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Abstract 

Background: The long half-lives of malaria ‘partner’ drugs are a potent force selecting for drug resistance. Clinical tri-
als can quantify this effect by estimating a window of selection (WoS), defined as the amount of time post-treatment 
when drug levels are sufficiently high that resistant parasites can re-establish an infection while preventing drug-
sensitive parasites from establishing viable infections.

Methods: The ability of clinical data to accurately estimate the true WoS was investigated using standard pharma-
cokinetic–pharmacodynamic models for three widely used malaria drugs: artemether–lumefantrine (AR-LF), artesu-
nate–mefloquine (AS-MQ) and dihydroartemisinin–piperaquine (DHA-PPQ). Estimates of the clinical WoS either (1) 
ignored all new infections occurring after the 63-day follow-up period, as is currently done in clinical trials, or, (2) 
recognized that all individuals would eventually be re-infected and arbitrarily assigned them a new infection day.

Results: The results suggest current methods of estimating the clinical WoS underestimate the true WoS by as much 
as 9 days for AR-LF, 33 days for AS-MQ and 7 days for DHA-PPQ. The new method of estimating clinical WoS (i.e., retain-
ing all individuals in the analysis) was significantly better at estimating the true WoS for AR-LF and AS-MQ.

Conclusions: Previous studies, based on clinically observed WoS, have probably underestimated the ‘true’ WoS and 
hence the role of drugs with long half-lives in driving resistance. This has important policy implications: high levels 
of drug use are inevitable in mass drug administration programmes and intermittent preventative treatment pro-
grammes and the analysis herein suggests these policies will be far more potent drivers of resistance than previously 
thought.
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Background
Artemisinin combination therapy (ACT) is effective, first-
line treatment for uncomplicated Plasmodium falcipa-
rum malaria and now widely deployed in most endemic 
countries [1]. The artemisinin component is extremely 
fast acting and highly potent but rapidly eliminated so 
current ACT all contain a second ‘partner’ drug with a 
longer half-life. The long half-lives of the partner drugs 
are clinically beneficial: they may persist at active con-
centrations for weeks after treatment, providing valuable 
prophylaxis against infection during this period [2, 3]. 

However, the rapid elimination of artemisinin means the 
partner drugs are present as a monotherapy during this 
prophylactic period, which may be a potent force select-
ing for resistant parasites. This process can drive increas-
ing drug tolerance to the partner drug and the eventual 
loss of therapeutic effectiveness, resulting in failure of the 
ACT [4–6]. This ability of parasites to evolve resistance 
to the partner drug is a possible Achilles heel of ACT.

The putative consequences of long half-life partner 
drugs driving resistance enters debates on the politics of 
anti-malarial drug deployment. Mass drug deployment 
(MDA) policies were widely used in the 1950s and 1960s 
(reviewed by Von Seidlein and Greenwood [7]), but fell 
from favour as, used in isolation, they had only a tran-
sitory effect on malaria transmission and drove drug 
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resistance to high levels. MDA policies are once again 
under active consideration as part of a comprehensive 
toolkit for eradicating malaria populations [8], particu-
larly those believed to have evolved artemisinin resist-
ance [9–11]. Intermittent preventative treatment (IPT) 
programmes also deploy anti-malarial drugs and have 
proven highly effective in protecting vulnerable popula-
tions [12, 13], but as malaria transmission declines it is 
unclear at what point their short-term clinical benefit is 
outweighed by the putative longer-term consequences of 
driving resistance [13]. Anti-malarial drug use in MDA 
and IPT programmes drives resistance in two ways: (1) 
they select for parasites able to survive treatment; and, 
(2) their long half-lives mean they persist for long peri-
ods after treatment, selecting for newly acquired resist-
ant parasites able to survive residual drug levels as they 
emerge from the liver and attempt to establish a viable 
infection. Mathematical modelling suggests the first 
force is easy to measure: it is simply, and intuitively, the 
proportion of existing asexual blood infections that are 
treated (often called simply the ‘drug coverage’). The sec-
ond force is more difficult to quantify but note that the 
size of its effect is, somewhat counter-intuitively, not 
affected by local transmission intensity (Box  1 of [5]). 
The use of drugs in MDA and IPT is almost guaranteed 
to increase selection for resistance [7, 13, 14], but to 
what extent? This paper attempts to provide quantitative 
answers to this second force, selection due to residual 
drug levels, through the application of pharmacological 
modelling of anti-malarial drug treatment.

The genetic process whereby parasites evolve increas-
ing tolerance to the partner drug is usually quantified 
as a window of selection (WoS). As a specific exam-
ple, Watkins and Mosobo [6] noted parasites with the 
dhfr108 mutation could be observed in patients 15 days 
after treatment with sulfadoxine-pyrimethamine (SP), 
whereas wild-type infections were only observed after 
50 days, thus implying a WoS of 35 days. Similarly, Siso-
wath et al. [3] estimated a WoS of 15 days associated with 
the pfmdr1 D1246Y mutation after lumefantrine treat-
ment. Routine genotyping in clinical trials means such 
data are readily available and have been used previously 
to estimate WoS [3, 4, 6, 15]. People in endemic areas 
often have residual drug levels resulting from previous 
chemoprophylaxis or direct treatment [16–18]. This is 
likely to result in frequent selection windows for most 
drugs. For example, if five courses of SP are taken per 
year and, as above, assuming a 35-day WoS, then there 
will be 5 × 35 = 175 days per person in which persisting 
drug concentrations are selecting for the dhfr108 muta-
tion. This implies that selection for resistance via WoS 
may be widespread and intense.

These WoS estimates, obtained from clinical obser-
vations, are widely cited and refered to here as ‘clinical’ 
WoS to denote their origin in clinical observations. In 
fact, the ‘true’ WoS is the period during which infections 
bearing the mutation can emerge from the liver (assum-
ing the drugs do not kill the parasites while in the liver 
stage) and survive to produce a viable infection, while 
sensitive parasites are killed by residual drug concen-
trations [19]. Unfortunately, it is impossible to directly 
observe the ‘true’ WoS because the 105 parasites that 
emerge from the liver are below patency. It has, there-
fore, been widely assumed that the clinical WoS reflects 
the true window (op cit). However, it is not clear how 
well the clinical WoS estimates the true WoS and there 
are several plausible reasons why they may be poor esti-
mators, discussed further in Fig. 1. This paper uses the 
pharmacokinetic–pharmacodynamic (PK/PD) model 
described previously [20–22] to simulate the WoS for 
increasingly resistant infections, with the aim to quan-
tifying how accurately clinical WoS estimate the ‘true’ 
window of selection.

Methods
The mechanistic PK/PD model of Winter and Hastings 
[20] was used here with the additional absorption and 
conversion phases for the artemisinins, and the param-
eter-specific estimates of variation as described in Kay 
and Hastings [21]. The model was applied to three highly 
effective ACT regimens currently used to treat malaria: 
(1) artemether–lumefantrine (AR-LF), 1.7 mg/kg AR and 
12 mg/kg LF given twice daily for 3 days; (2) artesunate–
mefloquine (AS-MQ), 4  mg/kg AS and 8.3  mg/kg MQ 
given once daily for 3 days; and, (3) dihydroartemisinin–
piperaquine (DHA-PPQ), 4  mg/kg DHA and 18  mg/kg 
PPQ given once daily for 3  days. Further details of the 
model methodology and parameterization are included 
in Additional file 1.

Mass drug treatment in human populations was simu-
lated assuming 5,000 simulated patients were each given 
the same ACT; all patients were treated at day 0 and 
the simulations run for 365  days; 63  days is the recom-
mended period of follow-up in clinical trials but the 365-
day ‘follow-up’ in the simulations reveal how finishing 
patient observations at 63  days may affect the results. 
The focus was solely on increasing resistance to the part-
ner drugs and this was incorporated into simulations 
by increasing the IC50 of parasites to the partner drug; 
hence ‘genotypes’ in this study refers to parasite geno-
types with different values of IC50 to the partner drug. 
Any parasites present on the day of treatment (i.e., day 
0) were ignored on the assumption that the ACT is clini-
cally effective and would eliminate them.
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The principle underlying the analyses is simple. First, 
the probability that parasites with different drug-resist-
ant ‘genotypes’ emerging from the liver could survive 
residual drug levels on any given day post-treatment was 
established; this estimated the ‘true’ WoS (i.e., accord-
ing to the calculations presented here, see discussion of 
Fig. 2). Then the time until infections of any given ‘geno-
type’ first became clinically detectable in the blood was 
determined; this estimated the ‘clinical’ WoS. This meth-
odology can therefore be used to determine whether the 
clinically observed WoS accurately predicts the ‘true’ 
WoS. The true and clinical WoS was investigated as 
follows.

True WoS
Each patient’s drug pharmacokinetic (PK) parameters 
were randomly assigned using the means and distribu-
tions in Additional file  1: Table S1 and each patient’s 
infection consisted of one parasite clone with the par-
asites pharmacodynamic (PD) parameters randomly 
allocated using the means and distributions given 
in Additional file  1: Table S1. Every day after treat-
ment, 105 parasites were assumed to emerge from the 
liver and encounter the residual drug levels persisting 

from the initial treatment; the fate of the clone emerg-
ing each day was recorded by noting whether or not 
it would eventually survive to form a viable infection, 
and therefore the earliest day on which successful 
emergence from the liver was first possible. This pro-
vided a distribution of earliest possible emergence days 
for the 5,000 human/parasite combinations (see later 
discussion of Fig.  2, and the left hand panels of Fig.  3 
and Additional file 1: Figures S1, S2). This process was 
repeated to simulate ‘alleles’ encoding increasing drug 
resistance; each of the 5,000 patients retained their PK 
parameters to ensure consistency across alleles while 
the parasite PD parameters were re-assigned. Seven 
increasingly resistant alleles were simulated with the 
partner drugs IC50 increased 2, 5, 10, 15, 20, 25, and 
50-fold greater than the mean (Additional file 1: Table 
S1); each allele therefore generated a distribution of 
5,000 earliest emergence days.

The question then arises as to how to translate 
these distributions of the earliest emerging infections 
into a strict definition of the true WoS. It would be 
inappropriate to define the start of the WoS as the 
earliest possible emergence day in the distribution, 
because this will depend on chance and on sample 

Fig. 1 Potential problems with using patent parasitaemia to estimate ‘windows of selection’ (WoS). Field studies typically measure the WoS by 
comparing the times different genotypes become detectable (‘patent’) in patients. As an example, the clinical data of Sisowath et al. [3], showed 
that resistant parasites bearing the pfmdr1 D1246Y mutation (top row; blue squares) first become patent in patients approximately 20 days after 
treatment and about 15 days earlier than sensitive parasites (bottom row; green squares). Each new infection was assumed to comprise 105 parasites 
emerging from the liver and to become patent if/when their numbers reached 108 parasites (horizontal dashed lines). The black line shows the 
decrease in drug concentration over time (using a single drug dose for illustration). Lines A and B show two clones that emerge on the same day but 
grow at different rates because of their differing IC50s and become patent several days apart. Here, field estimates based on patent parasitaemia 
would quantify a WoS of around 5 days when in fact there is none. Lines C1–C3 illustrate how the earliest emerging parasites may not necessarily 
correspond to the first patent infection. C1 is the earliest emerging clone but residual drug levels cause an initial drop in parasite numbers and so 
C2, which emergences slightly later, is able to become patent sooner. Similarly, by the time C3 emergences from the liver, drug levels have fallen suf-
ficiently that it no longer effects the newly emerged clone and so C3 becomes patent before both C1 and C2. The ‘clinical’ WoS is actually wrong: the 
true order of survival is C1, C2, C3 but the clinical order is C3, C2, C1.
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size. Therefore the true WoS was defined as the differ-
ence between the day post-treatment on which 50% of 
clones could survive residual drugs for any IC50 ‘gen-
otype’, i.e., the median of the distribution (see discus-
sion of Fig. 2).

Clinical WoS
Estimates of the clinical WoS were determined by assum-
ing patients were followed for 63 days which is the long-
est follow-up period currently recommended in a clinical 
trial [23]. The 5,000 humans used above to simulate the 
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Fig. 2 The true window of selection for three simulated anti-malarials drugs. The probability of parasites emerging from the liver and successfully 
surviving residual drug levels to cause a patent new infection is a function of (1) their drug resistance level, simulated as increasing levels of IC50 
and, (2) the day they emerge after treatment. Three drug combinations are simulated: a artemether–lumefantrine, b artesunate–mefloquine and c 
DHA-piperaquine. Note the probabilities of surviving treatment (POST) with monotherapy are shown to immediate right of the x-axis.
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Fig. 3 The window of selection (WoS) for artemether–lumefantrine (AR-LF). Data from 5,000 patients; the earliest successful emergence from the 
liver (which determines the ‘true’ WoS) is shown in a, the earliest observed patent infection (used to calculate the observed, ‘clinical’ WoS) deter-
mined using Method 1 is shown in b and using Method 2 is shown in c. The histogram and box plot in each row summarize the same data in 
different forms. Data plotted in the top row corresponds to the mean LF IC50 and data in subsequent rows shows the results of increasing the LF 
IC50. Patients were followed up for 365 days with the follow-up time censored when clinical WoS to 63 days, the maximum recommend time of a 
clinical trial. All new infections occurring after the 63-day follow-up period were either (1) removed from the analysis (b) or (2) re-classified arbitrarily 
as occurring at day 100 (c).
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true WoS retained their original PK parameters but the 
parasite PD parameters were re-assigned for each allele 
with increasing IC50 values. It was assumed that, on 
average, each patient would acquire 16 new infections 
per year; this was based on re-infection data from north-
ern Ghana [24] (see Additional file 1 and later discussion 
for more details). For each individual, the number of new 
infections was chosen from a Poisson distribution with a 
mean value of 16. To maintain the population size, if an 
individual had no new infections (i.e., if a value of zero 
was chosen from the Poisson distribution) another num-
ber was selected in the same way. The day on which each 
of the new infections emerged from the liver during the 
follow-up period was randomly assigned. Each newly 
emerging infection had PD values chosen independently 
from Additional file 1: Table S1 so that, in patients with 
more than one new emergence, each emergence was 
genetically distinct (i.e., had different PD values around 
the assigned mean IC50). The fate of each emergence in 
a human was determined as before (survival/death and, if 
survival, time to clinical patency). The simulated patient 
was then categorized as having ‘no re-infection’ (if no 
patent infection appeared in the 63 days after treatment) 
or ‘re-infected’ with a time of first patency.

The method currently used to estimate clinical WoS 
is poorly defined and generally involves visual inspec-
tion of the data; for example, the data of Sisowath et al. 
[3] (included here on Fig. 1) show that ‘resistant’ parasites 
first become apparent around day 20 while sensitive par-
asites become apparent around day 35, implying a clini-
cal WoS of 15 days. The problem with this method is that 
it depends largely on chance and the sample size of each 
allele (determined by its frequency). For example, if a sin-
gle sensitive infection had been noted on day 25 then the 

estimated WoS would have fallen to 5 days. The method-
ology is formalized herein by estimating the clinical WoS 
using two methods.

Method 1 reflects the current approach of estimating 
the clinical WoS and considers only infections occurring 
during trial follow-up. Rather than visual inspection of 
the first day of observed patency, the clinical WoS is more 
formally defined by comparing the median (or other cen-
tile scores) of the patency data to reduce the element of 
chance. For example, the data of Sisowath et  al. [3] on 
Fig.  1 would produce a WoS of approximately 5  days 
based on the median values of the emergence times (day 
35 for resistant and 40 for sensitive).

Method 2 is analogous to the first and compares cen-
tile scores of each allele to estimate the clinical WoS. 
The one difference is that Method 2 recognizes that each 
patient would eventually have become re-infected with 
the allele if followed up for a sufficiently long time and 
hence that the re-infection data are censored. Patients 
with no re-infections in the 63-day follow-up period (i.e., 
the censored patients) were arbitrarily scored as having 
re-infections occurring on day 70. The comparison to 
obtain WoS relies on centiles (not averages) so it is imma-
terial which day after 63 is arbitrarily chosen provided 
the number of censored individuals is not above 50% (see 
discussion of ‘BF’ below and in Table 1).

Both methods therefore generated a distribution of 
times to first patency analogous to the data of Sisowath 
et al. [3] (Fig. 1). The tenth, 25th and 50th centile values 
of the distributions were obtained for each of the resist-
ance alleles.

The probability of surviving direct treatment (POST) 
with the partner drug monotherapy was also recorded 
for the 5,000 patients to provide a baseline probability 

Table 1 Estimates of the true and clinical window of selection

Simulations of 5,000 patients, followed for 63 days after treatment, infected with increasingly drug-resistant parasites and treated with artemether–lumefantrine 
(AR-LF), artesunate–mefloquine (AS-MQ) or dihydroartemisinin–piperaquine (DHA-PPQ). True windows of selection (WoS) were calculated by comparing the days on 
which 50% of emergences were successful (red dashed lines on Fig. 2; full details in main text). Two methods were used to calculate the clinical WoS: All new infections 
occurring after the 63-day follow-up period were either removed from the analysis (Method 1) or re-classified arbitrarily as occurring at day 70 (Method 2). The clinical 
WoS for each method were reported using either the tenth, 25th or 50th centile cut-offs. The cumulative differences in WoS were calculated for each treatment in 
absolute units i.e. the duration (in days) of the WoS.

BF beyond follow-up.

Drug IC50 True WoS Clinical WoS

Method 1, current Method 2, new

10th 25th 50th 10th 25th 50th

AR-LF Default to 15-fold 17 9 9 8 16 16 BF

15-fold to 50-fold 8 6 6 5 7 8 8

AS-MQ Default to 15-fold 37 5 4 6 BF BF BF

15-fold to 50-fold 17 9 10 8 14 18 BF

DHA-PPQ Default to twofold 10 3 3 3 5 9 BF

Twofold to fivefold 1 5 5 7 7 10 14
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of successful treatment, against which the survival prob-
abilities of later emerging parasites could be compared. It 
was assumed that between 1010 and 1012 parasites (cho-
sen from a uniform distribution) from a single clone were 
present at the time of treatment, the outcome (i.e., sur-
vival/death) was simulated and the probability of each 
IC50 ‘genotype’ surviving direct treatment determined.

Results
The ‘true’ WoS are shown on Fig.  2 and the raw data 
are given on the left hand panels of Fig.  3 and Addi-
tional file  1: Figures S1 and S2. All ACT regimens rou-
tinely cleared infections emerging from the liver on the 
first day post-treatment irrespective of their IC50 value 
(Fig.  2). Thereafter the probability of an infection suc-
cessfully establishing in patients was highly dependent 
on the parasite IC50. The probability of surviving showed 
the largest increase between days 2 and 3. This is likely 
to be due to the presence of the artemisinin component 
on day 2 and its absence by day 3 (by convention, treat-
ment starts on day 0 so artemisinins are present on days 
0, 1 and 2). The probabilities that an established, pat-
ent infection survived direct treatment with the partner 
drug monotherapy are given in Fig.  2 for each resistant 
‘genotype’ in the column labelled ‘POST’. The POST was 
always greater than the probability of parasites surviving 
emergence on day 0 for two plausible reasons. Firstly, the 
established, patent infections treated on day 0 are present 
in much greater numbers (1010–1012 parasites) than the 
newly emerging infections on day 0 (105 parasites). Sec-
ondly, POST is calculated for the partner drug mono-
therapy, whereas emergence on day 0 encounters both 
partner drug and an artemisinin derivative.

The presence or absence of a true WoS between the 
different genotypes can be determined from Fig.  2. As 
expected, the true WoS is closed in the initial days post-
treatment (survival probability is around zero for all 
alleles) and closed again at later time points (when all 
alleles have a near 100% probability of surviving). The 
WoS is however open during the intermediary days and, 
interestingly, the probability changes between genotypes 
are roughly parallel. The true WoS was therefore arbitrar-
ily defined as the time difference between the days when 
an allele has a 50% change of successful emergence (the 
dashed lines in Fig. 2).

The pattern of treatment outcome following AR-LF 
(Fig. 2a) was broadly similar to that noted with AS-MQ 
(Fig.  2b). Both ACT regimens kept the probability of 
successful emergence below 10% with sensitive infec-
tions (i.e., IC50 increases <fivefold) for ten to 20  days 
post-treatment (AR-LF and AS-MQ, respectively). 
As expected, the probability of successful emergence 
increased as infections became more resistant. The 

probability of an infection successfully becoming estab-
lished just 10 days after treatment with the most resistant 
genotypes (50-fold IC50 increase) was as high as 60–80% 
following AR-LF and AS-MQ treatment, respectively. 
Treatment with DHA-PPQ was much more sensitive to 
increases in IC50 (Fig. 2c) than AR-LF and AS-MQ, sug-
gesting it had a much shorter period of post-treatment 
prophylaxis (discussed later). Ten days after treatment, 
infections with PPQ-sensitive parasites had a 40% chance 
of successful emergence while infections with an IC50 
increase of twofold and fivefold had a 68 and 95% chance 
of resulting in a successful emergence. Twenty days post-
treatment, these probabilities increased to 60, 80 and 
97%, respectively. Given that the probability of acquiring 
a new infection associated with a fivefold IC50 increase 
reached >95% almost immediately after the artemisinin 
component (DHA) was eliminated, it was unnecessary 
to illustrate greater increases in PPQ IC50 as the results 
would follow the same pattern.

The clinical WoS were formally defined as the differ-
ences between genotypes based on the tenth, 25th and 
50th (i.e., median) centile values of patient data and are 
given on Additional file  1: Table S2 with the raw data 
shown on the middle and right hand panels of Fig.  3 
for AR-LF, and Additional file  1: Figures S1 and S2 for 
AS-MQ and DHA-PPQ, respectively. Figure 3 shows the 
clinical WoS for AR-LF opens much later using Method 
2 (right hand panel) than Method 1 (central panel) and 
shifts the distribution of earliest patent infections (used 
to define the opening of the WoS) significantly to the 
right (i.e., to later days). Additional file 1: Figures S1 and 
S2 show this result was consistent following AS-MQ and 
DHA-PPQ treatment.

The key research question addressed here is whether 
the clinical WoS reliably estimates the ‘true’ WoS; the 
estimates are given on Table  1 and Additional file  1: 
Tables S2 and S3. This does not appear to be true if the 
clinical WoS is estimated using Method 1, which ignored 
new infections occurring after the follow-up period 
(Table  1 and Additional file  1: Tables S2, S3). Following 
treatment, the clinical WoS consistently underestimated 
the true WoS by as much as 9 days for AR-LF, 33 days for 
AS-MQ and 7 days for DHA-PPQ (Method 1, Table 1). 
One notable exception to this rule occurs when DHA-
PPQ resistance is increased from twofold to fivefold, the 
clinical WoS over estimates the true WoS by up to 6 days 
(Method 1, Table 1).

Calculating the clinical WoS using Method 2 generally 
provided better estimates of the true WoS (Table  1 and 
Additional file 1: Tables S2, S3). However, alleles that were 
particularly sensitive to the drug had such a low probabil-
ity of becoming patent during the 63-day follow-up that 
the earliest patent infection (for a given centile value) 
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often fell within the group of censored data arbitrarily 
assigned to day 70; the WoS was recorded as occurring 
‘beyond follow-up’ (BF) in these circumstances. Follow-
ing treatment with AR-LF, the clinical WoS accurately 
estimated the true WoS for all IC50 increases when 
defined using the tenth or 25th centile and for larger LF 
IC50 increases (i.e., >15-fold) defined using the 50th cen-
tile (Method 2 in Table 1 and Additional file 1: Table S2). 
If MQ IC50 was increased twofold or more, the tenth and 
25th centile estimates of WoS were accurate to within 
one to 2 days (depending on the magnitude of the IC50 
increase and the centile cut-off, Method 2, Additional 
file 1: Table S2). When MQ IC50 was equal to the default 
value, or when the 50th centile cut-off was used to define 
WoS, estimates of the AS-MQ clinical WoS were not pos-
sible as new infections occurred beyond the follow-up 
period (Method 2 in Table 1 and Additional file 1: Table 
S2). Estimates of clinical WoS following DHA-PPQ treat-
ment were accurate when PPQ IC50 increased twofold 
(defined by the 25th centile, Method 2, Table 1) but over-
estimate the true WoS by as much as 6–13  days when 
IC50 increases from two to fivefold.

In summary, Table 1 shows that clinical WoS calculated 
using Method 1 (i.e., as currently estimated) were con-
sistently shorter than the true WoS. Clinical WoS calcu-
lated using Method 2 were far more consistent with the 
true WoS; it appears that Method 2 based on the 25th 
centile provides the best match between true and clinical 
WoS. The exception was DHA-PPQ, which was overesti-
mated by both methods when PPQ IC50 was increased 
more than twofold.

These results were determined assuming patients 
acquire 16 new infections per year (see Additional file 1 
for details); note results were consistent when the num-
ber of new infections was reduced to eight per year 
(Additional file 1: Table S3).

Discussion
The aim of this paper was to investigate how accurately 
genotyping data obtained during anti-malarial drug clini-
cal trials can estimate WoS. The results show that the 
current method of estimating WoS from the clinically 
observed patency of different genotypes is a poor surro-
gate and tends to underestimate the true WoS (Method 
1, Table  1). For example, the duration of the true WoS 
following a default to 15-fold IC50 increase was 17 and 
37  days for AR-LF and AS-MQ, respectively; the corre-
sponding clinical WoS estimates were eight to 9 days or 
4–6  days, respectively (Method 1, Table  1). Including 
‘censored’ individuals in the analysis (Method 2, Table 1) 
greatly improved clinical WoS estimates, particularly 
when using the 25th centile cut-off. Practically, Method 2 
requires a significant number (ideally 10–25% of patients) 

of new infections with sensitive parasites to occur during 
the 63-day follow-up period to prevent estimates falling 
into the censored BF period which would preclude esti-
mating WoS. For example, it was impossible to deter-
mine a WoS for MQ-sensitive parasites as new infections 
rarely occurred during the follow-up period; Fig. 2 shows 
there is still only a 30% chance of acquiring a new infec-
tion with MQ-sensitive parasites 50 days after the initial 
treatment.

A large discrepancy did occur for PPQ when IC50 was 
increased from two to fivefold; the clinical WoS estimates 
of the true WoS were greatly overestimated regardless 
of the method or centile used. Lines A and B on Fig.  1 
provide one possible explanation for this. The true WoS 
(Table  1) shows infections with a PPQ IC50 increased 
twofold can emerge 1 day after infections with a fivefold 
IC50 increase. If these infections grow at different rates as 
a result of their differing IC50s then the infections would 
become patent several days apart and so the clinical WoS 
would be expected to overestimate the ‘true’ WoS.

The choice of model parameters was previously vali-
dated for these ACT [20–22] and the results generated 
herein are again highly consistent with field data. Fully 
effective ACT was able to clear infections with either 
sensitive or mildly resistant parasites when treated 
directly. Subsequent re-infections with LF-sensitive 
parasites typically become patent 25–35 days post-treat-
ment in these simulations (central panel, Fig.  3), which 
closely match those reported by Sisowath et al. [2, 3] who 
found re-infections with LF-sensitive parasites occur-
ring 24–30  days after treatment. The simulated results 
also show AS-MQ was able to prevent new infections by 
sensitive and mildly resistant parasites for longer than 
AR-LF. This implies MQ has the longer post-treatment 
prophylactic period, consistent with the data of Sagara 
et al. [25] who reported re-infections in Peru occur less 
frequently in their follow-up period of 28 days following 
AS-MQ treatment than AR-LF.

A previous study [26] used a similar PK/PD approach 
to elucidate the general principles underlying antimalarial 
drug windows of selection. This manuscript extends this 
seminal work in three important ways. Firstly, by incor-
porating recent methodological advances in PK/PD mod-
elling of antimalarial dosing: this allows multiple dosing, 
drug absorption and conversion processes, and the co-
administration of artemisinin as in the current genera-
tion of ACTs [20, 21]. It also allows the analysis of PPQ, a 
currently widely used antimalarial, which has more com-
plicated (two or three compartmental) PK (e.g. [27]). It is 
unlikely that these inclusions will have a large qualitative 
impact on the basic properties of WoS but it is important 
to repeat the analyses using the current best practice in 
PK/PD modelling. Interestingly, there were some notable 
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quantitative differences: unlike the Stepniewska and White 
paper [26], the new analyses did not find WoS that lasted 
“several months”. The estimates of WoS presented here last 
approximately 1–2 weeks; this has important policy impli-
cations as shorter WoS suggest a slower spread of drug 
resistance. The second advance is the simultaneous inclu-
sion of the substantial variance that occurs in all the PK/
PD parameters (Additional file  1: Table S1); this reflects 
the reality in vivo and means that WoS become probabil-
istic (Fig. 2) rather an fixed entity, and requires that WoS 
be re-defined in this more probabilistic context. Finally, 
simulations included re-infection of patients to show how 
WoS may be estimated from clinical data. It is now consid-
ered mandatory in malaria drug clinical trials to genotype 
recurrent malaria to distinguish treatment failures from 
new infections [28]. Recent advances in identifying can-
didate genes encoding resistance [29, 30] mean that these 
samples can later be re-genotyped at candidate genes to 
obtain clinical evidence of their impact on resistance. The 
new method of analysis (Method 2) will allow these data to 
be analyzed in the appropriate, accurate manner.

One objective of this study was to contribute to the 
theory describing the dynamics underlying the spread of 
anti-malarial drug resistance. Three processes drive drug 
resistance: the ability to survive treatment, the WoS and 
intra-host dynamics [31]. The ability of a mutation to sur-
vive treatment can already be quantified by clinical tri-
als. Quantifying intra-host dynamics is less easy although 
some progress has been made in mouse models [32] and 
through inference from clinical data [33]. The results pre-
sented here on WoS suggest that it is now possible to accu-
rately quantify all three of the forces driving resistance. 
Table  1 suggests that the current method of estimating 
clinical WoS by ‘visual inspection’ or its more formalized 
Method 1 described above, underestimate the ‘true’ WoS 
for AR-LF, AS-MQ. The new Method 2 includes all 
patients when estimating the clinical WoS and obtains 
estimates much more consistent with the ‘true’ WoS. It 
is however important to consider that methodologically, 
Method 2 requires that estimates of WoS be undertaken in 
areas of high transmission to ensure a reasonable propor-
tion of the population acquire a new infection during the 
follow-up period (see recommendations below). Quantify-
ing this impact for the current generation of anti-malarials 
can only be achieved through accurate estimation of their 
true WoS, hence the importance of verifying whether clin-
ical WoS accurately reflect the true WoS.

The results presented here are only applicable to the 
three drug regimens investigated. Researchers are urged to 
use the methodology contained within this and previous 
papers [20–22] to estimate the likely clinical WoS for other 
drugs and/or drug regimens. By reproducing the plots 
in Fig. 2 for their chosen drug regimens, researchers can 

quickly and cheaply assess the likely success of estimating 
WoS from field data. For example, it would not be advis-
able to estimate the WoS for drugs where the true WoS is 
likely to be very short (such as PPQ; Fig. 2c) but it would 
be suitable to use the new method, Method 2, for drugs 
that have longer true WoS (Fig.  2a, b, respectively). This 
new methodology does also require that clinical trials be 
carried out in areas of moderate to high transmission in 
which both, or all, alleles are well represented so patients 
have an adequate chance of acquiring a new infection.

The study also has operational implications for anti-
malarial drug deployment policies. The long half-lives 
characteristic of most malaria partner drugs have always 
been regarded as potent drivers of drug resistance but the 
results presented here suggest they are more potent driv-
ers than implied by previous estimates of WoS based on 
‘visual-inspection’ of re-infections (or the more formal 
Method 1). There is currently interest in the improved 
diagnostics of malaria treatment, primarily to ensure 
treatment is restricted to confirmed malaria cases, so 
treatment is appropriate to the underlying clinical con-
dition [8]. A secondary objective is to reduce the use of 
expensive ACT and, it is argued, reduce “selection pres-
sure for drug resistance” [34]. For example, if a drug had 
a WoS of 15 days and a patient was given six treatments 
throughout the year, there would be 15 × 6 = 90 days or 
approximately 25% of the year in which the resistant para-
sites were being preferentially selected; cutting treatment 
down to two doses per year would obviously decrease 
this selection by two-thirds, i.e., to 15 ×  2 =  30  days. 
The results suggest the decreased selection for resistance 
caused by improved diagnostics may be much greater 
than anticipated. This is because the drugs’ true WoS 
are longer and potentially much more important drivers 
of resistance than suggested by analysis of clinical data 
using Method 1. The results also suggest that proposed 
drug deployment policies based on mass distribution of 
ACT, such as MDA and IPTs, which inevitably increases 
drug use in the population, have the potential to be more 
potent drivers of resistance than has been previously 
thought because the WoS are longer than anticipated. A 
detailed investigation of the advantages and disadvan-
tages of such interventions is outside the remit of this 
paper, but it does emphasise that accurately quantifying 
the magnitude of WoS has both a broad application in 
quantifying the drivers of drug resistance, and also has a 
more specific role in the evaluating the likely impacts of 
interventions such as IPT and MDA.

Conclusion
This study was designed to identify the best methods to 
analyse clinical data that generate results consistent with 
the ‘true’ WoS. The resulting recommendations are as 
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follows. First, if possible, a PK/PD analysis similar to that 
shown in Fig. 2 should be performed to obtain estimates of 
the true WoS for the chosen drug treatment. Extreme cau-
tion would be required when interpreting WoS estimates 
obtained for treatments that are particularly sensitive to 
increasing drug resistance (such as PPQ in these examples). 
Second, the clinical data should be analysed using Method 
2 described above; this includes censored patients who do 
not have a new infection during follow-up. However, the 
potential problem with Method 2 is that the classification 
centile may lie in the BF class (Table  1). Hence accurate 
WoS estimates are only really feasible if trials are carried 
out in areas of moderate to high transmission where cen-
sored patients are less than 75% of the population, i.e., at 
least 25% of patients get re-infections during the follow-up. 
Thirdly, the analyses should be done in areas where both, or 
all, alleles are present at significant frequencies to allow a 
direct comparison in the same clinical setting.
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