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Abstract 

Background Vegetation health (VH) is a powerful characteristic for forecasting malaria incidence in regions 
where the disease is prevalent. This study aims to determine how vegetation health affects the prevalence of malaria 
and create seasonal weather forecasts using NOAA/AVHRR environmental satellite data that can be substituted 
for malaria epidemic forecasts.

Methods Weekly advanced very high-resolution radiometer (AVHRR) data were retrieved from the NOAA satellite 
website from 2009 to 2021. The monthly number of malaria cases was collected from the Ministry of Health of Benin 
from 2009 to 2021 and matched with AVHRR data. Pearson correlation was calculated to investigate the impact 
of vegetation health on malaria transmission. Ordinary least squares (OLS), support vector machine (SVM) and princi-
pal component regression (PCR) were applied to forecast the monthly number of cases of malaria in Northern Benin. 
A random sample of proposed models was used to assess accuracy and bias.

Results Estimates place the annual percentage rise in malaria cases at 9.07% over 2009–2021 period. Moisture (VCI) 
for weeks 19–21 predicts 75% of the number of malaria cases in the month of the start of high mosquito activities. Soil 
temperature (TCI) and vegetation health index (VHI) predicted one month earlier than the start of mosquito activities 
through transmission, 78% of monthly malaria incidence.

Conclusions SVM model D is more effective than OLS model A in the prediction of malaria incidence in Northern 
Benin. These models are a very useful tool for stakeholders looking to lessen the impact of malaria in Benin.
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Background
Malaria is one of the most dangerous infectious illness in 
sub-Saharan Africa (SSA). The transmission of malaria 
is influenced by socioeconomic and environmental fac-
tors. The environment plays a defining role in the health 
outcomes of any society. Unfortunately, the environ-
ment has a particularly detrimental impact on health for 
the majority of developing countries [1]. Infection with 
malaria is influenced by temperature, precipitation, and 
altitude [2, 3]. The burden of mortality and morbidity is 
worse in poor countries and among the most disadvan-
taged in these countries [1]. The transmission of malaria 
is complex and involves a range of hydro climatological, 
biological, and environmental processes [4]. The high 
degree of nonlinearity in these processes makes it chal-
lenging to anticipate and combat malaria [5].

Despite national and international efforts, malaria 
remains a significant public health problem in many 
countries, including Benin [6]. The prevalence of malaria 
in the WHO African Region in 2020 is estimated to 
account for 95% of cases and 96% of deaths worldwide 
from malaria. The number of malaria cases has increased 
since 2021, reaching 234 million [7]. The lack of accurate 
information on the actual burden of malaria, the risk of 
Plasmodium transmission, and its geographical distribu-
tion hinders the effectiveness of existing healthcare sys-
tems [8].

In Benin, as in several other sub-Saharan African 
nations, malaria stands as the primary contributor to 
both mortality and morbidity. The reported annual 
malaria cases in 2021 amounted to 3,163,648, indicating 
a marginal increase of 1.4% from the previous year. This 
disease accounted for 44% of medical consultations and 
31% of hospitalizations [9].

Meteorological and rainfall gauge stations are limited 
in Benin, making obtaining historical and spatially con-
tinuous observations of climatic/environmental variables 
difficult. Developing reliable modelling frameworks to 
integrate climate and infectious disease predictions is 
a major challenge in West Africa, particularly in Benin, 
which has limited rainfall and meteorological stations 
[10]. Remote sensing satellites can be an alternative to 
obtaining proxy data from satellite websites. Remote 
sensing data-based vegetation health indices help experts 
understand environmental factors and malaria transmis-
sion [11]. Vegetation conditions play a role in stimulating 
mosquito activities, thus indirectly influencing the trans-
mission of malaria. Incorporating the vegetation condi-
tions into this study will yield valuable insights into the 
malaria risk, representing a crucial step in the malaria 
control process.

Through advanced seasonal weather forecasting that 
draws upon established associations between weather/

climate and infection/transmission conditions, condi-
tions conducive to disease outbreaks can be identified 
months in advance, providing time to implement effec-
tive population health responses. Early malaria detection 
outbreaks remain an important tool to prevent diseases 
in SSA [12].

To track malaria epidemics in Northern Benin, we 
attempted to use vegetation health indices (VH) created 
from the Advanced Very High-Resolution Radiometer 
(AVHRR) launched on the NOAA series of operational 
polar-orbiting satellites. To be more accurate, an effort 
was made to develop malaria incidence-VH models 
using principal component regression (PCR), ordinary 
least squares (OLS) and support vector machine. OLS is 
a linear regression method that provides coefficients for 
predictor variables, but can be sensitive to outliers and 
multicollinearity. SVM captures nonlinear relationships 
using kernel functions, minimizing outliers and prevent-
ing overfitting. PCR reduces multicollinearity. These 
models were used for malaria epidemic forecasts [13].

Methods
Presentation of the study area
Atacora, Donga, and Borgou are the provinces of the 
study area situated in Benin’s northern region (Fig.  1). 
Northern Benin receives between 200 and 300  mm of 
rainfall per month during the rainy season (July Septem-
ber) [14]. Northern Benin has a dry season and a wet sea-
son. The rainy season lasts from May–October. Rainfall is 
maximal (253.61 mm) in August and minimal (1.90 mm) 
in January. The dry season is from November–April 
when the ‘Harmattan’ winds blow in from the northeast, 
bringing air from the Sahara Desert (Fig. 2). The popula-
tion of the study area in 2021 is 3,606,063 (RGPH4). The 
2016–2017 period was marked by a slight decrease in the 
number of malaria cases. This highlights the effort made 
by the government and its partners to reduce the burden 
of malaria.

Data collection
Endogenous variables
Monthly malaria cases in each district were collected 
from 2009 to 2021 at the Ministry of Health of Benin. 
These data include the entire population confirmed to 
be infected by malaria. When malaria is identified in a 
patient using rapid diagnostic testing or microscopy in a 
laboratory, the diagnosis is made [15].

Exogenous variables
To assess the impacts of land cover change, vegetation 
health conditions from remote sensing data were used. 
Numerous studies have leveraged satellite data to inves-
tigate infectious diseases, including malaria [16]. There 
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are several vegetation indices available, with the nor-
malized difference vegetation index (NDVI) being the 
most often used index in some human health studies. 
However, relying solely on the NDVI may not encom-
pass all the relevant environmental parameters associ-
ated with malaria. Research conducted by Kogan and 
colleagues has demonstrated that the vegetation health 
indices is better suited for detecting malaria risk [17].

The AVHRR onboard the National Oceanic and 
Atmospheric Administration (NOAA) series of satel-
lites was used to calculate the weekly brightness tem-
perature (BT) and the Normalized Difference and 
Vegetative Index (NDVI) from 2009 to 2021 [17]. BT 
was converted to the Vegetation Condition Index 
(VCI), the Temperature Condition Index (TCI) and the 
Vegetation Health Index (VHI), which are useful indi-
ces for the estimation of vegetation health and malaria 
monitoring. Weekly TCI, VHI and VHI were connected 
to the equivalent month’s malaria case data.

Data processing
Public health data
Malaria transmission and consequences are influenced 
by climate and environmental factors [18]. The time 
series data are divided into two parts: deterministic for 
the first group (Ysp), which represents socioeconomic/
policy issues, and random for the second group (Yw). 
The percentage of malaria cases in Yw is determined by 
changes in the weather. The observed malaria cases in 
northern Benin can be expressed by (1).

A linear trend was derived using the time series of 
the percentage of malaria cases instances of malaria to 
show the interannual variation in malaria prevalence, 
which is probably partly brought on by interannual 
changes in weather patterns. As a ratio of the actual 
malaria cases to the estimated trend, the weather-
related variability around the trend was expressed (2) 
[19, 20]. Due to yearly and seasonal weather variations, 
Yw represents the divergence (anomaly) of malaria 

Fig. 1 Map of the study area
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episodes from the trend. Yw is an effective comparative 
indicator of malaria cases.

where Yt represents the estimated trend of the percent-
age of malaria cases over time.

Satellite data: vegetation health indices
Using a functioning satellite, the goal is to identify early 
environmental conditions that favour mosquito growth 
and the spread of malaria. The principle to construct 
VH indices stems from the property of green vegeta-
tion to reflect/emit solar radiation in the VIS, NIR and 
IR wavelengths. If vegetation is healthy, it reflects little 
radiation in the VIS (due to high chlorophyll absorption 
of solar radiation) and much in the NIR (due to scatter-
ing of light by leaf internal tissues and the low absorption 
by pigments, water and other leaf constituents), resulting 
in a high NDVI. The global vegetation index (GVI) was 
developed from the reflectance/emission observed by the 
Advanced Very High-Resolution Radiometers (AVHRR) 
of the NOAA polar‐orbiting satellite in the visible (VIS), 
near-infrared (NIR) and infrared (IR) wavelengths [17]. 
In developing the GVI, the measurements were spatially 
sampled from 16  km2 (National Area Coverage–NAC) to 
16  km2 and from daily observations to a seven‐day com-
posite [21]. The VIS and NIR reflectance was pre- and 

(1)DY = Yw + Ysp

(2)Yw = (Ysp ∗ 100)/Yt

post‐launch calibrated, and NDVI was calculated by the 
relation.

The IR measurements at wavelengths of 10–11  μm is 
converted to BT. The high-frequency noise of the NDVI 
and BT related to variable transparency of the atmos-
phere, bidirectional reflectance, orbital drift, random-
ness, and others was already removed from the data by 
statistical techniques [22]. The 2009–20021 weekly NDVI 
and BT data were collected for each 16   km2 pixel of the 
study area (Northern Benin), which is the most infected 
by malaria. Finally, the weekly minimal and maximal 
values of NDVI and BT of the investigated period were 
computed.

From the values of the NDVI and BT, we calculated 
three indices (Eqs.  4, 5 and 6): the vegetation condition 
index (VCI) characterizing moisture, the thermal condi-
tion index (TCI) characterizing the soil temperature and 
the vegetation health index (VHI) [16].

(3)NDVI =
NIR− VIS

NIR− VIS

(4)VCI = 100 ∗
NDVI − NDVImin

NDVImax − NDVImin

(5)TCI = 100 ∗
BTmax − BT

BTmax − BTmin

Fig. 2 Climate of Northern Benin, West Africa
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where NDVI, NDVImax, and NDVImin (BT, BTmax, and 
BTmin)  are the no noise monthly NDVI and BT, their 
multi‐year absolute maximum and minimum, respec-
tively. a is a coefficient quantifying the share of VCI 
versus TCI contribution in overall vegetation health. 
Because this share is not known for a specific location, it 
is assumed that the shares are equal, a = 0.5 [23]. All three 
indices are scaled to range from 0 to 100 correspond-
ing to variation in weather conditions from extremely 
stressed to the most favourable vegetation, respectively. 
To examine the relationship between vegetation health 
and malaria incidence, Pearson correlation and regres-
sion analysis were used in this study. The dynamics of 
vegetative health during the lowest and greatest malaria 
incidences motivated us to examine the relationship 
between malaria incidence and vegetation health indices 
(TCI, VCI, and VHI). As malaria incidence is available 
on a monthly scale, monthly malaria incidence was con-
nected with weekly vegetation health index data.

Machine learning
To investigate whether VH is highly correlated with 
malaria incidence in favourable weather conditions 
for the multiplication and intensification of mosquito 
activities, models were built using the premise that they 
would only contain variables that have a correlation coef-
ficient of Yw with TCI, VCI, and VHI greater than 0.55 
(p < 0.05). On the basis of these ideas, the following set of 
independent variables, four models were chosen with the 
following set of independent variables: (A) mean VCI for 
weeks 19–21 (VCI19-21), (B) mean VHI for weeks 49–52 
(VHI49-52), (C) the same variable in A and mean VHI 
for weeks 29–32 (VHI29-32), (D) the same variable in (B) 
and TCI for weeks 11–13 (TCI11-13).

Support vector machine (SVM), ordinary least squares 
(OLS), and principal component regression (PCR) were 
applied to regress the incidence of malaria (Yw) regu-
lated by weather conditions. Tables 1, 2 and 3 present a 
summary of the various built models and the different 
metrics used to assess the performance and validation of 
each model.

(6)VHI = a ∗ VCI + (1− a) ∗ TCI

To define a training set and test set, as well as to train 
the model and assess how well it predicts, A random 
sampling method was used to define a training set and 
test set to train the model and to evaluate the perfor-
mance of models to predict. 90% of the data for training 
and 10% for testing a predictive model were randomly 
selected. Support vector machine (SVM), ordinary least 
squares (OLS) and principal regression (PCR) algorithms 
represented by Eqs. 7, 8 and 9, respectively were applied 
to construct the malaria outbreak warning model. SVM 
and OLS were used to examine the influence of single 
vegetation health indices on the incidence of malaria. To 
investigate the impact of multiple vegetation health indi-
ces on the occurrence of malaria, SVM, OLS and PCR 
were employed.

with α representing the intercept, and β1, β2, and β3 are 
the coefficients associated with the independent variables 
VCI, TCI, and VHI, respectively.

(7)Malariaincidence = α + β1 ∗ VCI+ β2 ∗ TCI+ β3 ∗ VHI

(8)Malariaincidence = α + β1 ∗ VCI + β2 ∗ TCI + β3 ∗ VHI

Table 1 Ordinary least squared regression (OLS)

Models Shapiro‒Wilk RMSE MSE MAE R-squared 
predicted

(A) = 4.85 + 0.28*VCI19-21 0.77 2.43 5.89 1.53 0.75

(B) = −8.23 + 0.44*VHI49-52 0.88 4.70 22.05 3.82 0.35

(C) = 33.66 + 0.09VCI19-21–0.35*VHI29-32 0.17/0.02 7.47 55.82 5.70 0.29

(D) = 6.67–0.05*TCI11-13 + 0.21*VHI49-52 3.17E–05 3.46 11.98 2.79 0.27

Table 2 Support vector machine regression (SVM)

Models RMSE MSE MAE R-squared 
predicted

(A)Yw = f(VCI19-21) 3.04 9.25 1.88 0.60

(B)Yw = f(VHI49-52) 4.47 20.00 3.33 0.41

(C) = Yw = f(VCI19-21,VHI29-32) 6.93 48.02 4.50 0.41

(D)Yw = f(VHI49-52,TCI11-13) 1.91 3.65 1.61 0.78

Table 3 Principal component regression (PCR)

Models RMSE MSE MAE R-squared 
predicted

(C) PCR(VCI19-21,VHI29-32) 6.23 38.79 4.29 0.53

(D) PCR (VHI49-52, TCI11-13) 3.46 11.98 2.79 0.27



Page 6 of 12Gbaguidi et al. Malaria Journal           (2024) 23:78 

where α is the intercept, and β1, β2, and β3 are the coef-
ficients associated with the independent variables VCI, 
TCI, and VHI, respectively.

where α is the intercept and β1, β2, and β3 are the coeffi-
cients corresponding to PC1, PC2, and PC3, respectively, 
of the principal components.

To identify the optimum forecasting algorithm [24], the 
mean absolute error (MAE), mean square error (MSE), 
root mean square error (RMSE), and R-squared value on 
a validation dataset through random sampling of the pro-
posed models (SVM, OLS, and PCR) were computed for 
the prediction of malaria incidence. The accuracy of the 
best-selected models was assessed based on the bias and 
the standard deviation of the observed malaria incidence 
and the predicted incidence. The R software version 4.3.2 
was used to extract and compute the values of VHI, VCI 
and TCI [25].

Results
Dynamics of malaria
Figure  3 displays the annual time series number of 
malaria cases in Northern Benin from 2009 to 2021. The 
analysis examines the relationship between the number 
of Malaria cases and the passage of time, represented by 
the variable ’Year’. The regression model revealed a sta-
tistically significant positive relationship between the two 
variables (Ysp = 24.37 + 6.05  *  Year, p < 0.001). This indi-
cates that when considering a mean of malaria cases of 
66.74, the yearly increase in malaria cases in percentage is 

(9)
Malariaincidence = α + β1 ∗ PC1+ β2 ∗ PC2+ β3 ∗ PC3

estimated to be approximately 9.07% based on the regres-
sion analysis. There was a significant association between 
year and malaria cases (p = 1.59e−08). From 2017 to 
2021, the number of reported cases has increased, except 
in 2020 (Fig. 3). Since there has been an increase in the 
population, the number of cases of malaria has also 
increased (p = 4.034e-09, R2 = 0.98). In 2009, the weather-
related variability of malaria cases (Yw) was 33.82% and 
111.40% in 2021, respectively, the lowest malaria case 
year and the most severe malaria outbreak (Fig. 3). This 
finding suggests a significant annual rise in malaria inci-
dence, underscoring the need for effective control and 
prevention measures to address the escalating public 
health challenge posed by malaria.

Vegetation health dynamics in the lowest and extreme 
malaria years
To have a basic grasp of whether weather conditions indi-
cated using VH indices provide any helpful indicators 
about the likelihood that malaria will develop, the year 
with the lowest (2009) and the highest (2021) number of 
malaria cases was chosen. Figure 4 presents the dynam-
ics of vegetation (VCI), temperature (TCI) condition 
and vegetation health (VHI) index for the two years of 
the extreme number of malaria cases: lowest (2009) and 
extreme (2021) in the 2009–2021 period. The dynamics of 
VH indices in these years were compared in the selected 
malaria-prone areas. These conditions, as expressed 
through VH indices, have some useful signals about the 
potential for the development of malaria. The number 
of malaria cases is high from May to November (rainy 
season) and low in the dry season (December to April) 

Fig. 3 Time series for the population and the malaria cases
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for both years of malaria cases. The TCI is high (warmer 
weather) during the period (weeks 1–22 and week 38–47) 
and low (cooler condition) from (weeks 23–37 and weeks 
48–52) with the worst malaria cases year (2009) and the 
opposite during the same period with the highest malaria 
cases (2021) in Fig. 4A. Mosquito activity is slowed down 
by warmer weather and stimulated by cooler weather.

The VCI and VHI both stimulate mosquito activity and 
malaria transmission throughout the rainy season (weeks 
23–47), during the year with fewer cases and the year 
with more cases. In the dry season (weeks 48–22), the 
situation is the exact opposite in Fig. 4B and C.

Correlation analysis
Figure 5 displays the dynamics of the Pearson correlation 
between weekly vegetation health indices and monthly 
malaria incidence (Yw) over the period 2009–2021. The 
analysis of the figure reveals that the correlation between 
the TCI and malaria incidence ranges from −  0.64 to 
0.86. The correlation is low (below 0.55) by the begin-
ning of the dry season and rainy season during the period 
from January to half-March (weeks 1–10) and May to the 
end of November (weeks 14–48), respectively. The cor-
relation between the incidence of malaria and the TCI 
increases from −  0.62 to −  0.59 during weeks 11–13, 

corresponding to the second mi-March to 30 April 
period. There is an inverse relationship between TCI and 
malaria incidence during this period. During Decem-
ber (weeks 49–52), corresponding to the start of the dry 
season, the correlation increases from 0.74 to 0.86, indi-
cating a robust positive connection between TCI and 
malaria incidence starting at week 49. A high correlation 
was observed from the beginning and end of the dry sea-
son, indicating that hot weather conditions reduce mos-
quito activities through malaria infection. A TCI greater 
than 42 is harmful for the development of mosquitoes 
and indirectly their activities to infect humans.

The correlation between moisture (VCI) and the inci-
dence of malaria started to increase from 0.72 to 0.74 
in May (weeks 19–21), corresponding to the beginning 
of mosquito breeding sites and their activities. Weeks 
51–52, corresponding to the last two weeks of December, 
were associated with elevated mosquito activities. Mois-
ture stimulates the development and activities of mosqui-
toes to transmit malaria. The high correlation observed in 
the May and December rhythms with the results of Fig. 4. 
A VCI above 55 restrains the activities of mosquitoes.

Concerning the relationship between the incidence of 
malaria and VHI, the correlation starts to increase from 
weeks 19–52, corresponding to the period of May to 

Fig. 4 Dynamics of vegetation (VCI), temperature (TCI) condition and vegetation health (VHI) index for the two years of number of malaria cases: 
Lowest (2009) and extreme (2021) in the 2009–2021 period
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December. This period is associated with intense activ-
ity of mosquitoes associated with elevated malaria inci-
dence. It is important to emphasize that the correlation 
in weeks 29–32 (June) is negative. This could be due to 
a number of factors, such as increased vegetation cover 
providing more shade and reducing mosquito breeding 
habitats or healthier vegetation leading to higher biodi-
versity that includes natural predators of mosquitoes. The 
VHI exhibits a pattern resembling that of the TCI and 
VCI, exhibiting a variable association in the early weeks 
and a significant positive correlation in the latter weeks.

Based on the correlations found, it appears that more 
favourable weather, as indicated by higher TCI, VCI, 
and VHI values, may help boost malaria transmission. 
This discovery emphasizes the significance of consider-
ing weather patterns and vegetation health when analys-
ing and controlling malaria epidemics. It also implies the 
possibility of using the monitoring of vegetation health 
indices as an early warning system for anticipating and 
reducing malaria transmission in impacted areas.

Machine learning
The analysis of Table 1 presenting OLS regression mod-
els reveals that Model A seems to have the best perfor-
mance and the lowest prediction error based on the 
criteria given. The predicted values are fairly close to the 
observed values, as indicated by the fact that it has the 
lowest root mean square error (RMSE), 2.43. The model 
also has a high R-squared value of 0.75, which shows 

that the predicted and actual values fit together well. In 
addition, the Shapiro‒Wilk test (p = 0.77) confirmed that 
the residuals were normally distributed. The studentized 
Breusch‒Pagan test yielded a P value of 0.27, indicating 
that the variance of the errors in the linear regression 
model is consistent across all levels of the independent 
variables, which is a desired characteristic of a well-fitted 
linear regression model.

Models B, C, and D, on the other hand, show greater 
prediction errors with RMSE values of 4.70, 7.47, and 
3.46, respectively. The residuals are not normally distrib-
uted, as shown by Model D’s lowest Shapiro‒Wilk value 
(3.17E-05). The largest average discrepancy between the 
anticipated and actual values is shown by Model C, which 
also has the greatest MSE and MAE values.

Concerning the Table  2 displaying SVM regression 
models, model D appears to be the model with the low-
est error for estimating the prevalence of malaria. Since it 
has the lowest RMSE (1.91), the predicted and observed 
values are the closest in this case. The model’s high 
R-squared score of 0.78 further demonstrates the model’s 
ability to accurately predict both actual and forecasted 
values. The prediction errors are higher for Models B and 
C, with RMSE values of 4.47 and 6.93, respectively. Model 
A has a high R-squared value of 0.60 with high prediction 
errors (3.04). Therefore, Model D predicts the incidence 
of malaria well and fits the data better than Model A.

Based on the provided criteria in Table 3 showing the 
PCR regression model, Model B seems to be the model 

Fig. 5 Correlation coefficient between the monthly malaria incidence index (Yw) with the weekly Temperature Condition Index (TCI), Vegetation 
Condition Index (VCI), and Vegetation Health Index (VHI)
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in the collection that does the best job of accurately 
forecasting the prevalence of malaria. The model has an 
RMSE of 3.46 and an R-squared value of 0.27, and the 
variables VHI49-52 and TCI11-13 are included.

Overall, the support vector machine (model D) and 
Model A from ordinary least squares regression are the 
best models to predict the monthly incidence of malaria 
with the least amount of error. Model D built with PCR 
has a very low R-squared value and will not add any fur-
ther details to the malaria prediction.

By analysing Table  4 and Fig.  6, the performance of 
models A and D in predicting malaria incidence using 
different metrics was compared. The mean value of the 
observed malaria incidence for model A is 19.64, while 
the mean value of the predicted malaria incidence is 
18.81, resulting in a bias of 0.83. Concerning model D, the 
mean value of the observed malaria incidence is 14.85, 
while the mean value of the predicted malaria incidence 
is 14.65, resulting in a bias of 0.196. This means that the 
predicted values of model D are closer to the observed 

Table 4 Observed and independently simulated percentages 
for models A and D from OLS regression and SVM regression, 
respectively

Models Metrics Observed Simulated Bias

A Mean 19.64 18.81 0.83

Standard_Deviation 5.20 3.55 2.46

D Mean 14.84 14.65 0.20

Standard_Deviation 4.27 3.61 2.00

Fig. 6 Observed and simulated percent malaria cases from Model A and Model D of the random sampled test data
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values, indicating that model D may be more accurate in 
predicting malaria incidence (Fig. 6).

Moreover, the standard deviation of the observed and 
predicted malaria incidence is also an important met-
ric to consider. For model A, the standard deviation of 
the observed malaria incidence is 5.20, while the stand-
ard deviation of the predicted malaria incidence is 3.55, 
resulting in a difference of 2.46. For model D, the stand-
ard deviation of the observed malaria incidence is 4.265, 
while the standard deviation of the predicted malaria 
incidence is 3.61, resulting in a difference of 2.00. This 
indicates that model D is better at predicting values that 
are closer to the true values, as it has a lower difference 
between the standard deviation of the observed and 

predicted malaria incidence on the one hand and a lower 
bias.

Discussion
Vegetation health conditions have a significant impact 
on mosquito reproduction and survival, which are the 
main carriers of the disease. The state of vegetation is 
frequently tightly correlated with environmental fac-
tors, including temperature, humidity, and rainfall, which 
might affect the number of mosquito breeding sites.

In the northern part of Benin, the correlation between 
vegetation health and malaria incidence varies during the 
season. A significant correlation between the soil temper-
ature and the incidence of malaria from the second half of 

Fig. 7 Time series of observed and simulated percent malaria cases from Model A and Model D for model validation with the historical sampled 
test data
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March to April 15th and the last two weeks of December 
was found. From January to March, the soil temperature 
is high due to the high intensity of the air temperature 
during these months. A high value of TCI decreases 
mosquito activities through the transmission of malaria. 
A mean TCI value greater than 42 is not favourable for 
the reproduction or multiplication of mosquitoes. This 
is the main cause of the dry season’s low malaria inci-
dence. On the other hand, a TCI value ranging between 
0 and 30 is a good preference for mosquitoes. In the 
wet season, the TCI at this scale and the low correlation 
obtained in the period of May to November (rainy sea-
son) could be explained by these TCI values [20]. found 
a significant correlation between the incidence of malaria 
and the TCI in Tripura, India. The author agreed that a 
low value of TCI reduces the number of infected people. 
The high correlation between soil moisture (VCI) and 
malaria incidence indicates high confidence that vegeta-
tion stimulates multiplication and increases the activi-
ties of mosquitoes in the rainy season. The high intensity 
of malaria observed in December is stimulated by VCI, 
which characterizes moisture. Throughout the rainy sea-
son, malaria incidence is strongly correlated with VHI, 
which measures the health and development of vegeta-
tion. This finding is consistent with the conclusion of the 
study of Kogan [21], who found that VH influences the 
incidence of malaria.

Model D outperforms Model A in predicting malaria 
incidence. Model D predicts 78% of malaria incidence. 
In addition, Model D predicts one month earlier than the 
start of the high malaria transmission season (rainy sea-
son and at the beginning of the dry season) and uses both 
the TCI11-13, which corresponds to the period of March 
15th to April 15th, and the VHI49-52, which corresponds 
to the month of December (Fig. 7). The prediction of this 
model is given in the second half of March to April 15th 
and in the second half of December (Fig.  7). Consider-
ing Model A, which forecasts 75% of the incidence of 
malaria, malaria prediction is given in May correspond-
ing to mosquitoes’ start activities (beginning of the rainy 
season). Nizamuddin et al. [20] came to the same conclu-
sion in their study carried out in the province of Tripura, 
India. Both models can be used in the study area, north-
ern Benin. The two models complement each other when 
we consider the variation in the season. Vegetation health 
is predicted in both the warm and wet seasons.

The most accurate model for predicting malaria inci-
dence in northern Benin is the support vector machine 
model (Model D). Due to its emphasis on optimizing the 
margin between various classes and its contribution to 
avoiding overfitting the model, this model is less suscep-
tible to outliers. SVM has the capacity to anticipate the 

onset of malaria activities (during the wet season and at 
the start of the dry season) by one month. In contrast 
to SVM, the Ordinary Least Squares (Model A) model 
offers coefficients for each predictor variable, making it 
simple to assess their impact on the outcome variable. 
Otherwise, Model A forecasts well the incidence or the 
number of cases of malaria in the northern part of Benin 
using only the weekly vegetation condition index (VCI) 
for weeks 19 to 21 in May. Model A can help to take ear-
lier actions before the beginning of mosquito activities 
in May. Model B is best at providing preventive informa-
tion in the dry season. Understanding malaria transmis-
sion in northern Benin requires careful monitoring of the 
state of vegetation. The ability of machine learning mod-
els such as SVM and OLS to forecast the occurrence of 
malaria and guide preemptive measures is demonstrated.

Conclusion
In light of these findings, the availability of real-time 
vegetation health (VH) indices obtained from satellite 
images can be a useful tool in anticipating malaria epi-
demics and putting appropriate preventive measures 
into place. The VH indices, such as those offered by 
the AVHRR sensor on NOAA polar orbiting satellites, 
can assist in tracking changes in environmental fac-
tors that influence mosquito reproduction and survival, 
the main vectors of malaria. By having access to these 
data, public health professionals and other interested 
parties may better prepare for and respond to possible 
malaria outbreaks, especially in high-risk regions such 
as Northern Benin. The availability of such information 
via online resources such as the NOAA/NESDIS web-
site can significantly help prevent and manage malaria, 
which will ultimately lead to better health outcomes.
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