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Abstract 

Background:  The advent of whole‑genome sequencing has generated increased interest in modelling the struc‑
ture of strain mixture within clinical infections of Plasmodium falciparum The life cycle of the parasite implies that the 
mixture of multiple strains within an infected individual is related to the out‑crossing rate across populations, making 
methods for measuring this process in situ central to understanding the genetic epidemiology of the disease.

Results:  This paper derives a set of new estimators for inferring inbreeding coefficients using whole genome 
sequence read count data from P. falciparum clinical samples, which provides resources to assess within‑sample mix‑
ture that connect to extensive literatures in population genetics and conservation ecology. Features of the P. falcipa-
rum genome mean that standard methods for inbreeding coefficients and related F‑statistics cannot be used directly. 
After reviewing an initial effort to estimate the inbreeding coefficient within clinical isolates of P. falciparum, several 
generalizations using both frequentist and Bayesian approaches are provided. A simpler, more intuitive frequentist 
estimator is shown to have nearly identical properties to the initial estimator both in simulation and in real data sets. 
The Bayesian approach connects these estimates to the Balding–Nichols model, a mainstay within genetic epidemiol‑
ogy, and a possible framework for more complex modelling. A simulation study shows strong performance for all esti‑
mators with as few as ten variants. Application to samples from the PF3K data set indicate significant across‑country 
variation in within‑sample mixture. Finally, a comparison with results from a recent mixture model for within‑sample 
strain mixture show that inbreeding coefficients provide a strong proxy for these more complex models.

Conclusions:  This paper provides a set of methods for estimating inbreeding coefficients within P. falciparum 
samples from whole‑genome sequence data, supported by simulation studies and empirical examples. It includes 
a substantially simple estimator with similar statistical properties to the estimator in current use. These methods will 
also be applicable to other species with similar life‑cycles. Implementations of the methods described are available in 
an open‑source R package pfmix. Estimates for the PF3K public data release are provide as part of this resource.
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Background
While genetic factors play a crucial role in the emer-
gence of drug resistance within Plasmodium falciparum, 
many aspects of the genetic epidemiology of the parasite 
remain obscure [1, 2]. The beginnings of a global per-
spective on the genetic structure of parasite populations 

emerged from the analysis of whole-genome sequencing 
data (WGS) derived from ~200 parasite genomes col-
lected directly from clinical patients in six countries on 
three continents [3]. This study gave further evidence 
for the widespread presence of within-isolate strain mix-
ture and significant amounts of variation in its degree 
across continents. In grappling with the complexity of 
WGS read count data, the study departed from standard 
approaches for quantifing the amount of within-sample 
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variation by instead using an inbreeding coefficient, fws, 
a form of F-statistic.

Strain mixture has been traditionally assessed via mul-
tiplicity of infection (MOI) [4–6], using methods for 
inferring the number of strains from single-nucleotide 
polymorphisms (SNPs) or other typing technologies 
applied at a small number of loci. Researchers have sub-
sequently shown how finite mixture models can infer 
MOI using WGS but the under the heading of complexity 
of infection (COI) as these models can capture additional 
mixture features [7, 8]. Still, inbreeding coefficients have 
a long connection to population genetics and conserva-
tion biology and may be of interest to researchers con-
necting P. falciparum studies to other genetic contexts 
[9, 10]. This paper presents a collection of statistical 
methods for estimating fws, explores their performance 
in simulation, details their connection to COI estimates, 
and confirms the variation in fws values across countries 
using the P. falciparum 3000 genomes (PF3K), a publicly 
available data resource.

Inbreeding coefficients and the F-statistics from which 
they derive are measurements of the departure of allelic 
heterozygosity observed within a population from those 
expected at Hardy–Weinberg equilibrium (HWE) [10, 
11]. HWE specifies the distribution of alleles assum-
ing panmixia, a population exhibiting perfectly random 
mating with an absence of mutation, migration, drift, 
selection or other effects [12]. F-statistics calibrate the 
empirical allele distribution within a subpopulation 
against those expected under HWE, ranging from a value 
of one (no mixture) to zero (perfect HWE-type mixture). 
In the context of comparing the parasites’ genetic diver-
sity within a single infected individual relative to the local 
geographic population (and absent any geographic struc-
turing of the population, i.e. the Wahlund effect), these 
statistics effectively become inbreeding coefficients. fws 
denotes the relative amount of inbreeding within an indi-
vidual sample (w) relative to the expected amount in a 
subpopulation (s). Since here estimates are only consid-
ered only relative to a single country (subpopulation), the 
use of paired subscripts, fws is deprecated in favour of fi 
for a specific sample i.

F-statistics have proven to be an effective and 
extremely popular means for investigating species’ popu-
lation structure from both allelic and genomic data [10, 
13, 14]. However, standard software tools assume specific 
ploidy structures incommensurate with WGS data from 
P. falciparum and so cannot be used directly. The criti-
cal difference is that, within a human host, P. falciparum 
exists only in the haploid stage of its life-cycle [15]. Since 
short-read WGS data cannot yet capture full haplotypes, 
individual reads cannot be uniquely identified with their 
strain of origin. Without being able to associate reads to 

individual P. falciparum strains, no ’out-of-the-box’ use 
of standard F-statistics approaches with this new data 
appears possible.

Several earlier works have applied the F-statistic frame-
work to P. falciparum within-sample mixture. These 
concepts—while not under the heading of inbreeding 
coefficients—undergird much of the seminal work on 
MOI estimation [5, 6]. More recently, Manske et  al. [3] 
provided an initial estimator for inbreeding coefficients 
using WGS based on the slope of a modified regres-
sion line between the expected and observed heterozy-
gosity within a sample. Auburn et  al. [16] explores the 
connection between this estimator and standard MOI 
approaches by comparing these estimates with MOI val-
ues inferred by genotyping the msp-1 and msp-2 genes, 
showing strong correlation between these values in their 
sample sets.

This estimator has been further utilized in a number 
of recent studies on P. falciparum, including analyses of 
populations in the Gambia, Ghana, and Guinea [17, 18]. 
It has also been used in analysis of the population struc-
tures of Plasmodium vivax and Plasmodium knowlesi [19, 
20]. A recent examination of this estimator in the context 
of microsatellite genotyping explores a strong relation-
ship between the number of variants, allele frequency, 
and estimator performance[21]. There has been other-
wise little statistical work characterizing this estimator or 
it’s properties. This paper seeks to remedy some of this 
deficit by providing: a simple presentation of this esti-
mator; a set of alternate estimators that make stronger 
connections to the tradition around F-statistics; an inves-
tigation of their properties through simulations; and sev-
eral applications to relevant data sets.

This paper proceeds as follows. First, an overview of 
the data and the notation is provided. The initial esti-
mator employed by Manske et  al. [3] for estimating fi 
is then reviewed, followed by the presentation of two 
additional frequentist estimators. A Bayesian approach 
for these statistics is then derived from the the Balding–
Nichols model. All of these estimators are compared in 
an extensive simulation study. To consider their empiri-
cal performance, the correlation across all estimators in 
344 Ghanaian samples is examined and the Bayesian esti-
mates are compared to COI estimates. To show the per-
formance under controlled circumstances, we apply the 
methods to several clonal laboratory strains. As a final 
example, the estimates for the PF3K sample set are pre-
sented for each country, confirming significant variation 
in the amount of within-sample mixture across countries. 
The conclusion provides brief discussion of the strengths 
and limitations of the approaches, and possible future 
directions for modelling within-sample mixture using 
WGS.
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Data and models
Data and preparation
The data used comes largely from Release 3.0 of the PF3K 
resource. An overview of this project, collection protocols, 
and a full sequencing protocol can be found at the con-
sortial website [22]. For all the samples considered below, 
data come from Illumina HiSeq sequencing applied to 
clinical P. falciparum samples collected from 14 countries. 
Starting from the publicly available vcf files, samples 
from Nigeria and Senegal were also excluded due to sam-
ple size and differing sequencing technology, respectively. 
First, only positions that exhibited minor allele frequen-
cies greater than 0.01 were retained. Variants were fur-
thered filtered at the country level by removing samples 
that exhibited fewer than 80  % of variant positions with 
at least 20× coverage. SNPs with less than 20× cover-
age were then removed from all remaining samples. This 
yielded variable number of SNPs within countries, from 
1108 in Cambodia to 6596 in Laos. The number of sam-
ples within each country ranged from 35 for Laos to 344 
in Ghana. Four additional samples—two replicates each of 
DD2 and 7G8—were taken from Release 5.0 of the PF3K 
resource for use as negative control. Each of these samples 
comprised a single, unmixed strain and was sequenced to 
high coverage (~65×). These were cleaned according to 
the steps above, yielding 23,109 viable positions. A subset 
of 1000 SNPs were randomly selected of those remaining 
for inference here.

Notation
Within a country, samples are indexed i = 1, . . . ,N  and 
the SNPs by j = 1, . . . ,M. At SNP j within sample i, we 
observe rij reads that agree with the reference, and nij reads 
that are different from the reference. pij denotes the allele 
frequency for reference allele for SNP j in sample i and 
estimate it via the maximum-likelihood estimator (MLE) 
for proportions: p̂ij =

rij
rij+nij

. Similarly, pj denotes the 

population-level reference allele frequency for each SNP 
and is estimated according to the across-sample MLE:

All MLEs are calculated by country. Table 1 is provided as 
a reference to the reader for notation.

A previous frequentist estimator for fi, and two alternatives
In Manske et al., the authors provide an initial approach to 
estimating fi. This estimator is referred to as f (m)

i  to contrast 
it with subsequent estimators. For each sample i, the estima-
tor first partitions alleles into 10 equally-spaced bins based 
on their minor allele frequency: (0, 0.05), . . . , (0.45, 0.50)  . 
Within each bin, b, the average expected heterozygosity 
assuming country-level HWE is calculated by

where Mb is the number of SNPs within bin b. The average 
observed heterozygosity within each bin and each sample is 
calculated by

Finally, f̂ (m)
i  is calculated as 1− β where β is the slope found 

by regressing the Ho(b, i) values against He
b values centered 

within their respective allele frequency bins and constrained 
to pass through the origin. This is the initial estimator.

The binning procedure, while stabilizing the estimator 
against influence from an excess of low frequency alleles 
common within samples, may also introduce bias. This 
effect can be removed by discarding the binning procedure 
in favour of directly regressing observed heterozygosity 

(1)p̂j =

N∑

i=1

nij

/ N∑

i=1

(rij + nij).

(2)He (b) =
1

Mb

Mb∑

k∈b

2 · p̂k · (1− p̂k),

(3)Ho(b, i) =
1

Mb

Mb∑

k∈b

2 · p̂ik · (1− p̂ik).

Table 1 Notation for parameters used throughout the manuscript

Parameter Description

j = 1, . . . ,M Index over number of SNPs, M

i = 1, . . . ,N Index over number of samples, N

rij , nij Reference/non‑reference read count data in sample i at variant j

dij = (rij , nij) Read count data in sample i at variant j

pj (p̂j) Population‑level non‑reference allele frequency for SNP j (estimate)

pij,(p̂ij) Within‑sample non‑reference allele frequency for SNP j in sample i (estimate)

fi Inbreeding coefficient for sample i

Ho(b, i) Observed heterozygosity for sample i in bin b

He(b) Expected heterozygosity for bin b

f̂ ∗i
Estimator of fi by method ∗.

f , p Vector of fi and pj’s in Bayesian model
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for each SNP against the expected value, still constrained 
to pass through the origin. This provides a closed-form 
expression for the regressed estimator, f (r)i , as

A similar estimator, more transparently connected to the 
ideas underpinning traditional F-statistics, can be found in 
the following way. For a single SNP j, suppose fi to be the 
fraction of the population-level heterozygosity equal to the 
difference between the population-level heterozygosity, Hp

j  
and the sample-level heterozygosity, Hi

j  that is,

Dividing through by Hp
j  gives an estimate for fi for the 

SNP j. Averaging across all SNPs and taking the ratio of 
expectations to be the expectation of the ratios gives the 
estimator

This is the direct estimator, since it contains the critical 
ratio of the mean observed heterozygosity over the mean 
expected heterozygosity characteristic of F-statistics.

For each of these estimators, a bootstrap approach 
is employed to estimate the variance in the estimates 
for confidence intervals [23, 24]. The bootstrap works 
by assuming that the empirically observed distribu-
tion – here, the allele frequencies – provides a reason-
able approximation to the true empirical distribution. 
By repeatedly subsampling with replacement from the 
observed distribution and recalculating the estimator at 
each iteration, a distribution of estimates is built from 
which confidence intervals can be calculated.

Bayesian model framework
Inbreeding coefficients comparable to the above esti-
mators can also be derived by the Balding—Nichols 
model, a widely used method for measuring inbreed-
ing in other genetic contexts [25]. This approach also 
has strong similarities to previous work in the context 
of P. falciparum [5, 6]. In using this model, several sim-
plifying assumptions are required. SNPs are treated 
as unlinked (i.e. no linkage disequilibrium) and it is 
assumed that individual parasites within a sample rep-
resent a random sample of the surrounding popula-
tion. It is further assumed that read counts are sampled 

(4)f̂
(r)
i = 1−

∑M

j=1
p̂j · (1− p̂j) · p̂ij · (1− p̂ij)

∑M

j=1
p̂2j · (1− p̂j)

2
.

(5)fi ·H
p
j = H

p
j −Hi

j .

(6)f̂
(d)
i = 1−

∑M

j=1
p̂ij (1− p̂ij)

∑M

j=1
p̂j (1− p̂j)

.

identically, independently, and represent an unbiased 
sample of allele frequency pij.

Likelihood and priors
The approach for the Bayesian estimator adapts the Bald-
ing–Nichols model of allele frequency within inbred sub-
populations to the specific context of P. falciparum WGS 
data [25, 26]. In P. falciparum the relevant subpopulation 
is the collection of parasites within a clinical sample. For 
sample i and SNP j, conditional upon an inbreeding coef-
ficient fi and a population-level allele frequency pj, the 
Balding-Nichols model gives the allele frequency pij as a 
Beta distribution:

Since the read counts are assumed to be identical and 
independent, pij is drawn from a Beta distribution, and 
the probability of the data is binomial, the conjugacy of 
these distributions can be used to eliminate the depend-
ence on the unknown pij and give a Beta-binomial distri-
bution for the likelihood at a site j and position j:

where B ( · , ·) is the beta function. Since independ-
ence by site and by sample is assumed, the complete 
likelihood of the data, D conditional upon the inbreed-
ing coefficients for all samples within the population, 
f = (f1, · · · , fN ) and the allele frequency for all SNPs 
p = (p1, · · · , pM) becomes

The only prior information about the fi values suggests 
that high levels of inbreeding are common but not oblig-
atory in west African populations, and this is quantita-
tively interpreted as a uniform prior on each fi between 
zero and one. Similarly, a uniform prior distribution is 
put on each allele frequency, although rare variants were 
eliminated as part of data cleaning described in the Data 
preparation subsection above.

Inference
Since the posterior distribution is not known in closed 
form, standard random-walk Metropolis-Hastings 
Markov chain (MCMC) approach is used to numeri-
cally approximate it [27, 28]. The Metropolis-Hastings 

(7)pij ∼B

(
1− fi

fi
pj ,

1− fi

fi
(1− pj)

)
.

(8)

P(rij , nij|pj , fi) =

(
rij + nij

nij

) B

(
nij +

1−fi
fi

pj , rij +
1−fi
fi

(1− pj)
)

B

(
1−fi
fi

pj ,
1−fi
fi

(1− pj)
) ,

(9)P(D|f ,p) =

N∏

i=1

M∏

j=1

P(rij , rij|fi, pj).
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algorithm constructs a discrete-time Markov chain over 
the parameter space in such a way that the posterior dis-
tribution of the chain is the stationary distribution of the 
chain. This requires that at a given iteration in the chain, 
the move from the current parameter state x to new 
parameter state x′ with probability α occurs according to

The first ratio is that the posterior probabilities of x and 
x′, and written as α1. The second ratio, α2, gives prob-
ability of choosing the current state from the proposed 
state over the reverse move. Since α1 constitutes assess-
ment of the likelihood and the prior functions that can 
be calculated directly from the specifications above, only 
the calculation for α2 is shown. Proposed parameters are 
denoted with an apostrophe.

  • f  —randomly select i and propose fi from B(αci ,βci), 
leading to α2 =

B(fi|αci ,βci )

B(f ′i |αci ,βci )
.

  • p —randomly select j and then draw the proposed 
parameter pj from the uniform prior, leading to 
α2 = 1.

  • α, β —for both of these parameters, randomly 
select individual components and propose new val-
ues directly from the prior distribution, leading to 
α2 =

exp (−x)
exp (−x′) where x and x′ are the current and pro-

posed state of the relevant component.

The autocorrelation of the log-posterior has minimal lag. 
As a secondary check, the chain was run for all of the 
chromosomes individually and compared values with the 
complete data set. Since SNPs are treated as independ-
ent, the performance of the model should be unaffected 
if the model performs similarly across chromosomes. 
Across all chromosomes performance is nearly identical, 
with greater than 95% correlation among maximum a 
posteriori (MAP) estimates.

Implementation
All code was implemented in the R computational envi-
ronment [29]. The set of scripts implementing each of the 
estimators, the MCMC algorithm, visualizations, data sim-
ulations, and filtered data sets are available at the pacakge 
website [30]. This repository includes a tutorial and work-
flow for completing analyses using these approaches. All 
materials are released under a creative commons license.

Results
Simulations
To compare the qualities of the four estimators, a simu-
lation study was performed under a range of parameter 

(10)

α = min

(
P(x′|D)

P(x|D)
·
P(x′ → x)

P(x → x′)
, 1

)
= min (α1 · α2, 1).

values to capture how estimator performance may vary 
with the quality of data collected in the field. The num-
ber of SNPs, the number of read counts at each SNP, the 
degree of skew in the allele frequency distribution (β , 
described below), and the amount of inbreeding were 
examined. For each parameter set, 100 replicate data sets 
were simulated. The full set of parameters are listed in 
Table 2. For comparing these results to empirical data, it 
is important to note that the coverage level is more com-
parable to the the minimum coverage level, rather than 
the average coverage level which can vary substantially. 
This is because, absent other errors, the coverage level 
determines the statistical properties of the within-sample 
allele frequency, with the standard error of the estimate 
scaling inversely with the square root of the minimum 
coverage.

The simulated data were created by first fixing the 
inbreeding coefficient f and the allele frequency distribu-
tion. The skewness of the underlying allele frequency was 
parameterized as a Beta distribution with parameters α 
and β. α was fixed to one, while β was varied according to 
the simulation to induce differening degrees of skew. As 
β increases, the distribution becomes increasingly right-
skewed: when β = 1 then 1 % of alleles have less than a 
0.01 frequency while when β = 1000 more than 99 % of 
allele have less than a 0.01 frequency. For a fixed β and 
f, M alleles are then sampled from the Beta distribution 
with parameters defined by Eq. 7. The read counts were 
then simulated according to a binomial distirbution with 
those within-sample allele frequencies.

Figure  1 summarizes the comparison of fi point esti-
mates made by the initial, regressed, direct, and Bayes-
ian estimators across the simulated data. All boxplots 
use Tukey’s design, showing median, inter-quartile range 
and whiskers up to 1.5 times the inter-quartile range. 
Inferred/simulated values are reported as a measure of 
performance. Across all parameter values, the estimators 
performed similarly, with the Bayesian estimate showing 
the least bias and highest accuracy. The number of SNPs 
proves the largest determinant of performance, with 50 
SNPs sufficient to ensure reasonable performance in 
most regimes. Very low f values ( f < 0.5) correspond to 

Table 2 Parameter values for simulated data sets

For each parameter set, 100 replicate data sets were generated

Parameter Description Simulation values

M Number of SNPs 10, 50, 150, 500, 1500

C Total read counts per SNP 10, 100, 1000, 10000

f Inbreeding coefficient 0.01, 0.1, 0.5, 0.9, 0.99

β Controls skew in allele frequency 1, 10, 100, 1000
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noticeable bias for the frequentist estimators. The initial 
estimator is largely robust to large skew in the allele fre-
quency distribution, while the other two estimators are 
slightly biased by it at high levels of mixture. The data 
was simulated under the Balding–Nichols model as so 
the Bayesian method has an intrinsic advantage.

Figure  2 shows that the estimator standard devia-
tion was similar for the three frequentist estimators and 
markedly smaller in the Bayesian case. For each of the 
parameter regimes in Fig.  1, 100 bootstrap resamplings 
were performed. The standard deviation is largely dimin-
ished with increasing numbers of SNPs, with read counts 
and beta values playing little role. Note that bias for the 
frequentist estimators increases with increasing f values.

Comparison in empirical data
Since the underlying Balding-Nichols model within the 
simulations is likely misspecified relative to empircal 
data, performance was examined for each of the estima-
tors applied to the WGS from 344 Ghanaian samples. 
The results shown in Fig.  3 show very strong correla-
tion between the three frequentist estimators, with cor-
relation better than 0.95. For the Bayesian estimate, the 

maximum a posteriori (MAP) estimate is reported. The 
Bayesian estimator is still highly correlated (>0.9) with 
the other estimators but is significiantly more variable in 
its estimates. Highly mixed and highly unmixed samples 
( f ≈ 0 and f ≈ 1) appear to have the most correlation, 
with moderately mixed samples deviating the most from 
the other three estimators.

Comparison with COI
As noted in the introduction, two recent efforts have 
extended MOI to WGS read count data and introduced 
the concept of COI [7, 8]. Both methods use finite mix-
ture models to model the underlying number of strains 
in the sample. For comparison here, the model of O’Brien 
et  al. is used, as it allows for more careful inference of 
the number of underlying strains and is more robust to 
errors in the read count data. For each of the 344 Gha-
naian samples, the maximum a posteriori iteration is 
taken as the point estimate for the number of strains. 
Figure  4 graphs the relationship between the inferred 
number of strains and the F-statistic (a Spearman corre-
lation of 0.83). While complex mixture models may pro-
vide a more penetrating understanding of within-sample 
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variance, F-statistics appear to capture much of the same 
information in a single quantity.

Laboratory strain data
The direct and Bayesian estimators were applied to the 
four clonal laboratory samples. The resulting values were 
very close to one, with the smallest observed value (0.98), 
above the standard threshold for clonality (0.95). The 
standard deviation of these estimates was less than 0.01. 
Within these samples, a moderate number of SNPs (∼ 
20) exhibited minor allele frequencies greater than 0.05, 
indicating some sequencing or alignment errors. These 
results indicate that these methods can reliably infer 
clonality even in the presence of some poorly-behaved 
SNPs.

PF3K data set
The PF3K clinical samples outlined in the Data section 
were grouped by country and used the direct estimator 
to calculate the inbreeding coefficient for each sample. 
These values are available on the companion website as 
a community resource [30]. Figure  5 summarizes the 
results, showing relatively low fi values throughout west 
Africa, with the noticeable exception of The Gambia. 

The median values of south and southeast Asian coun-
tries exhibit distinctly less mixture (higher fi values) than 
in West Africa. This is consistent with previous reports 
of highly variable amounts of within-sample mixture 
across countries [3]. Interestingly, while the median level 
of mixture mixture varies significantly across countries, 
highly mixed samples ( fi < 0.5) and unmixed samples 
( fi > 0.95 ) are present everywhere.

These data overlap with two studies noted in the Back-
ground, where f values were also calculated using the ini-
tial estimator [17, 18]. Using the paper-reported values, 
we find that there is a 0.97 correlation with the samples 
from Ghana, and 0.96 for those from Guinea and the 
Gambia, against the direct estimator values found here. 
The high correlation between these estimates highlights 
the similar properties of the initial and direct estimators 
and indicates the strong consistency of these estimates 
across different data cleaning procedures.

Discussion
This work presents several new approaches to inferring 
inbreeding coefficients using read counts from WGS, 
including a frequentist estimator that is significantly 
simpler and more intuitive than the initial estimator as 
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well as a Bayesian approach that derives from a classical 
population genetics model. These approaches help con-
nect MOI investigations to a broader set of work within 
population genetics and conservation ecology that may 
be helpful in control efforts [31]. This work also demon-
strates a strong correlation between these metrics and 
the results of more complex mixture models for inferring 
COI [7, 8]. While not intended to supplant these more 
involved methods for investigating the within-sample 
mixture, this additional tool can assist researchers in 
connecting P. falciparum population genetics to a larger 

literature. To assist other researchers, the implementa-
ton of these methods is also provided as an R pack-
age, pfmix, with tutorials and example datasets in an 
open-source framework at the package site, along with 
the direct estimates for the PF3K data set[30].

The model underlying the inbreeding coefficient makes 
a number of assumptions about the structure of the read 
count data and the biological mixing process that may 
affect inference. For the read count data, read counts 
are assumed to be unbiased and the SNPs are unlinked. 
While short read data can be biased in several ways, 
previous research indicates that mixture proportions 
calculated by read count ratios are largely unbiased (for 
instance, see [3] supporting information). However, P. 
falciparum exhibits significant linkage disequilibrium 
on scales significantly larger than the average distance 
between neighbouring SNPs in the data. This violation is 
not expected to bias the estimates as this absence of inde-
pendence occurs (roughly) evenly across the genome. 
However, inference from a small region of the genome 
will likely exhibit bias.

A perhaps more troublesome assumption is embedded 
in the underlying structure of the F-statistic. An F-sta-
tistic measures the departure of the observed number of 
heterozygotes relative to those expected under Hardy–
Weinberg equilibrium. In the context of mixed P. falcipa-
rum infections, the equilibrium assumptions—random 
mating, no selection, large population size, genetic 
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isolation—are likely each violated at some level. For 
example, the mixture within a sample may be the result 
of a small number of founding individuals or be strongly 
selected by the human immune system. Without a more 
general approach to understanding the mixing process, 
anticipating the robustness of these estimates to this sort 
of misspecification is difficult. However, we do find that 
the PF3K samples from Cambodia that possess quite sig-
nificant population structure still exhibit strong correla-
tion between fw and the inferred number of strains.

As genomic data enables more elaborate statistical 
models for mixed infections and a broader understand-
ing of P. falciparum genetic epidemiology, it will still be 
useful for field researchers to connect their work with 
population genetics and ecology through simple met-
rics. These issues are also relevant for researchers in a 
number of other Plasmodium species and protozoa with 
similar life-cycles. Inbreeding coefficients, which have a 
history going back to the beginnings of modern genetics, 
connect to a number of population genetic quantities 
such as effective population size and genetic drift [9, 32, 
33] and may serve to complement traditional MOI val-
ues and newer models to this end. This work meets this 
need by providing a basis to infer these quantities and 
a suite of open-source tools for researchers to calculate 
them.

Abbreviations
WGS: whole‑genome sequence data; MOI: multiplicity of infection; COI: com‑
plexity of infection; HWE: Hardy–Weinberg equilibrium; SNP: single nucleotide 
polymorphism; PF3K: Plasmodium falciparum 3000 genomes.

Authors’ contributions
JO’B designed and implemented the study and wrote the manuscript. RL 
provided visualization of the data and model results. LA‑E collected the data, 
contributed to the study design, and edited the manuscript. All authors read 
and approved the final manuscript.

Author details
1 Department of Mathematics, Bowdoin College, 8600 College Station, 
Brunswick, ME, USA. 2 Wellcome Trust Centre for Human Genetics, University 
of Oxford, Roosevelt Drive, Oxford, UK. 3 Navrongo Health Research Centre, 
Upper East Region, Navrongo, Ghana. 

Acknowledgements
The authors are grateful for many helpful discussions with Jason Wendler. This 
publication uses data from the MalariaGEN Plasmodium falciparum Commu‑
nity Project [22].

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All data are publicly available through the PF3K online resource [22]. Addi‑
tional scripts are available at the R package website, pfmix [30].

Consent for publication
All authors have reviewed the manuscript. No other consent for publication 
required.

Funding
LA‑E was funded partially by a University of Oxford Postdoctoral Research 
Award. JO’B and RL received no specific funding for this work.

Received: 11 May 2016   Accepted: 9 September 2016

References
 1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribu‑

tion of clinical episodes of Plasmodium falciparum malaria. Nature. 
2005;434:214–7.

1
−
f i

0.
2

0.
4

0.
6

0.
8

Gambia Guinea Malawi Ghana Mali DRC Bangladesh Laos Cambodia Myanmar Thailand Vietnam

Fig. 5 Boxplot of 1 − fi for each sample grouped by country of origin for 12 countries from the PF3K, arranged from west to east. The more intui‑
tive 1 − fi is used to emphasize where low and high levels of mixture are prevelant



Page 10 of 10O’Brien et al. Malar J  (2016) 15:473 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

 2. Tibayrenc M. Genetic epidemiology of parasitic protozoa and other 
infectious agents: the need for an integrated approach. Int J Parasitol. 
1998;28:85–104.

 3. Manske M, Miotto O, Campino S, Auburn S, Almagro‑Garcia J, Maslen G, 
et al. Analysis of Plasmodium falciparum diversity in natural infections by 
deep sequencing. Nature. 2012;487:375–9.

 4. Conway D, Greenwood B, McBride J. The epidemiology of multiple‑clone 
Plasmodium falciparum infections in Gambian patients. Parasitology. 
1991;103:1–6.

 5. Hill WG, Babiker HA. Estimation of numbers of malaria clones in blood 
samples. Proc R Soc Lond B: Biol Sci. 1995;262:249–57.

 6. Hill WG, Babiker HA, Ranford‑Cartwright LC, Walliker D. Estimation of 
inbreeding coefficients from genotypic data on multiple alleles, and 
application to estimation of clonality in malaria parasites. Genet Res. 
1995;65:53–61.

 7. Galinsky K, Valim C, Salmier A, de Thoisy B, Musset L, Legrand E, et al. COIL: 
a methodology for evaluating malarial complexity of infection using 
likelihood from single nucleotide polymorphism data. Malar J. 2015;14:4.

 8. O’Brien JD, Iqbal Z, Wendler J, Amenga‑Etego L. Inferring strain mixture 
within clinical Plasmodium falciparum isolates from genomic sequence 
data. PLoS Computat Biol. 2016;12:e1004824.

 9. Hedrick PW, Kalinowski ST. Inbreeding depression in conservation biol‑
ogy. Annu Rev Ecol Evol Syst. 2000;1:139–62.

 10. Weir BS, Cockerham CC. Estimating F‑statistics for the analysis of popula‑
tion structure. Evolution. 1984;1:1358–70.

 11. Nei M. F‑statistics and analysis of gene diversity in subdivided popula‑
tions. Ann Hum Genet. 1977;41:225–33.

 12. Wright S. The interpretation of population structure by F‑statistics with 
special regard to systems of mating. Evolution. 1965;1:395–420.

 13. Rousset F. Genetic differentiation and estimation of gene flow from 
F‑statistics under isolation by distance. Genetics. 1997;145:1219–28.

 14. Weir BS, Hill W. Estimating F‑statistics. Annu Rev Genet. 2002;36:721–50.
 15. Hall N, Karras M, Raine JD, Carlton JM, Kooij TW, Berriman M, et al. A com‑

prehensive survey of the Plasmodium life cycle by genomic, transcrip‑
tomic, and proteomic analyses. Science. 2005;307:82–6.

 16. Auburn S, Campino S, Miotto O, Djimde AA, Zongo I, Manske M, et al. 
Characterization of within‑host Plasmodium falciparum diversity using 
next‑generation sequence data. PLoS One. 2012;7:e32891.

 17. Duffy CW, Assefa SA, Abugri J, Amoako N, Owusu‑Agyei S, Anyorigiya 
T, et al. Comparison of genomic signatures of selection on Plasmodium 
falciparum between different regions of a country with high malaria 
endemicity. BMC Genomics. 2015;16:1.

 18. Mobegi VA, Duffy CW, Amambua‑Ngwa A, Loua KM, Laman E, Nwakanma 
DC, et al. Genome‑wide analysis of selection on the malaria parasite 
Plasmodium falciparum in West African populations of differing infection 
endemicity. Mol Biol Evol. 2014;31:1490–9.

 19. Pearson RD, Amato R, Auburn S, Miotto O, Almagro‑Garcia J, Amaratunga 
C, et al. Genomic analysis of local variation and recent evolution in Plas-
modium vivax. Nat Genet. 2016;48:959–64.

 20. Assefa S, Lim C, Preston MD, Duffy CW, Nair MB, Adroub SA, et al. Popula‑
tion genomic structure and adaptation in the zoonotic malaria parasite 
Plasmodium knowlesi. Proc Nat Acad Sci. 2015;112:13027–32.

 21. Murray L, Mobegi VA, Duffy CW, Assefa SA, Kwiatkowski DP, Laman E, 
et al. Microsatellite genotyping and genome‑wide single nucleotide 
polymorphism‑based indices of Plasmodium falciparum diversity within 
clinical infections. Malar J. 2016;15:1.

 22. PF3K consortium. Plasmodium falciparum 3000 genomes resource, release 
3; 2015. https://www.malariagen.net/pf3k‑3.

 23. Efron B. Technical Report No. 115. Stanford University. 1978;1.
 24. Efron B, Tibshirani RJ. An introduction to the bootstrap. New York: CRC 

Press; 1994.
 25. Balding DJ. Likelihood‑based inference for genetic correlation coef‑

ficients. Theor Popul Biol. 2003;63:221–30.
 26. Balding DJ, Nichols RA. DNA profile match probability calculation: how 

to allow for population stratification, relatedness, database selection and 
single bands. Forensic Sci Int. 1994;64:125–40.

 27. Hastings WK. Monte Carlo sampling methods using Markov chains and 
their applications. Biometrika. 1970;57:97–109.

 28. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian 
data analysis. New York: CRC Press; 2013.

 29. R Core Team. R: A language and environment for statistical computing. 
Vienna; 2014. http://www.R‑project.org/.

 30. O’Brien JD. pfmix R package; 2016. https://github.com/jacobian1980/
pfmix.

 31. Frankham R. Inbreeding and extinction: a threshold effect. Conserv Biol. 
1995;9:792–9.

 32. Lande R, Barrowclough GF. Effective population size, genetic varia‑
tion, and their use in population management. Viable Popul Conserv. 
1987;13:87–123.

 33. Nei M, Tajima F. Genetic drift and estimation of effective population size. 
Genetics. 1981;98:625–40.


	Approaches to estimating inbreeding coefficients in clinical isolates of Plasmodium falciparum from genomic sequence data
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Data and models
	Data and preparation
	Notation
	A previous frequentist estimator for , and two alternatives
	Bayesian model framework
	Likelihood and priors
	Inference

	Implementation

	Results
	Simulations
	Comparison in empirical data
	Comparison with COI
	Laboratory strain data
	PF3K data set

	Discussion
	Authors’ contributions
	References




