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Abstract 

Background:  Rosetting is associated with severe malaria and a primary cause of death in Plasmodium falciparum 
infections. Detailed understanding of this adhesive phenomenon may enable the development of new therapies 
interfering with rosette formation. For this, it is crucial to determine parameters such as rosetting and parasitaemia 
of laboratory strains or patient isolates, a bottleneck in malaria research due to the time consuming and error prone 
manual analysis of specimens. Here, the automated, free, stand-alone analysis software automated rosetting analyzer 
for micrographs (ARAM) to determine rosetting rate, rosette size distribution as well as parasitaemia with a convenient 
graphical user interface is presented.

Methods:  Automated rosetting analyzer for micrographs is an executable with two operation modes for automated 
identification of objects on images. The default mode detects red blood cells and fluorescently labelled parasitized 
red blood cells by combining an intensity-gradient with a threshold filter. The second mode determines object 
location and size distribution from a single contrast method. The obtained results are compared with standardized 
manual analysis. Automated rosetting analyzer for micrographs calculates statistical confidence probabilities for roset-
ting rate and parasitaemia.

Results:  Automated rosetting analyzer for micrographs analyses 25 cell objects per second reliably delivering identi-
cal results compared to manual analysis. For the first time rosette size distribution is determined in a precise and 
quantitative manner employing ARAM in combination with established inhibition tests. Additionally ARAM measures 
the essential observables parasitaemia, rosetting rate and size as well as location of all detected objects and provides 
confidence intervals for the determined observables. No other existing software solution offers this range of function. 
The second, non-malaria specific, analysis mode of ARAM offers the functionality to detect arbitrary objects.

Conclusions:  Automated rosetting analyzer for micrographs has the capability to push malaria research to a more 
quantitative and statistically significant level with increased reliability due to operator independence. As an installa-
tion file for Windows © 7, 8.1 and 10 is available for free, ARAM offers a novel open and easy-to-use platform for the 
malaria community to elucidate rosetting.
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Background
The most deadly animals worldwide are mosquitoes as 
they are the main transmitter of malaria parasites. In the 

year 2014 about 220 million malaria cases occurred glob-
ally, while about 430,000 people died due to a malaria 
infection [1]. There are five species of the malaria para-
site Plasmodium that can infect humans: Plasmodium 
falciparum, P. vivax, P. ovale, P. malariae and P. knowlesi, 
whereof P. falciparum leads to the highest severity of 
disease and number of deaths. Its survival in the human 
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host depends on the ability to adhere to endothelial cells 
which allows sequestration in the microvasculature and 
thus to avoid splenic clearance [2, 3]. The formation of 
rosettes, a mechanism where parasitized red blood cells 
(pRBC) bind to two or more unparasitized red blood 
cells (RBC), leads to formation of cell aggregates. These 
aggregates, in turn, are discussed to facilitate the seques-
tration of the pRBC and consequent obstruction of cap-
illaries and are suggested to be associated with severe 
malaria [3–6]. Even though there is a number of studies 
on the molecular mechanisms of rosetting using in vitro 
cultures identifying the crucial receptors and developing 
anti rosetting drugs [7–16], the mechanism and function 
of rosetting is not fully understood to date. Important 
parameters necessary to analyse and research with focus 
on the rosetting phenomenon are the parasitaemia P (the 
ratio of pRBC to total RBC count)

the rosetting rate R (the fraction of pRBC binding two or 
more other RBC)

and the size distribution of the rosettes.
To date the standard procedure to determine rosette 

rate and size is manual counting of a stained culture in 
the microscope. This is time consuming and suscepti-
ble for operator dependent systematic errors. Especially 
when working with anti-rosetting drugs requiring large 
number of samples the manually performed analysis is 
a bottleneck. For the significance of the findings in all 
studies the objectivity of the operator and a sufficiently 
high number of analysed RBC is crucial. To reduce analy-
sis time and improve the uniformity as well as accuracy 
of the results automation of the whole process is highly 
desirable.

A very efficient way to determine the parasitaemia of 
a specimen is to use fluorescence activated cell sorting 
(FACS). The determination of parasitemia only with the 
help of FACS is automated, fast and possibly to prefer if 
access to a FACS is granted, but the set-up is very costly 
and also expensive to maintain.

Another way is the fully automated analysis of micro-
scope images. There are several publications describ-
ing software and automated algorithms to determine 
at least one of the before named measures at a time. 
One of the first approaches of automatic image analy-
sis of stained blood smears is the MATLAB ® -based 
script MalariaCount, developed by Sio et  al. [17, 18]. 
The analysis depends on command line input as the 
tool has no graphical user interface (GUI). Further-
more, the script needs an installation of MATLAB ®. 

(1)P = NpRBC/NRBC

(2)R = Nrosettes/NpRBC

MalariaCount only gives parasitaemia as result. The 
source code is available on the journal website. With a 
three-step algorithm Dìaz et  al. [19] determine parasi-
taemia and the parasites infection stage. This algorithm 
needs image preprocessing, color images for segmenta-
tion and a set of classifiers to identify the erythrocytes 
infection stage. Unfortunately, it is not mentioned how 
this software is implemented or where to get its source 
code. Frean uses the free software ImageJ [20] in combi-
nation with a script to determine parasitaemia in thick 
Giemsa-stained blood smear microscope images [21]. 
Therefore, he combined the particle counting algorithm 
of ImageJ and tunes its parameters in a semi-automatic 
way. His script is available in the publication. Tek et al. 
[22] gives an overview about literature concerning auto-
mated blood film analysis for malaria and similar infec-
tious diseases.

Despite these publications a great number of malaria 
research laboratories still estimates parasitaemia and 
rosetting rate by manual counting of pRBC and RBC. 
This is due to a lack of a capable, convenient, free soft-
ware that is easy to operate.

In this paper a free, easy-to-use, stand-alone software 
that allows to detect parasitaemia, rosetting rate and 
rosette size distribution via a self-explaining, graphi-
cal user interface is presented. The automated rosetting 
analyzer for micrographs (ARAM) analysis itself is per-
formed automatically, significantly faster than by hand 
and without additional operator input or preprocessing 
of the images. Additionally, in contrast to FACS, ARAM 
offers the possibility to check the detection results on 
each analysed frame.

Methods
Cell culture
Plasmodium falciparum laboratory strains are culti-
vated according to standard protocols [23] under shak-
ing conditions during cultivation. By enrichment in a 
Ficoll-gradient solution or through enrichment with 
monoclonal antibodies (mAbs) [23] the rosetting pheno-
type is maintained.

Image acquisition and analysis
Sample preparation
For the manual analysis the parasite culture is stained 
with 10 µg/ml of acridine orange for 5 min at room tem-
perature (RT). For analysis with ARAM the same prepa-
ration process is used but the parasite culture gets diluted 
to a haematocrit of 0.2 % to prevent cell overlapping. In 
addition, the slides are left at RT for a total of 10  min 
to allow the cells to settle down prior to microscopic 
investigation.
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Inhibition assays
In rosette disruption assays 45  µl of cultures are mixed 
with 5  µl of heparin (10× final concentration) and are 
then incubated at room temperature for 60 min. For the 
mixing wide pipettes tips are used to not mechanically 
interfere with rosettes.

Image acquisition routine
In the manual analysis 500 RBC are counted for parasi-
taemia and 100 pRBC for rosetting rate determination like 
described in [23]. Therefore, a Nikon Optishot-2 micro-
scope with 40× objective is used. Neighboring fields are 
selected for counting all parameters by moving from the 
upper left corner of the slide to the lower right and from 
the upper right corner to the lower left corner to ensure 
compensation for potential uneven distribution of pRBC 
and rosettes on the slide. For the ARAM analysis a Nikon 
Eclipse80i microscope with 40× objective is utilized. The 
images are captured by a Hamamatsu ORCA ER camera 
with NIS element software. The same neighbouring fields 
selection method as described above is used and 50 or 100 
images are taken with a FITC filter with simultaneously 
applied bright light (exposure time 1 s). For further analy-
sis, the images are exported in jpg-file format.

Software
With the goal of creating a free, stand-alone application 
MATLAB ® is chosen as the underlying software frame-
work. The collection of scripts that make up ARAM is 
then compiled and accessible as executable file. This 
allows ARAM to run without a MATLAB ® installation. 
The basic concept in detecting objects on the images is 
to separate them from the background. Therefore, an 
algorithm transforms the image into a binary map of the 
original, where pixels that are part of the cell object are 
white, and background pixels are black. There are differ-
ent methods to identify objects. In default mode ARAM 
works with a derivation-based algorithm to detect para-
sitaemia, rosetting rate and rosette size distribution from 
micrographs with fluorescent pRBC. A second operation 
mode is included which can use an additional threshold 
based algorithm to detect size distribution and location 
of arbitrary objects, such as nano-particles or vesicles. 
During development of the software a third background 
based algorithm for object identification was created but 
is not implemented in ARAM: as this algorithm utilizes 
the most apparent procedure it is described in the fol-
lowing paragraph to explain why it does not meet the 
requirements of an automated detection method.

Background‑based algorithm
To separate cell objects from the background this algo-
rithm creates a background-only version of the analysed 

image by line wise fitting of intensity values, that is sub-
tracted from the original image. To account for non-
conformity of illumination in typical micrographs the 
algorithm applies two threshold operations near the 
mean intensity of the image to isolate the background. 
Areas that do not meet the threshold range are filled 
with the mean intensity value. The resulting matrix is 
line wise fitted with a polynomial to create a smooth 
background-only image that includes non-uniform 
illumination. The algorithm subtracts this new back-
ground-version from the original image leaving a black 
background and lighter cells (as shown in Additional 
file  1: Figure S1). For highly non-uniform backgrounds 
the algorithm is slowed down due to the great number of 
necessary polynomial fits.

Threshold‑based algorithm
For very uniformly lit backgrounds and high contrast 
between objects and background a threshold-based algo-
rithm delivers the best object detection results. There-
fore, every pixel of the grey value image is compared to 
a threshold value: pixels with higher intensity are dis-
played white, pixels with lower intensity are displayed 
black. The analysis part of the algorithm then searches 
the resulting binary image for the detected objects. An 
example for this algorithm is shown in the Additional 
file 2: Figure S2. ARAM optionally uses this algorithm in 
the object counting mode but not in the default mode as 
the background is lighter than the cells but darker than 
the pRBC, which would need two threshold operations 
simultaneously.

Gradient based algorithm
This algorithm detects object contours in an image through 
the local derivation of neighboring pixel values. Therefore, 
RGB-colored micrographs are transformed to 8-bit grey 
value images. As the standard edge detection procedure the 
algorithm uses the Prewitt filter with the Prewitt operator 
as the kernel of this filter. This operator determines the gra-
dient in x-direction and y-direction of the image. With the 
original image A the vertical and horizontal operators are

The operation * represents the 2D convolution of kernel k 
(the matrix in Eq. 3) and image A. Because the matrices are 
not continuous functions the discrete formulation of a 2D 
convolution is utilized:

(3)Gx =





−1 0 +1
−1 0 +1
−1 0 +1



 ∗ A,

Gy =





+1 +1 +1
0 0 0
−1 1 −1



 ∗ A
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 For every pixel the algorithm calculates the gradient mag-
nitude from both contributions in Eq. (3) as

The result is a matrix of derivative approximations for 
every pixel, where a threshold filter creates binary entries 
from the calculated magnitude values. The background is 
now black (0) and the found edges white (1). In Fig.  1(b) 
a typical result is shown. Detected edges are marked as 
points and stripes with a width of one pixel. A dilation of 
these white structures in horizontal and vertical direction, 
as depicted in Fig.  1c, connect the whole cell boundary 
(adjustable in the configuration file expansion factor for cell 
detection; default value: 5). In Fig.  2, the process is sche-
matically displayed for a single point and for multiple lines. 
To fill enclosed areas within the cell wall outline the algo-
rithm uses the MATLAB ® function imfill. The so detected 
and marked cell areas are bigger than indicated by the edge 
detection filter. A correction is applied by an erosion fil-
ter with a diamond-shaped structuring element of tunable 
size (adjustable in the configuration file factor for adjusting 
dilation in cell detection; default value: 2). This filter skims 
white pixels on the 2D-surface of the areas. The resulting 
detected objects render the cells in the original image, as 
shown clearly in Fig. 1f. 

The advantages of this algorithm are the ability to han-
dle a wide range of object shapes, sizes and structure 
without the need for an image dependent pre-processing. 
For images with pronounced noise a blur- or smooth-pre-
processing step helps to avoid erroneous edge-detections. 
Since ARAM is intended to be fast, applicable to all kinds 
of images without significant preprocessing and without 
the operator input the gradient-based algorithm is used 
for detecting cell objects on micrographs as default detec-
tion algorithm in both above named operation modes.

Detecting parasitized RBC and rosettes
For the detection of pRBC ARAM uses another routine. 
As mentioned above, labelling of pRBC with a fluores-
cent dye is established and the most common method for 
pRBC detection [23]. The signal of the pRBC is usually 
much brighter than the background and RBC. To iden-
tify the pRBC a simple threshold operation is sufficient 
and produces a binary image with white pRBC on black 
background. ARAM detects rosettes based on the size 

(4)

Gi

(

x, y
)

= ki (m, n)⊗ A
(

x, y
)

=

1
∑

m=−1

1
∑

n=−1

ki (m, n)A (x −m, y− n)

(5)G =

√

G2
x +G2

y

Fig. 1  Gradient based algorithm. a The original micrograph with two 
rosettes, one single pRBC and multiple healthy RBC. b The Prewitt 
filter is applied and the threshold of the resulting gradient map 
displayed. c The edges from b are dilated like shown in Fig. 2. d Cap-
suled parts of the cells are filled. e The diamond shaped erosion filter 
shrinks the outline of the marked areas to a size comparable to the 
before detected outermost edges. f The edges are taken as outlines 
and plotted onto the original image for better visualization
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of a single cell (SCS). An agglomerate of minimum size 
m (adjustable in the configuration file rosettes cut-off size 
factor; default value: 2.3) containing at least on pRBC is 
defined as a rosette:

If there is more than one pRBC in a cluster, it is still 
counted as one rosette. For identifying rosettes ARAM 
calculates the centroid for all previously found pRBC. 
It then compares these coordinates with the detected 
cells in the first analysis step. If the detected area on the 
original picture around the coordinates fulfils the condi-
tion above, it is filled with the background color. ARAM 
applies an inversion of the image and subtracts that from 
the original cell binary image to get a binary image deliv-
ering the result image of the identified rosettes. This new 
image sequence is analysed along to the object counting 
step. The result window of ARAM presents an overview 
of all determined observables like cell and pRBC count, 
rosette count and size distribution as well as parasitae-
mia with further statistical information on the confidence 
intervals. Furthermore, the export function creates a text 
file with all data including a table of all detected objects, 
e.g. for further statistical processing.

(6)detected area

{

< m× SCS = RBC
≥ m× SCS = rosette

To assure the quality of the results ARAM performs 
an error analysis. Uncertainties in the analysis are small 
compared to the influence of statistical deviations in e.g. 
cell size. Since a few microscope images with a small 
amount of cell objects do not represent the entire pop-
ulation of cells and cell size distribution in the sample a 
statistical approach is necessary. This way it is possible 
to quantify the impact of non-uniform cell and rosette 
distribution throughout the specimen. Additionally, the 
software does not have algorithm induced errors and 
detects 100 % of objects and observables in ideal images. 
A measurement or algorithm error would depend on the 
analysed image series and is hard to quantify. Therefore, 
ARAM calculates error margins ε for a given confidence 
probability.

The found result lays in the calculated error margin of 
width 2ε:

with the x-quantile of the standard normal distribu-
tion ф−1 (x), the chosen confidence probability Γ, the 

(7)

ε = φ−1

(

1−
1

2
× (1− Γ )

)

× (Z × (1− Z))1/2

× n−1/2
×

(

1−
(n− 1)

(N − 1)

)1/2

Fig. 2  Schematic cell boarder dilation. The single white pixel in image a gets dilated in two steps: b first in vertical direction by a factor of five (c) 
and this operation is applied to the dilated image in horizontal direction also with a factor of five. In d a typical segment of the binary detected 
edges image is shown, in e a vertical dilation of all pixels (factor five) and in f an horizontal dilation of all pixels (factor five). g The eroded white areas. 
The suggest outline from the top left image is now clearly visible
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calculated quantity of interest Z (like parasitaemia), 
sample size n and the population size N [24]. Equation 7 
holds without restrictions if the following conditions 
apply:

by increasing the sample size n this can be ensured.

Results and discussion
ARAM presents all determined parameters in a results 
window shown in Fig. 3, displaying numerical values for 
parasitaemia, rosetting rate and rosette size as well as bar 
charts for object size distribution and rosette size distri-
bution in units of a single RBC cell size. All values in the 
following discussion are taken from ARAM results win-
dow or text export.

Validation of ARAM
To characterize ARAM’s capability to analyse parasi-
taemia, rosetting rate and rosette sizes in comparison 

(8)Z × n ≥ 50

(9)

(

Z × n× (1− Z)×

(

1−
n− 1

N − 1

))1/2

> 3.

to manual analysis, 100 images are taken from a speci-
men and analysed by independent operators (in Figs. 4, 
5 shown as operator 1–3) as well as the software. Val-
ues for RBC and pRBC detected by ARAM are similar 
to the manually acquired results, shown in Fig. 4. Results 
for parasitaemia show significant agreement with the 
manual analysis, as is also confirmed by the Bland–Alt-
man test (see Additional file 3: Figure S3). The error bars 
mark the statistical error which display the 90 % confi-
dence intervals of the measures and overlap with the 
manually obtained results. ARAM detects a parasitae-
mia of 4.81 % whereas the operators count 4.75, 4.98 and 
4.75  %. The statistical error is about 0.63  % each time. 
For the rosetting rate in Fig. 4 ARAM and the operator’s 
results are akin (ARAM 58.70 ± 6.70 %; operators 63.09, 
59.03, 63.51  %). The rosette sizes are in good accord-
ance within ARAM’s error range, although slightly larger 
deviations can be seen. The operators determine the 
mean rosette size as 3.87, 3.47 and 4.09 while ARAM 
gets 3.65 with an interquartile range of  1.39. The com-
parison of determined rosette size is not as obvious as 
the above mentioned measures due to technical rea-
sons: ARAM only detects a two dimensional projection 

Fig. 3  ARAM results window. The ARAM results window gives the most important calculated values. The green button on the bottom left exports all 
data to a text file in the working directory. The histogram in the top right is a typical object size distribution from a 100 images dataset. Two peaks 
are apparent, the greater one marks the single cell size area
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of the 3D object, like described above which leads to a 
less accurate calculation of rosette size than the calcula-
tion for the rosetting rate. Overall, the uncertainties are 
dominated by the statistical error in all cases here. For 
instance, to decrease the confidence interval to half of its 
width a sample size of about 12,500 RBC would be nec-
essary, independent of the determination mode (manual 
or automated). 

Application of ARAM: rosette inhibition study
As an example for the application of ARAM, a study of 
the inhibitory effect of heparin on rosetting rate and size 
is performed. Three different heparin concentrations 
are chosen. Each sample is analysed by manual count-
ing in the microscope, manual counting from the images 
(50 images each) and ARAM analysis (same 50 images 
each) to compare the results. Heparin interacts with the 
surface expressed P. falciparum erythrocyte membrane 
protein 1 (PfEMP1) competing out the receptor on the 
RBC involved in the formation of rosettes. This leads 
to the disruption of already formed rosettes or inhibit-
ing rosette formation [25, 26]. The detected parasitae-
mia is independent on heparin concentration within the 

confidence intervals, as can be seen in Fig.  5. The val-
ues are 6.21 ± 0.68, 7.84 ± 1.04 and 6.74 ± 0.88 %. The 
rosette rate is decreasing with increasing inhibitor con-
centration as analysed with any of the three methods, see 
Fig. 5 top right part. The differences between automatic 
and manual analysis of the images are much smaller 
than between manual image analysis and manual analy-
sis directly performed with the microscope, probably 
due to the inhomogeneous distribution of RBC, pRBC 
and rosettes throughout the slide. By performing the 
analysis on a greater amount of samples this deviation is 
reduced, but without automation this is a time consum-
ing task. The mean rosette size is greater for the speci-
men without inhibitor and so is the interquartile range of 
the rosette size distribution. The heparin treated speci-
mens show smaller rosettes with a more narrow size dis-
tribution. The rosette size distribution (projection area) 
is depicted in the lower right part of Fig. 5. The trend of 
each measurement can be described by a rapidly decreas-
ing function towards greater rosette size (positive x-axis). 
Additionally, a higher inhibitor concentration reduces 
the size of rosettes.

To the authors’ knowledge, currently there are no 
reports on rosette size distribution within in  vivo or 

Fig. 4  Standard experiment results. Top left count of detected cell 
(RBC) and infected cells (pRBC) in 100 images: the blank graphs are 
manually counted by three different operators, the hatched bars are 
the counts detected by the software. Top right data of top left graph 
convoluted to parasitaemia. Results from ARAM are similar to the 
manual analysis results. The error bars mark the statistical error (90 % 
confidence interval). Bottom left rosetting rate of manual analysis falls 
within the statistical error of ARAM’s result. Bottom right: Rosette size 
is given as the average size out of all detected rosettes. The error bar 
from ARAM gives the interquartile range, the grey circle the median 
value

Fig. 5  Inhibition experiment results. Samples are treated with three 
different concentrations of inhibitor, compared are results generated 
by ARAM, operator on images and operator in microscope. Top left 
parasitaemia: values are similar and their statistical errors overlap. Top 
right rosetting rate: manual and automated analysis of micrographs 
correlate better than different manual analysis of the same sample. 
Bottom left rosette size: the error bar on the ARAM results gives the 
interquartile range, the grey circle the median value. Bottom right 
ARAM analysis of rosette size of individual rosettes from samples with 
different amount of inhibitor delivers a rosette size distribution
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in  vitro studies. Hence, the basic form of such a distri-
bution is estimated with a simple model (see Additional 
file 4: Supplementary information). As argued, it is plau-
sible to assume a Gaussian distribution of rosette size in 
terms of volume as indicated in Fig. 3 bottom bar chart. It 
is important to note that with the definition in Eq. 6 this 
Gaussian distribution is cut at the left side when there 
are non-zero values for rosette sizes smaller than the 
threshold. Since there are no studies about rosette size 
distribution, ARAM for the first time offers an easy way 
to analyse those and determine the amount of rosette 
objects necessary to get reliable and quantitative results 
of this highly important measure.

Error analysis
Above the necessity of utilizing a statistical error is 
described. In Fig.  6 the impact of sample size on the 
results is exemplarily demonstrated. On the x-axis the 
count of analysed RBC is shown. The groups of measure-
ment values correspond to the amount of RBC found on 
5, 10, 20, 50 and 100 images. Obviously the width of the 
confidence interval and hence the statistical uncertainty 
of the experiment is reduced with increasing sample 
size for parasitaemia as well as rosetting rate. Especially 
for rare effects this dependency will be much more pro-
nounced. With ARAM it is possible to gather such very 
rare effects, as it can realize a statistically significant 
amount of measurements with the necessary uniform-
ity. Otherwise these effects can be simply rare or hidden 
in the measurement uncertainties. In order to get reli-
able conclusions, the amount of analysed RBC or images 
has to be large enough that rare effects are analysed in 
sufficient extend. ARAM offers the option to calculate 
the amount of images for desired confidence probabili-
ties and width of confidence intervals from measured 

rosetting rate, number of analysed rosette objects and 
images. Assuming e.g. a value of interest v =  0.01 one 
would need 270 measurements to get ε =  0.01. And to 
get a reliable result with ε = 0.0023 a minimum of 5000 
images has to be analysed.

Image requirements
One major convenience of ARAM is the simplicity of 
performing an analysis: in a standard analysis the algo-
rithm does not need additional input. Nevertheless, to 
ensure this simple operation the images have to meet 
some specifications. There obviously is a limitation for 
high cell density and low contrast. For the edge detection 
via Prewitt-filtering there needs to be a sufficient differ-
ence between the grey value of background and cell wall 
pixels and edges should not be blurred. For the detection 
of the pRBC, the fluorescence needs to be bright enough 
and clearly visible compared to the image background. To 
identify a cell cluster from the first analysis step (object 
detection with Prewitt-filter) as a rosette there has to be 
a detected pRBC and at least two RBC within the cluster. 
The size cut-off value m (see Eq. 6) can be adjusted in the 
configuration file. This might be necessary when rosettes 
appear too small and are therefore not detected.

The possibility to save the analysed images with rosettes 
and detected RBC marked, allows easy verification of the 
results by the operator and readjustment of the analysis 
with help of the configuration-file. The text export trans-
ferring and saving of the calculated values makes data 
collection easy and time-saving. Additional scripts could 
read those text files and create automated plots if desired.

The most important preparation parameter is the cell 
density on the micrographs. Hence, one has to account for 
a suitable haematocrit: if cells are too close to a cluster but 
not part of it they may be mistakenly detected as part of the 

Fig. 6  Sample size dependency. Left determined parasitaemia and right determined rosetting rate for randomly chosen sets of micrographs
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rosette. To reduce this error the cell dilution of the specimen 
has to be chosen accordingly as illustrated in Fig. 7. Here the 
cell density is so high that non-bound RBC are in contact, 
leading to problems in single cell identification. This implies 
the intrinsic limitation of the presented algorithm.

Above-mentioned published software [17, 19, 21, 22] 
calculate parasitaemia from images, while [19] claim to 
additionally determine the parasites stage. ARAM not 
only calculates parasitaemia but also gives the statistical 
error to estimate the quality of the results. Beyond that 
ARAM is the only available software solution to analyse 
rosetting rate and rosette size distributions. The easy 
usage of ARAM is supported by its independence from 
other software, its graphical user interface and its results-
text-export functionality, features the other solutions do 
not include. With these abilities ARAM is the only soft-
ware suitable for laboratory work-flows to automatically 
analyse and characterize parasitaemia and rosetting in 
malaria infected specimens.

Conclusions
Summing up ARAM produces accurate and reproducible 
results for parasitaemia, rosetting rate and rosette size 
distribution. This analysis is fast and performed auto-
matically without the operators in depth knowledge of 
the software. Overall ARAM is a quick and simple way to 
reduce manual cell counting and produce reliable results 
for cell population monitoring and the study of drug 
influence on P. falciparum and its rosetting behaviour.

To improve the quality of measuring results and reduce 
time spent by the operator, the experiment can be fur-
ther optimized, standardized and made operator inde-
pendent. For now, the most time consuming part of this 
analysis is image acquisition. Consequently, a promising 
approach is the use of a motorized sample stage allow-
ing to automatically vary the sample position within the 
slide, focus and take the images. Furthermore, real time 
analysis could use the existing functionality to determine 
the necessary sample size.

Concluding, ARAM has the evident potential to serve 
as tool in daily laboratory work as well as a platform for 
studies of so far inaccessible measures like precise rosette 
size distribution. All interested operators can download 
this new powerful tool for free from the following web-
site: http://nanoquakes.de/ARAM/. ARAM is tested for 
64-bit Windows © 7, 8.1 and 10.
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