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Abstract

Background: Severe malaria (SM) syndromes caused by Plasmodium falciparum infection result in major morbidity
and mortality each year. However, only a fraction of P. falciparum infections develop into SM, implicating host
genetic factors as important determinants of disease outcome. Previous studies indicate that tumour necrosis
factor (TNF) and lymphotoxin alpha (LTa) may be important for the development of cerebral malaria (CM) and
other SM syndromes.

Methods: An extensive analysis was conducted of single nucleotide polymorphisms (SNPs) in the TNF, LTA and LTB
genes in highland Papuan children and adults, a population historically unexposed to malaria that has migrated to
a malaria endemic region. Generated P-values for SNPs spanning the LTA/TNF/LTB locus were corrected for multiple
testing of all the SNPs and haplotype blocks within the region tested through 10,000 permutations. A global P-
value of < 0.05 was considered statistically significant.

Results: No associations between SNPs in the TNF/LTA/LTB locus and susceptibility to SM in highland Papuan
children and adults were found.

Conclusions: These results support the notion that unique selective pressure on the TNF/LTA/LTB locus in different
populations has influenced the contribution of the gene products from this region to SM susceptibility.

Background
Severe malaria (SM) caused by Plasmodium falciparum
results in more than a million deaths each year [1,2]. It
is a collection of syndromes that includes cerebral
malaria (CM), severe malaria anaemia (SMA), acute
respiratory distress syndrome (ARDS), hyperparasitae-
mia, hypoglycaemia, black water fever, metabolic acido-
sis, jaundice and renal failure [1]. The reasons why
some individuals develop severe complications of
malaria, whereas others do not, are still unclear. How-
ever, the virulence of the parasite strain causing malaria,

as well as the age and genetic background of the
infected individual are likely to influence disease
outcome.
Plasmodium falciparum and humans have had intense

interactions for at least 6,000 years and it is thought
that malaria has imposed a large selective pressure on
the human genome [3,4]. Evidence from both an experi-
mental cerebral malaria (ECM) model [5], as well as
from SM patients [6-8], have identified TNF as an
important pro-inflammatory cytokine for the control of
infection, and also a strong association with the develop-
ment of pathology. Single nucleotide polymorphisms
(SNPs) within the gene encoding TNF (TNF) have been
associated with severe outcomes following Plasmodium
infection in a number of populations in Africa, Asia and

* Correspondence: chrisE@qimr.edu.au
1Queensland Institute of Medical Research and Australian Centre for Vaccine
Development, 300 Herston Road, Herston, QLD 4006, Australia
Full list of author information is available at the end of the article

Randall et al. Malaria Journal 2010, 9:302
http://www.malariajournal.com/content/9/1/302

© 2010 Randall et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:chrisE@qimr.edu.au
http://creativecommons.org/licenses/by/2.0


the Pacific region [9-13]. In particular, a SNP in the pro-
moter region of TNF at 308 nucleotide base pairs
upstream of the transcription start site (-308/376TNF)
has been reported to confer a greater risk of severe neu-
rological sequelae or death due to CM in the Gambia
[14]. This variant was found to be a stronger transcrip-
tional activator than the common allele in some in vitro
studies [15], but not others [16]. More recent studies
examining the MHC class III region, which includes
TNF as well as the genes encoding the closely related
LTa (LTA) and LTb (LTB), suggest that positive asso-
ciations between disease and TNF alleles could in fact
be due to real disease alleles in neighbouring genes [17].
One such study observed that when specific SNPs were
present in TNF, in combination with specific SNPs in
LTA, LTA transcription rather than TNF transcription
was modulated by changing the way RNA polymerase
specifically bound to the LTA promoter [18]. Impor-
tantly, LTa, not TNF, has been shown to be a critical
factor in the development of experimental cerebral
malaria in C57BL/6 mice [19], identifying LTA along
with TNF as a candidate susceptibility gene.
Recently, a genome wide association study involving 3

African populations from The Gambia, Kenya and
Malawi, investigated potential associations between SM
and 8 SNPs spanning the LTA/TNF locus [20]. An asso-
ciation was found between TNF-238A allele and SM in
samples from The Gambia only, and not for any other
SNP tested in any of the populations examined [20].
These findings suggested different selective pressures in
the LTA/TNF locus in different populations, as well as
highlighting the need for more-detailed mapping of
polymorphisms across this locus to identify causal SNPs
associated with SM susceptibility [20]. Here, an exten-
sive analysis was conducted of 35 SNP’s found in the
LTA/TNF/LTB gene locus in adults and children of
highland Papuan origin, a population not historically
exposed to malaria transmission prior to the 1970 s, but
who during the study period had been exposed to
malaria following migration to the lowland region of
Papua.

Methods
Study participants and sample preparation
Characteristics of the study participants upon admission
to hospital and controls, including population structure,
have been described in Table 1 and the methods section
of a recent publication [21]. No corrections were
required. Highland Papuan patients with SM and
asymptomatic malaria-exposed controls were recruited
in a case-control study in Timika, a lowland region of
Papua, Indonesia. Genotypes significantly associated
with SM in highland Papuans, were also examined in a
Tanzanian case-control study comprising children with

CM enrolled in Dar es Salaam using WHO criteria as
previously described [22] and asymptomatic malaria-
exposed, healthy control children from Mikocheni Pri-
mary school in the Kinondoni Municipality of the Dar

Table 1 The SNP set used to investigate the LTA/TNF/LTB
locus

Map
Number

db SNP rs SNP
Location

Gene Role Polymorphic

1 rs2857602 chr6:31641357 LTA Promoter Yes

2 rs2844486 chr6:31641849 LTA Promoter No

3 rs3131637 chr6:31643053 LTA Promoter Yes

4 rs2844484 chr6:31644203 LTA Promoter Yes

5 rs2844483 chr6:31644775 LTA Promoter Yes

6 rs2009658 chr6:31646223 LTA Promoter Yes

7 rs4647191 chr6:31646617 LTA Promoter No

8 rs2844482 chr6:31647746 LTA Promoter Yes

9 rs2071590 chr6:31647747 LTA Promoter Yes

10 rs1800683 chr6:31648050 LTA Promoter Yes

11 rs2239704 chr6:31648120 LTA Exon Yes

12 rs909253 chr6:31648292 LTA Intron
(boundary)

Yes

13 rs2857713 chr6:31648535 LTA Coding
exon

Yes

14 rs3093543 chr6:31648736 LTA Coding
exon

No

15 rs1041981 chr6:31648763 LTA Coding
exon

Yes

16 rs1799964 chr6:31650287 LTA 3’ UTR Yes

17 rs1799724 chr6:31650461 LTA 3’ UTR Yes

18 rs1800750 chr6:31650942 TNF Promoter No

19 rs1800629 chr6:31651010 TNF Promoter No

20 rs361525 chr6:31651080 TNF Promoter No

21 rs3179060 chr6:31651651 TNF Coding
exon

No

22 rs3093661 chr6:31651737 TNF Intron
(boundary)

No

23 rs1800610 chr6:31651806 TNF Intron Yes

24 rs3093662 chr6:31652168 TNF Intron No

25 rs4645843 chr6:31652541 TNF Coding
exon

No

26 rs1800620 chr6:31652570 TNF Intron
(boundary)

No

27 rs3093664 chr6:31652621 TNF Intron
(boundary)

No

28 rs1800618 chr6:31652897 TNF Coding
exon

No

29 rs11574936 chr6:31653172 TNF Coding
exon

No

30 rs3093668 chr6:31654474 TNF 3’ UTR No

31 rs3091257 chr6:31654829 TNF 3’ UTR Yes

32 rs769178 chr6:31655493 LTB 3’ UTR Yes

33 rs769177 chr6:31655590 LTB 3’ UTR Yes

34 rs2229699 chr6:31656835 LTB Exon No

35 rs1052248 chr6:31664560 LST1a Exon Yes
aLST1, leukocyte specific transcript 1 (also the 5’ UTR of LTB).
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es Salaam region. Written informed consent was
obtained from all study subjects or their next of kin,
parent or guardian. Studies were approved by the Ethics
Committees of the National Institute of Health Research
and Development (Ministry of Health, Jakarta, Indone-
sia), Menzies School of Health Research (Darwin,
Australia), Queensland Institute of Medical Research
(Brisbane, Australia), Muhimbili University of Health
Sciences (Dar es Salaam, Tanzania), National Institute
for Medical Research (Dar es Salaam, Tanzania), Univer-
sity of Utah Medical Center (Salt Lake City, USA) and
Duke University Medical Center (Durham, USA).

Sequencing the LTA gene
The gene encoding LTa, spanning a region of 5323 base
pairs (bp) was sequenced in a subset of samples to
check for the presence of novel SNPs. The locus was
amplified in sections of approximately 500 bp by PCR
and sequenced. Sequenced products were aligned
against a published human LTA sequence [23]. Identi-
fied SNPs were also checked on the NCBI website [24]
for previous publication.

SNP selection
TNF/LTA/LTB SNPs were included in this study based on
reported functional changes (i.e. transcriptional or protein
level) or on previous associations with malaria, other infec-
tious diseases, ischaemic stroke, cerebral infarction, ather-
osclerosis or inflammation [9-12,14,18,25-43]. SNPs in
the TNF/LTA/LTB locus observed to be present in
ethnic groups from Sulawesi, an island in the Indonesian
archipelago [44], were also included. The final set of poly-
morphisms included as many functional and disease-
associated SNPs as possible following primer design and
testing. Tagging SNPs were selected based on reported
frequencies in other populations. This SNP set has been
described elsewhere [45]. All SNP sequences were
obtained from the Chip Bioinformatics database [46] and
verified in NCBI.

Genotyping
Assays were designed for thirty-five SNPs across the
TNF/LTA/LTB region in a multiplex using the Seque-
nom MassARRAY Assay Design software (version 3.0).
SNPs were typed using iPLEX™ chemistry and analyzed
using a Sequenom MassARRAY Compact Mass Spectro-
meter (Sequenom Inc, San Diego, CA, USA). The 2.5 ml
PCR reactions were performed in standard 384-well
plates using 10 ng genomic DNA, 0.5 unit of Taq poly-
merase (HotStarTaq, Qiagen), 500 mmol of each dNTP,
and 100 nmol of each PCR primer. Standard PCR ther-
mal cycling conditions and post-PCR extension reac-
tions were carried out as described previously [45]. The
iPLEX reaction products were desalted and spotted on a

SpectroChip (Sequenom). Data were processed and ana-
lysed by MassARRAY Workstation (version 3.4) soft-
ware (Sequenom). Single SNP genotyping specific for
rs2071590 and rs1052248 was performed using TaqMan
SNP Genotyping Assays according to the manufacturer’s
instructions (Applied Biosystems, Foster City, CA) by
using the allelic discrimination on a Corbett RG-6000
(Corbett Life Sciences, Sydney, NSW, Australia) or an
AB7900 machine (Applied Biosystems). Previously char-
acterized genotypes for these SNPs were included as
positive controls and run alongside samples with
unknown genotype.

Statistical analyses
Based on our sample size (380 cases and 356 controls),
80% power was available to detect a disease allele with a
relative risk of 1.5 at a disease frequency of 0.25. Haplo-
view version 3.32 (Whitehead Institute for Biomedical
Research, USA; [47]) was used to perform all statistical
tests relating to this SNP analysis [48]. Genotype fre-
quencies of all SNPs were tested for departures from
Hardy-Weinberg equilibrium in both cases and controls
separately. In the Papuan study, 16 SNPs were found to
be non-polymorphic (Table 1). Haplotype frequencies
and linkage disequilibrium (LD) tests were also deter-
mined by Haploview version 3.32 [48] using the default
method of Gabriel [49]. The association between single
markers and haplotype blocks was performed by the
Haploview programme. Generated P-values for SNPs
spanning the LTA/TNF/LTB locus were corrected for
multiple testing of all the SNPs and haplotype blocks
within the region tested through 10,000 permutations. A
global P-value of < 0.05 was considered statistically
significant.

Results
LTA/TNF locus is not associated with severe malaria
In total, 380 SM cases (262 adults and 118 children) and
356 control individuals (305 adults and 51 children)
were included in the genotyping study [21]. A subset of
the samples was randomly chosen for sequencing of a
5,323 bp region spanning LTA, and this revealed no
novel SNPs in the study population, and that all SNPs
detected in the sequenced LTA had previously been
reported and, where possible, were included in the SNP
set (Table 1). The SNP set consisted of 35 SNPs that
spanned the LTA/TNF/LTB locus on chromosome 6
(Figure 1 and Table 1). The majority of the samples
were successfully genotyped for each of the SNPs with
an average coverage of greater than 99%. Of these, 16
SNPs were found to be non-polymorphic (Table 1). The
minor allele frequencies of the remaining SNPs span-
ning the LTA/TNF/LTB locus ranged from 0.001 to 0.44
in control subjects and from 0.001 to 0.49 in patients
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with SM. Two SNPs, rs2071590 and rs1052248, situated
in the LTA and LTB promoter regions, respectively,
showed some differences in allele frequencies between
control subjects and SM patients (P = 0.034 and P =
0.007, respectively). These differences were not observed
once corrections were made for multiple testing (global
P > 0.05; Table 2). Analysis of haplotypes did not reveal
any association between haplotype blocks and suscept-
ibility to SM (Figure 2 and Table 3).
Next, the TNF/LTA/LTB locus was examined to estab-

lish whether it was associated with susceptibility to CM
in either adults or children. Overall, there were no dif-
ferences in allele frequencies between control subjects
and CM patients (Table 4). Furthermore, neither age
nor susceptibility to CM was associated with the TNF/
LTA/LTB locus for either single SNPs or haplotype
blocks (Tables 3 and 4; Figure 2). Given the association
between the two SNPs situated in the LTA and LTB
promoter regions and SM prior to correcting for multi-
ple testing described above, the association of rs2071590
and rs1052248 in patients originating from and resident
in a malaria-endemic region (245 healthy children (HC)
and 77 children with CM from Dar es Salaam, Tanza-
nia) was also examined, but no association between
these SNPs and CM was found. Taken together, there
was no evidence for the TNF/LTA/LTB locus contribut-
ing to SM or CM in highland Papuans historically not
exposed to malaria.

Discussion
Both genetic and serological data indicate roles for TNF
and LTa in the pathogenesis of SM [6-14,50,51]. How-
ever, there was a lack of association between SNPs in
the TNF/LTA/LTB and SM in a highland Papuan popu-
lation. This lack of association remained following sub-
sequent testing in disease subsets and in both children

and adults. TNF polymorphisms have been associated
with malaria transmission and SM, primarily in popula-
tions originating and living in malaria endemic areas
[9-14]. A small number of studies have investigated the
relationship between two LTA SNPs and malaria. LTA
C+80A (rs2239704), a SNP that allows specific binding
of the transcriptional repressor ABF-1 and, therefore,
considered to be a low LTa-producing allele, has been
associated with lower P. falciparum parasitaemia in
malaria-endemic Burkina Faso but was not associated
with SM in a case-control study in The Gambia
[40,51,52]. LTA A+252G (rs909253) has been reported
to influence LTa production [53], but this SNP was not
associated with SM in Sri Lanka [9]. More recently,
rs2239704 and rs909253 were reported to not be asso-
ciated with SM in a study of SM patients from The
Gambia, Kenya and Malawi [20]. Both rs2239704 and
rs909253 were included in the present study but not
found to be associated with SM. A recent genome wide
association study found that only rs2516486 at TNF was
weakly associated with malaria severity, however
the authors caution that the candidate SNPs examined
in this study were poorly tagged by the 500 K array
used [54].
LTA polymorphisms were of particular interest. In

highland Papuans (a population without historical expo-
sure to malaria), the minor allele for rs2239704 (Table 3)
is the opposite allele to that observed in a study popula-
tion from malaria-endemic Burkina Faso [51], suggesting
that different pressures may have selected for different
alleles in the two populations. Despite two SNPs situated
in the LTA and LTB promoter regions (rs2071590 and
rs1052248, respectively), having differences in allele fre-
quencies between control subjects and SM patients, this
was not significant after correction for multiple testing,
nor was there a difference in the Tanzanian population

Figure 1 Chromosomal location of SNPs studied in the LTA/TNF/LTB locus. 35 SNPs that cover the LTA/TNF/LTB locus on chromosome 6
were analysed in highland Papuans. SNPs selected for study were based on reported functional changes, previous associations with malaria, and
other infectious diseases or inflammatory conditions. Certain tagged SNPs were included based on reported frequencies in other populations.
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studied. Thus, our data provide no evidence for an
involvement of the LTA/TNF/LTB locus in SM suscept-
ibility in highland Papuans, and suggest that if the
genes encoded by this locus are involved in SM patho-
genesis then molecules that regulate the production
and/or bioavailablity may influence disease outcome.
Interestingly, an association between susceptibility to
SM and a SNP in the LTa-related gene encoding galec-
tin-2 (LGALS2) was recently identified. The particular
SNP in LGALS2 is thought to regulate the trafficking of
LTa out of cells [55]. Strikingly, the association between

LGALS2 and SM was found to be present in highland
Papuan children, but not adults [21]. A further consid-
eration in future studies should be the effects of other
genes with important immunological functions in the
region surrounding the TNF locus that could contribute
to the development of severe malaria. The potential
importance of such genes was highlighted in a recent
study showing that SNPs in HLA-B associated transcript
2 (BAT2) in the MHC III region were associated with
severe malaria susceptibility, while TNF and LTA SNPs
were not [52].

Table 2 Association analysis of SNPs across the LTA/TNF/LTB gene locus genotyped in severe malaria cases and
controls

dbSNP rs Position Gene Role Alleles MAFa ORb

(CI)c
Associationd

c2
P-value

Controls SM

rs2857602 chr6:31641357 LTA Promoter G > A 0.27 0.27 1.02
(0.81-1.28)

0.02 1.000

rs3131637 chr6:31643053 LTA Promoter A > T 0.27 0.27 1.02
(0.81-1.28)

0.02 1.000

rs2844484 chr6:31644203 LTA Promoter A > G 0.27 0.27 1.03
(0.81-1.29)

0.05 1.000

rs2844483 chr6:31644775 LTA Promoter T > G 0.27 0.27 1.02
(0.81-1.28)

0.02 1.000

rs2009658 chr6:31646223 LTA Promoter C > G 0.25 0.26 1.05
(0.83-1.33)

0.14 1.000

rs2844482 chr6:31647746 LTA Promoter C > T 0.25 0.26 1.07
(0.85-1.35)

0.30 1.000

rs2071590 chr6:31647747 LTA Promoter A > G 0.44 0.49 1.25
(1.02-1.54)

4.52 0.366

rs1800683 chr6:31648050 LTA Promoter G > A 0.02 0.01 1.98
(0.72-5.35)

1.82 0.979

rs2239704 chr6:31648120 LTA Exon A > C 0.27 0.27 1.02
(0.81-1.29)

0.03 1.000

rs909253 chr6:31648292 LTA Intron (boundary) A > G 0.02 0.01 1.98
(0.73-5.36)

1.84 0.978

rs2857713 chr6:31648535 LTA Coding exon T > C 0.25 0.26 1.06
(0.84-1.34)

0.23 1.000

rs1041981 chr6:31648763 LTA Coding exon C > A 0.02 0.01 2.15
(0.80-5.77)

2.44 0.814

rs1799964 chr6:31650287 LTA 3’ UTR T > C 0.25 0.27 1.07
(0.84-1.35)

0.30 1.000

rs1799724 chr6:31650461 LTA 3’ UTR C > T 0.43 0.39 1.19
(0.97-1.47)

2.76 0.755

rs1800610 chr6:31651806 TNF Intron G > A 0.42 0.39 1.13
(0.92 - 1.40)

1.37 0.992

rs3091257 chr6:31654829 TNF 3’ UTR C > A < 0.01 < 0.01 1.07
(0.07 - 17.11)

< 0.01 1.000

rs769178 chr6:31655493 LTB 3’ UTR C > A 0.43 0.39 1.20
(0.97 - 1.49)

2.98 0.682

rs769177 chr6:31655590 LTB 3’ UTR G > A 0.04 0.05 1.11
(0.67 - 1.84)

0.15 1.000

rs1052248 chr6:31664560 LST1 Exon A > T 0.42 0.49 1.33
(1.08 -1.63)

7.22 0.098

aMinor allele frequency.
bOdds ratio.
c95% confidence interval.
dAssociation c2 with severe malaria.
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Conclusion
It is clear that large, highly powered studies will be
necessary to identify causal variants in genes that contri-
bute to SM disease outcome. However, as discussed
above, it is likely that different populations have had dif-
ferent selective pressures placed upon them, resulting in
a number of susceptibility alleles across different popu-
lations. Hence, deep sequencing studies in the TNF/

LTA/LTB locus of different populations may be war-
ranted and required to identify causal variants in these
genes responsible for susceptibility to SM syndromes.
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