of these neglected malaria vectors,
and provide relevant information for their control. Recent
advances in theoretical population genetics and the rap-
idly evolving field of spatial genetics [e.g., [56]] together
with the development and democratization of high
throughput sequencing technologies provide the neces-
sary tools for such endeavor in non model species.

Figure 5 Haplotype networks for COII (above) and ND4 (below) 
genes in An. nili. Numbers are the mutation positions on the refer-
ence sequence. Circles are roughly proportional to haplotype frequen-
cies. Black circles identify haplotypes unique to Kenge population 
(GeneBank Accession Numbers: GU947803 for COII; GU947806-
GU947807 for ND4).
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