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Abstract 

Background In malaria endemic regions of the Peruvian Amazon, rainfall together with river level and breeding site 
availability drive fluctuating vector mosquito abundance and human malaria cases, leading to temporal heterogene-
ity. The main variables influencing spatial transmission include location of communities, mosquito behaviour, land 
use/land cover, and human ecology/behaviour. The main objective was to evaluate seasonal and microgeographic 
biting behaviour of the malaria vector Nyssorhynchus (or Anopheles) darlingi in Amazonian Peru and to investigate 
effects of seasonality on malaria transmission.

Methods We captured mosquitoes from 18:00 to 06:00 h using Human Landing Catch in two riverine (Lupuna, Santa 
Emilia) and two highway (El Triunfo, Nuevo Horizonte) communities indoors and outdoors from 8 houses per com-
munity, during the dry and rainy seasons from February 2016 to January 2017. We then estimated parity rate, daily 
survival and age of a portion of each collection of Ny. darlingi. All collected specimens of Ny. darlingi were tested 
for the presence of Plasmodium vivax or Plasmodium falciparum sporozoites using real-time PCR targeting the small 
subunit of the 18S rRNA.

Results Abundance of Ny. darlingi varied across village, season, and biting behaviour (indoor vs outdoor), 
and was highly significant between rainy and dry seasons (p < 0.0001). Biting patterns differed, although not sig-
nificantly, and persisted regardless of season, with peaks in highway communities at ~ 20:00 h in contrast to bit-
ing throughout the night (i.e., 18:00–06:00) in riverine communities. Of 3721 Ny. darlingi tested for Plasmodium, 23 
(0.62%) were infected. We detected Plasmodium-infected Ny. darlingi in both community types and most (20/23) 
were captured outdoors during the rainy season; 17/23 before midnight. Seventeen Ny. darlingi were infected with P. 
vivax, and 6 with P. falciparum. No infected Ny. darlingi were captured during the dry season. Significantly higher 
rates of parity were detected in Ny. darlingi during the rainy season (average 64.69%) versus the dry season (average 
36.91%) and by community, Lupuna, a riverine village, had the highest proportion of parous to nulliparous females 
during the rainy season.
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Background
Malaria remains a pressing global health issue despite 
numerous intervention and treatment efforts, i.e., follow-
ing a decade-long decrease, the World Health Organiza-
tion (WHO) reported a worldwide increase of 8 million 
cases between 2015 and 2017, with an annual death 
toll estimated at 450,000 persons [1–3]. Overall, in the 
Americas, Peru contributes annually about 15% of cases 
[3], and within Peru, Loreto Department in northeastern 
Amazonian Peru accounts for most (90%) of the country-
wide cases [4].

Nyssorhynchus darlingi (also known as Anopheles dar-
lingi ([5]) is the main vector of Plasmodium transmission 
in and around the capital of Loreto, Iquitos, since its ini-
tial detection there [6] at the beginning of a major malaria 
epidemic [7]. This mosquito species subsequently spread 
extensively, likely along river systems [8, 9] through many 
parts of Amazonian Peru. Transmission hotspots occur 
mainly in the extensive network of riverine villages and 
along the Iquitos-Nauta highway, linked frequently to 
occupation (logging, charcoal production, agriculture, 
fish farming) [10–12]. Understanding malaria transmis-
sion in such diverse community types could help elimi-
nation efforts and reduction of the overall malaria case 
burden in Peru.

Nyssorhynchus darlingi is a dominant malaria vector 
because of its anthropophily, behavioural plasticity [13, 
14] and preference for secondary forest and forest frag-
ment edges [15, 16]. Frequently collected biting outdoors 
in many Peruvian communities [17–19] in some villages 
in Colombia and Brazil it bites frequently indoors [20, 
21]. In general malaria vector biting location (indoors, 
outdoors) and time, can be modified by the use of IRS 
(insecticide residual spray) and/or LLINs (long-lasting 
insecticide nets) [14, 22, 23]. Access to a human blood-
meal [18], and environmental factors such as local tem-
perature and humidity, also influence vector biting 
behaviour. The average infectivity rate of Ny. darlingi in 
Peru ranges from 0.1 to 4% [17, 18, 24], but throughout 
the Amazon Basin elevated human biting rates (HBR) 
can contribute to higher-than-expected vectorial capac-
ity [25, 26]. Feeding on humans is common but blood-
meal analyses have demonstrated that hosts can include 
chickens, dogs and cattle, depending on local availability 
and accessibility [18, 21].  Biting in Peru occurs mainly 
between dusk and midnight with reported unimodal 

and bimodal peaks [9, 14]. The Global Fund Malaria Pro-
ject PAMAFRO programme [27] was introduced in the 
Loreto Region, Amazonian Peru, in 2005 for 5  years to 
reduce malaria transmission. The primary interventions 
were strengthening of malaria diagnosis and detection, 
improved malaria case-management, use of insecticide-
treated nets (ITNs) and encouragement of community 
participation in environmental management [28, 29]. The 
main outcome, by 2010, was the reduction in annual inci-
dence rates from 48.9 to 11.6/1000 [28]. Studies in Loreto 
prior to the 2005–2010 PAMAFRO initiative detected 
near-equal proportions of Ny. darlingi biting indoors and 
outdoors [24], but since the end of the PAMAFRO pro-
gramme, a long-lasting insecticidal net (LLIN) distribu-
tion campaign by the Ministry of Health, and the Malaria 
Cero Programme (MCP) initiated in 2017 [30], several 
communities have shown increased outdoor-biting [17, 
19]. However, in localities where insecticide pressure 
was relaxed, Ny. darlingi again began to bite indoors fre-
quently [14]. This shift to increased indoor biting appears 
to have resulted from behavioural plasticity, and perhaps 
also aging of LLINs, as opposed to hypothesized genetic 
differences in Ny. darlingi populations in Loreto [9, 14].

The environment is a powerful driver of mosquito-
borne disease prevalence [31, 32]. Throughout much of 
the Amazon, the greatest risk of malaria transmission is 
during the rainy season [15, 17, 33], or during the wet-
dry transition period [34]. Across the Brazilian Amazon, 
the length of the rainy season, as well as a range of socio-
economic factors, contribute the most to malaria risk 
[35]. This finding is consistent with earlier observations 
that rainfall may predict vector abundance [34], although 
a study in French Guiana determined that relationships 
between Ny. darlingi densities, malaria incidence, rainfall 
and water level were quite variable, depending on local 
land-cover and availability of suitable breeding habitat 
[36]. In Amazonian Peru, rainfall leads to an estimated 
10 m increase in river levels and contributes to the gen-
eration of larval habitats [15, 37]. Seasonal abundance 
makes studying vector ecology and behaviour in the dry 
season difficult as numbers of specimens collected are 
frequently very low; malaria incidence is also reduced 
[11].

Nyssorhynchus darlingi is highly adapted to anthro-
pogenic landscapes. In Brazil, deforestation patches 
of ~ 5   km2 were significantly correlated with malaria 

Conclusions These data add a seasonal dimension to malaria transmission in peri-Iquitos, providing more evidence 
that, at least locally, the greatest risk of malaria transmission is outdoors during the rainy season mainly before mid-
night, irrespective of whether the community was located adjacent to the highway or along the river.
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prevalence [16], partly due to this species’ preference 
for forest fringe habitat [38, 39]. Along the Iquitos-
Nauta highway in Peru, Vittor et al. [15] found a 278-fold 
increase in the Human Biting Rate (HBR) and greater 
numbers of larval habitats in sites with high deforesta-
tion. Despite higher forest coverage in riverine com-
munities compared to those located along highways, 
Lainhart et  al. [9] detected a 3.33-fold higher rate of 
Plasmodium transmission in riverine communities, in 
addition to higher rates of HBR, infection rates (IR), and 
entomological inoculation rates (EIR). Understanding 
habitat-specific influences on Ny. darlingi behaviour in 
anthropogenic landscapes can help predict areas of great-
est local risk of Plasmodium transmission.

This study aimed to understand the environmental 
effects of community location and seasonality on mos-
quito abundance, biting behaviour, and entomological 
indices linked to malaria transmission of the primary 
malaria vector, Ny. darlingi, in Loreto Department south 
of Iquitos, Peru. Unlike previous temporal studies of Ny. 
darlingi abundance [9, 14, 17] we were able to include dry 
season data in addition to the more common rainy sea-
son findings from four communities.

Methods
Study sites
Adult mosquito collections were conducted in four 
communities in Loreto Department southwest of Iqui-
tos (3.74°S, 73.25°W) that were each visited six times 
(except for El Triunfo that was visited seven times), in 
2016–2017. Depending on locality, 3–4 collections were 
undertaken during the rainy season and 2–3 during 
the dry season (Table  1). Two communities studied are 
along rivers (Lupuna and Santa Emilia) and two along 
the Iquitos-Nauta highway (Nuevo Horizonte and El Tri-
unfo) (Fig. 1). These sites have been described elsewhere: 
Lupuna (LUP) by Moreno et al. [17], Santa Emilia (SEM) 
by Prussing et al. [14], and Nuevo Horizonte (NHO) and 
El Triunfo (TRI) by Lainhart et  al. [9]. As in Lainhart 
et al. [9], community habitat assignment was determined 
by proximity of the settlement to the nearest river: riv-
erine localities were < 1 km and highway localities > 2 km 
from the nearest river.

Mosquito sampling
We used the Human Landing Catch (HLC) method to 
collect adult mosquitoes indoors and outdoors (within 
five meters of the main house door) during four nights 
per collection event (a total of twenty-eight nights per 
community). We randomly chose eight houses and dur-
ing each consecutive night, we captured mosquitoes from 
two of these houses. Every collection was conducted 
from 18:00 to 06:00 h, and collectors rotated every three 

hours to account for the effects of individual collector 
variation on attractiveness to mosquitoes. All mosqui-
toes captured were separated by hour, trap site location 
(indoor/outdoor), and by community, and subsequently 
identified using external morphology at our laboratory in 
Iquitos by trained personnel using standard keys [40–42]. 
Specimens were maintained on silica gel at 4  °C until 
DNA extraction.

Parity, daily survival rate, and life expectancy
To estimate female age composition of the mosquito pop-
ulation, a proportion (9% or more depending on total 
numbers captured, except for Jan-2016 in NHO where 
none were assessed for parity) of females collected were 
dissected to determine parity rates (PR), daily survival, 
and age estimation per community per season. Mosquito 
life expectancy (longevity) in days was calculated by 
Davidson’s method [43]: Age = 1

logℓP
 , where ℓ is the natu-

ral logarithm of the constant 2.71828 and P is the proba-
bility of a mosquito surviving one day (daily survival 
rate). P was calculated as: P =

gc
√
PR  [44], where PR is 

the ratio between the number of parous mosquitoes to 
total number of females dissected, and gc the duration of 
the gonotrophic cycle (days). As in Moreno et al. [18], the 
gonotrophic cycle of 2.19 days was used for rainy season 
collections, and 2.43 for dry season collections [45].

Molecular detection of sporozoites in Ny. darlingi
Genomic DNA was extracted from each specimen of 
Ny. darlingi using Qiagen DNAeasy blood & tissue kits 
(Qiagen, Hilden, Germany), and DNA quantification 
conducted with a Qubit 2.0 Fluorometer (ThermoFisher 
Scientific, Waltham, MA). Detection of Plasmodium 
infection was conducted using real-time PCR targeting 
the small subunit of the 18S rRNA, with a triplex TaqMan 
assay (Life Technologies), as previously described [46]. 
RT-PCR was conducted on pools of DNA of up to five 
mosquitoes, in equal DNA concentration, for the pres-
ence of P. vivax and P. falciparum. Specimens from 
positive pools were tested individually to calculate the 
infection rate (IR).

Data analysis
The human biting rate (HBR) was evaluated as the 
average number of Ny. darlingi bites per collector per 
night. This was based on the total number of Ny. dar-
lingi collected. As in Lainhart et  al. [9], human biting 
time patterns were graphed, plotting the average pro-
portion of Ny. darlingi collected per hour comparing 
riverine (LUP and SEM) and highway (NHO and TRI) 
communities; and then tested for significant differ-
ences with the nonparametric Kolmogorov–Smirnov 
(KS) test in GraphPad Prism version 9.2.0 (Graphpad 
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Software, San Diego, CA). We calculated the Entomo-
logical Inoculation Rate (EIR) by multiplying the HBR 
by the proportion of Ny. darlingi that were determined 
to be Plasmodium-positive by RT-PCR. Sporozo-
ite rates were calculated using the number of positive 
mosquitoes for Plasmodium divided by the total num-
ber of mosquitoes tested. To calculate the monthly 
EIR, we combined the numbers of P. vivax and P. fal-
ciparum and then multiplied the HBR by the propor-
tion of infected specimens per month. Our rationale for 
combining these two Plasmodium species is that even 
though in the 1990s more Ny. darlingi were found to 
be infected by P. falciparum compared with P. vivax in 

Loreto [24], more recent studies have found the oppo-
site [10, 14, 19, 47].

To test the hypothesis that the peak biting time of Ny. 
darlingi in riverine and highway communities differs, we 
used average proportions of Ny. darlingi collected per 
hour in the four communities and tested for significance 
with the KS statistical test [9].

Count data of all Ny. darlingi collected in 2016–2017 
rainy and dry seasons, across all four collection sites, 
were analysed (Additional file  1) in RStudio version 
1.2.5033 (R 4.0.2; R CORE TEAM). To accommodate the 
overdispersion in our dataset, negative binomial regres-
sion models, using forward and backward stepwise 

Table 1 Monthly abundance, HBR and EIR of Nyssorhynchus darlingi captured indoor and outdoor in Lupuna (LUP), Santa Emilia (SEM), 
El Triunfo (TRI), and Nuevo Horizonte (NHO), 2016–2017

Mo-Yr: month-year of collection; N: number of Ny. darlingi captured; HBR: Human Biting Rate; HBR represents the average bites per person per night (b/p/n) calculated 
from the mean of collection days within each month/12 h per day per month (2 collectors inside and outside per night); EIR: Entomological Inoculation Rate. EIR not 
available for SEM January 2017. Italicized lines indicate rainy season collections

Indoor Outdoor

Community Mo-Yr N HBR(± SE) EIR N HBR(± SE) EIR

LUP Feb-16 164 20.5(1) 0.000 350 43.8(5.4) 0.090

Apr-16 154 19.2(3.3) 0.000 328 41(9.1) 0.088

Jul-16 95 11.9(0.5) 0.000 192 24(4.9) 0.000

Oct-16 34 4.2(1) 0.000 57 7.1(0.9) 0.000

Dec-16 27 3.8(0.5) 0.000 43 5.4(0.7) 0.000

Jan-17 172 21.5(1.5) 0.000 273 34.1(3.4) 0.000

Subtotal 646 1243

SEM Feb-16 152 19(1.2) 0.041 317 39.7(5.1) 0.427

Apr-16 150 18.8(2.2) 0.000 262 32.8(3) 0.161

May-16 60 7.5(2) 0.000 121 15.1(3) 0.000

Sep-16 40 5(1.2) 0.000 84 10.5(1.9) 0.000

Nov-16 38 4.8(1.1) 0.000 69 8.6(1.2) 0.000

Jan-17 174 21.8(3) N/A 283 35.4(3.4) N/A

Subtotal 614 1136

TRI Jan-16 3 0.4(0.2) 0.000 28 3.5(0.7) 0.000

Apr-16 7 0.9(0.4) 0.000 18 2.3(1.1) 0.000

Aug-16 8 1(0.3) 0.000 17 2.1(0.4) 0.000

Oct-16 5 0.6(0.1) 0.000 13 1.6(0.3) 0.000

Nov-16 3 0.4(0.1) 0.000 12 1.5(0.4) 0.000

Mar-17 6 1(0.6) 0.000 21 3.5(1.3) 0.000

Apr-17 3 0.8(0.8) 0.000 11 2.8(2.3) 0.000

Subtotal 35 120

NHO Jan-16 33 4.1(1) 0.000 80 10(1.7) 0.000

Apr-16 35 4.4(1.4) 0.000 71 8.9(1.1) 0.000

Jul-16 29 3.6(0.9) 0.000 32 4(0.6) 0.000

Oct-16 16 2(0.5) 0.000 23 2.9(0.4) 0.000

Dec-16 18 2.3(0.6) 0.000 24 3(0.2) 0.000

Apr-17 49 6.1(1.1) 0.085 95 11.9(1.2) 0.909

Subtotal 180 325

TOTAL 1475 2824
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selection for variable selection, were conducted with the 
MASS package [48]. The glm.nb() function, was utilized 
with the following independent variables: season (dry/
rainy), site, biting location (indoor/outdoor), 3-h time 
period (18:00–21:00, 21:00–24:00, 24:00–03:00, 03:00–
06:00), and their interactions. A nonparametric Kruskal–
Wallis analysis was also conducted on the count data for 
comparison to the negative binomial regression results.

Count data of the parous and nulliparous female Ny. 
darlingi in the rainy and dry seasons, across the four 
collection sites, were analysed (Additional file  2) in 
RStudio version 1.2.5033 (R 4.0.2; R CORE TEAM). 
We conducted negative binomial regression models as 
above but using the following independent variables: sea-
son (dry/rainy), site, and 6-h time period (18:00–24:00, 
24:00–06:00), and their interactions. Some of the vari-
able categories (site, indoor/outdoor, 3-h time period) 
were collapsed due to small sample sizes, e.g. of nullipa-
rous females in TRI during the rainy season (see Table 2). 
The parity rates between community (LUP, SEM, TRI, 
NHO), season (rainy, dry) and community type (highway, 

riverine) were compared using the chi-square test with a 
statistical significance of P < 0.05 in GraphPad Prism ver-
sion 9.5.1 for Windows, GraphPad Software (San Diego, 
California, USA).

Results
Mosquito capture data and entomological indices
Overall, 4,330 Anophelinae were collected during this 
study, of which 4,299 were identified morphologically 
as Ny. darlingi. The rainy season accounted for 3,420 
individual Ny. darlingi specimens (79.55%), and the dry 
season for 879 (20.45%). Using ITS2-PCR–RFLP as in 
Matson et  al. [49], we identified one Nyssorhynchus 
benarrochi B individual from SEM. Thirty specimens that 
were provisionally morphologically identified as non-Ny. 
darlingi failed to amplify, could not be identified molecu-
larly, and were excluded from all analyses.

The HBR of Ny. darlingi ranged from 0.4 bites per night 
(b/p/n) indoors in TRI (highway) to 43.8 b/p/n outdoors 
in LUP (riverine) (Table 1) and was generally higher dur-
ing the rainy season (Table 1). The final collection of Ny. 

Fig. 1 Map of communities (LUP: Lupuna, SEM: Santa Emilia, NHO: Nuevo Horizonte and TRI: El Triunfo) within Loreto Department, Peru, where Ny. 
darlingi were collected for this study. Red rectangle indicates the enlarged Loreto region of Peru. Made with Natural Earth data in QGIS v3
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darlingi in January 2017 from SEM was not analysed for 
Plasmodium for logistical reasons, thus a total of 3,721 
Ny. darlingi were tested for Plasmodium. Of these, 23 
(0.62%) were infected. In the localities where Plasmo-
dium-infected Ny. darlingi were detected (Fig. 2), the EIR 
ranged from a high of 0.909 outdoors in NHO (highway) 
to a low of 0.041 indoors in SEM (riverine) (Table  1). 
No infected Ny. darlingi were collected during the dry 
season.

Parity, daily survival rate, and life expectancy
We dissected 1,403/4,299 or 33% of the total number of 
Ny. darlingi from the four localities (Table 2). There were 

637 parous, 635 gravid and 131 nulliparous Ny. darlingi 
detected (Table 2 and Additional file 2: Fig. S1). The PR 
in the rainy season ranged from 0.28 in LUP—1.00 in TRI 
whereas during the dry season it was 0.14 in LUP—0.62 
in SEM. In the four localities, the average estimated mos-
quito age was somewhat higher during the rainy season 
(range 1.73–8.71  days) compared with the dry season 
(range 1.22–5.07  days), and the highest mosquito age 
was detected in TRI during the rainy season (8.71 days). 
There was a significant difference in the proportion of 
parous mosquitoes by site (χ2 = 8.04, df = 3, P = 0.0452) as 
well as season (χ2 = 8.621, df = 1, P = 0.0033), but not for 
community type (χ2 = 3.724, df = 1, P = 0.0536).

Table 2 Total number, percent and number of nulliparous, parous, and gravid female Nyssorhynchus darlingi collected from Lupuna 
(LUP), Santa Emilia (SEM), El Triunfo (TRI), and Nuevo Horizonte (NHO), 2016–2017, in addition to parity rate, daily survival rate, and life 
expectancy

* % Total: percent of females dissected for parous status of total captured

Community Mo-Yr Total Captured % Total (N) % Nulliparous (N) % Parous (N) % Gravid (N) PR Daily 
survival 
rate (P)

Age (days)

LUP Feb-16 514 32.5 (167) 2.4 (4) 71.9 (120) 25.7 (43) 0.72 0.86 6.63

Apr-16 482 41.1 (198) 3.5 (7) 28.3 (56) 68.2 (135) 0.28 0.56 1.73

Jul-16 287 46.3 (133) 4.5 (6) 13.5 (18) 82 (109) 0.14 0.44 1.22

Oct-16 91 97.8 (89) 5.6 (5) 23.6 (21) 70.8 (63) 0.24 0.55 1.68

Dec-16 70 98.6 (69) 7.2 (5) 23.2 (16) 69.6 (48) 0.23 0.55 1.66

Jan-17 445 38.4 (171) 6.4 (11) 60.2 (103) 33.3 (57) 0.60 0.79 4.32

Subtotal 1889 43.8 (827) 4.6 (38) 40.4 (334) 55 (455)

SEM Feb-16 469 9.4 (44) 4.5 (2) 70.5 (31) 25 (11) 0.70 0.85 6.25

Apr-16 412 10.4 (43) 11.6 (5) 51.2 (22) 37.2 (16) 0.51 0.74 3.27

May-16 181 16 (29) 17.2 (5) 55.2 (16) 27.6 (8) 0.55 0.76 3.68

Sep-16 124 16.9 (21) 19 (4) 61.9 (13) 19 (4) 0.62 0.82 5.07

Nov-16 107 16.8 (18) 16.7 (3) 61.1 (11) 22.2 (4) 0.61 0.82 4.93

Jan-17 457 10.3 (47) 12.8 (6) 46.8 (22) 40.4 (19) 0.47 0.71 2.88

Subtotal 1750 11.5 (202) 12.4 (25) 56.9 (115) 30.7 (62)

TRI Jan-16 31 54.8 (17) 0 (0) 100 (17) 0 (0) 1.00 1.00 N/A

Apr-16 25 80 (20) 5 (1) 60 (12) 35 (7) 0.60 0.79 4.29

Aug-16 25 100 (25) 20 (5) 36 (9) 44 (11) 0.36 0.66 2.38

Oct-16 18 100 (18) 22.2 (4) 38.9 (7) 38.9 (7) 0.39 0.68 2.57

Nov-16 15 100 (15) 20 (3) 40 (6) 40 (6) 0.40 0.69 2.65

Mar-17 27 33.3 (9) 0 (0) 77.8 (7) 22.2 (2) 0.78 0.89 8.71

Apr-17 14 50 (7) 0 (0) 100 (7) 0 (0) 1.00 1.00 N/A

Subtotal 155 71.6 (111) 11.7 (13) 58.6 (65) 29.7 (33)

NHO Jan-16 113 0 (0) N/A (0) N/A (0) N/A (0) N/A N/A N/A

Apr-16 106 53.8 (57) 12.3 (7) 59.6 (34) 28.1 (16) 0.60 0.79 4.24

Jul-16 61 100 (61) 26.2 (16) 37.7 (23) 36.1 (22) 0.38 0.67 2.49

Oct-16 39 100 (39) 35.9 (14) 30.8 (12) 33.3 (13) 0.31 0.62 2.06

Dec-16 42 100 (42) 23.8 (10) 38.1 (16) 38.1 (16) 0.38 0.67 2.52

Apr-17 144 44.4 (64) 12.5 (8) 59.4 (38) 28.1 (18) 0.59 0.79 4.20

Subtotal 505 52.1 (263) 20.9 (55) 46.8 (123) 32.3 (85)

TOTAL 4299 32.6 (1403) 9.3 (131) 45.4 (637) 45.3 (635)
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Seasonal, location (indoor/outdoor) and community 
effects
In general, more Ny. darlingi were captured during the 
rainy season compared with the dry season. Regardless of 
community or season, more Ny. darlingi were captured 
outdoors than indoors from all four sites; more were cap-
tured in riverine (LUP, SEM) than highway (TRI, NHO) 
communities (Table 1; Fig. 2). Regardless of location, sea-
son or community type, Ny. darlingi bit throughout the 
night, although there was a more pronounced early even-
ing peak in the highway communities of TRI and NHO 
between 19:00 and 21:00 compared with LUP and SEM 
(Additional file 2: Figs. S2 and S3). There were no signifi-
cant differences detected in biting patterns by the KS test 
(p = 0.8475; Fig. 3).

Results from negative binomial regression indicated 
significant differences in counts across sites, season, 
time period, and between indoor and outdoor captures 
(Table  3). Compared to the three other collection sites, 
significantly more Ny. darlingi were captured in LUP. In 
addition, more mosquitoes were collected during the 
rainy than dry season, outdoors versus indoors, and dur-
ing the first time period (18:00–21:00) across all sites. 
Significant interactions (time period X indoor/outdoor, 
season X time period, season X site, and site X indoor/
outdoor) suggest that these relationships are contextu-
ally dependent. A few of these interactions were signifi-
cant only for TRI in comparison to LUP: season X site 
(indicating a lower rainy: dry season ratio in TRI than 

the other sites) and site X indoor/outdoor (indicating a 
higher outdoor: indoor ratio in TRI that the other sites). 
A Kruskal–Wallis analysis of the same Ny. darlingi count 
data supported the negative binomial regression findings 
(Supplemental Table 1).

Malaria incidence data
During our study (2016–2017), the Annual Parasite 
Index (API), based on microscopic identification of blood 
smears, ranged from a low of 37.8 (TRI 2016) to a high of 
504.1 in LUP (Table 4). In 2017, two of the communities 
registered a lower API compared with 2016: TRI, popu-
lation 238, increased marginally from 37.8 to 54.6 and 
SEM, population 204, increased from 181.4 to 279.4. In 
the four communities during the time-frame of the pre-
sent study (2016–2017) more malaria cases (~ 65%) were 
P. vivax (~ 65%) compared with  P. falciparum (35%). 
These values are similar to national Peruvian averages for 
2016–2017 [28, 50]. 

Discussion
Results are congruent with previous studies in Amazo-
nian Peruvian of Ny. darlingi that found the highest risk 
of acquiring malaria to be outdoors before midnight dur-
ing the rainy season. Our new data underscore the low 
risk of local malaria transmission during the dry season, 
due in part to a highly significant reduction in Ny. dar-
lingi abundance together with significantly lower par-
ity rates, compared with the rainy season. In agreement 
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with previous studies in the peri-Iquitos region of Loreto 
Department in Amazonian Peru [10, 19], Ny. darlingi was 
the predominant anopheline species collected in the pre-
sent study (99.3%). The HBR, IR and EIR were all within 
the range of other similar regional studies that have 
focused mainly on Ny. darlingi (Table 1).

In peri-Iquitos, Ny. benarrochi B appears to be rela-
tively uncommon, as previous reports demonstrate [14, 
19, 51, 52]. In some regions, notably Datem del Marañon 
province, it was [8] and remains [53, 54] highly abundant. 
It is a regional or secondary Plasmodium vector in south-
ern Colombia, eastern Peru [55], eastern (Amazonian) 
Ecuador [53] and Datem del Marañon [54].

Despite high net distribution and cover and access 
(many residents in the present study use both tocuyos 
and LLINs as we have shown previously [17, 19], Plas-
modium continues to be transmitted and the APIs, espe-
cially in the two riverine villages of LUP and SEM, were 
high in both 2016 and 2017 (Table 4). In similar villages 
in Mazan district, Loreto region, Peru, we demonstrated 
that during the early evening (17:00–20:00), between 20 
and ~ 80% of the human population was protected under 
nets, leaving adequate hosts available for mosquitoes to 
obtain a blood meal [19]. The most likely explanation 
for transmission in the present study is that some of the 

residents were not using their bednets during the early 
evening hours and therefore not protected. We observed 
in this study as well as in [19], that residents indoors were 
occupied eating or watching television, not using their 
nets, or they were outdoors bathing in a nearby river or 
playing soccer. It has been suggested that interventions 
that are more in synch with the malaria endemic com-
munity lifestyles and can be incorporated into routine 
activities will have a better chance of protecting individu-
als [56].

Notably, the riverine village of LUP has persisted as 
a malaria transmission hot spot for several years [28]. 
In the present study, the highest Ny. darlingi HBR was 
reported in LUP and there were significantly more Ny. 
darlingi collected in this village compared with the other 
three communities (Tables 1 and 3). The possible expla-
nations for the complex malaria transmission scenario in 
LUP are varied: (1) the high biting rate may be an adap-
tation to increase Plasmodium transmission as infectiv-
ity rates in Ny. darlingi are relatively low [25]; (2) our 
prior larval sampling in LUP revealed that a slow-moving 
stream traversing the village has been a productive and 
permanent breeding site for Ny. darlingi [37]; (3) high 
Plasmodium genetic diversity and gene flow among geo-
graphically relatively far-flung communities including 
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LUP and SEM facilitates the movement of malaria par-
asites [57]; (4) recurrent seasonal flooding adds to the 
abundance and fluctuations of Ny. darlingi populations; 
and (5) there is transmission microheterogeneity within 
the village of LUP [58]. It is difficult to quantify the con-
tribution of each of these factors but integrating multiple 

effective interventions such as regular distribution of 
LLINs and/or impregnated hammocks and hammock 
nets, (after testing for effectiveness in reduction of indoor 
and outdoor transmission) to every resident; detection 
and monthly treatment of larval breeding sites (as in 
[59]); and routine detection and treatment of both symp-
tomatic and asymptomatic/sub-microscopic Plasmodium 
carriers [60] would undoubtedly reduce malaria trans-
mission. A comparison of human blood samples tested 
for presence of Plasmodium spp. in Santa Emilia by 
microscopy versus PCR by Ramirez [61] underscore the 
importance of testing and treatment of both symptomatic 
and asymptomatic/sub-microscopic Plasmodium car-
riers to cut transmission. A multi-pronged programme 
(PAMAFRO) was successful in dramatically reducing 
malaria in Amazonian Peru from 2005 to 2010 [28]. The 
Plan Maria Cero in Loreto, implemented from 2017 to 
2020, reduced malaria cases by 75% [62]. Subsequently, in 
2022, the national malaria elimination plan was launched 
with the main objective of reducing malaria cases in Peru 
by 90% by 2030 [63].

The propensity of the primary regional vector Ny. 
darlingi to bite outdoors in the early evening, at least in 
many riverine communities in the Amazon [64, 65] when 
residents are outdoors eating, relaxing, or working, con-
stitutes a major coverage gap [19]. One plausible vector 
control intervention for local communities with housing 
that frequently includes incomplete or fewer than four 
walls could be the use of eave ribbons impregnated with 
a mosquito repellent such as those that have been shown 
to be highly effective in several sub-Saharan malaria 
endemic countries [66–68]. Clearly, such interventions 
would need to be tested rigorously in the Latin American 
context.

We were able to collect adequate sample sizes during 
the dry season for analysis in this study (n = 879 (20.45%)) 
and detected significant seasonal differences in abun-
dance (Table  3) and parity. The lack of dry season Ny. 
darlingi infected with Plasmodium supports earlier find-
ings that the risk for transmission in this region is dur-
ing the rainy season, although farther west, in Datem del 
Marañon province, even in the dry season there is a risk 
of acquiring malaria [54]. There are two probable reasons 

Table 3 Negative binomial regression model of Nyssorhynchus 
darlingi counts collected in four sites (Lupuna, Nuevo Horizonte, 
Santa Emilia, El Triunfo) during rainy and dry seasons

β: regression coefficient; eβ: exponentiated regression coefficient (z-value); SE: 
Standard error

Significance level p < 0.05 in bold

Variable β eβ SE p value

Intercept 1.71 5.60 0.11  < 0.0001
Site (ref = Lupuna)

 NHO − 1.13 0.32 0.14  < 0.0001
 SEM − 0.27 0.76 0.13 0.0372
 TRI − 2.49 0.08 0.22  < 0.0001
 Season (ref = dry) 1.17 3.23 0.11  < 0.0001

Time period (ref = 18:00—21:00)

 21:00–24:00 − 1.34 0.26 0.16  < 0.0001
 24:00–03:00 − 0.66 0.52 0.14  < 0.0001
 03:00–06:00 − 0.50 0.61 0.14  < 0.0001
 Indoor/outdoor (ref = indoor) 0.56 1.76 0.11  < 0.0001

Time period x indoor/outdoor

 21:00–24:00 outdoor 0.53 1.70 0.14  < 0.0001
 24:00–03:00 outdoor 0.00 1.00 0.14 0.9973

 03:00–06:00 outdoor − 0.14 0.87 0.14 0.3190

Season x time period

 Rainy × 21:00–24:00 0.34 1.41 0.15 0.0248
 Rainy × 24:00–03:00 0.02 1.02 0.14 0.8997

 Rainy × 03:00–06:00 − 0.42 0.66 0.14 0.0037
Season x site

 Rainy NHO − 0.24 0.79 0.15 0.1049

 Rainy SEM 0.05 1.05 0.13 0.7085

 Rainy TRI − 0.74 0.48 0.20 0.0002
Site x indoor/outdoor

 NHO outdoor − 0.06 0.94 0.14 0.6710

 SEM outdoor − 0.01 0.99 0.12 0.9037

 TRI outdoor 0.60 1.83 0.22 0.0062

Table 4 Number of malaria cases in the four sampled communities in Loreto, Peru (2016 and 2017)

N Nuevo; Data from Ministry of Health, Iquitos, Peru; API: Annual Parasite Index calculated as number of confirmed malaria cases per 1,000 individuals

Community Population No. cases 2016 API 2016 No. cases 2017 API 2017

Lupuna 365 184 504.1 163 446.6

Santa Emilia 204 37 181.4 57 279.4

El Triunfo 238 9 37.8 13 54.6

N. Horizonte 375 61 162.7 44 117.3
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for this. First, during the low-transmission (dry) season, 
despite a substantial burden of sub-microscopic infec-
tions in Loreto [12, 61] and the fact that persons with 
submicroscopic malaria can infect anophelines [69], gen-
erally very few mosquitoes are infected at low gametocyte 
densities with standard membrane feeders and transmis-
sion is considered much less likely to occur [60, 70]. Nev-
ertheless, a comparison of microscopy versus real time 
PCR results of Plasmodium-positive residents from the 
community of Santa Emilia from January–September 
2016, demonstrated a very biologically significant differ-
ence i.e., 6.5% (92/1416) infectivity by microscopy and 
24.34% (295/1212) by PCR. The data support the consid-
eration of testing and treating asymptomatic inhabitants, 
particularly of malaria hotspots.

The second reason is that malaria transmission occurs 
not only in villages but also in temporary locations (for 
example, logging or mining camps) linked to seasonal 
occupation [10, 12]. We did not collect anopheline spec-
imens from such localities to test for this study but the 
Parker et  al. [10] study along the Mazan River during 
both rainy and dry seasons detected two of 967 Ny. dar-
lingi specimens infected, one positive for P. falciparum 
and one for P. vivax, from occupation-related logging 
sites.

The peak biting patterns for Ny. darlingi reported here 
are similar to those in Lainhart et al. [9], in that they dif-
fer between riverine and highway communities, albeit 
not significantly. Thus, in the present study, there was no 
significant difference between seasonal patterns, and we 
reject our initial hypothesis of differences between vil-
lage types (riverine and highway) and instead propose 
that these biting patterns result from the spatiotemporal 
availability of human (and possibly other animal and/or 
bird) hosts [9, 18, 71, 72].

Our parity data indicate that the majority of Ny. dar-
lingi females seeking a human bloodmeal are parous, i.e., 
older, as previous studies have demonstrated in Amazo-
nian Peru [18] and Brazil [45] and, therefore, they could 
potentially be infected with Plasmodium. However, only 
during the March collection in TRI were samples of Ny. 
darlingi old enough (range 7.24–9.13 days) to sustain the 
P. vivax sporogonic cycle, calculated with the Moshko-
vsky method in Barros et  al. [45]). Parity rates were 
higher for Ny. darlingi during peak transmission (second 
half of the rainy season and beginning of the dry season) 
in LUP, NHO and TRI, although this does not hold for 
SEM (Table 2). Limitations of this study include the high 
variability in the range of mosquitoes that were dissected 
and analysed to estimate parity among sites and seasons, 
as well as in some cases, very low numbers of nullipa-
rous mosquitoes, such that the vector age could not be 
calculated. Dissections can be inaccurately interpreted 

and training in the apparently simple technique is essen-
tial. Determination of age has long been a vexing issue in 
vector biology but a promising new surveillance method, 
based on deep learning of mid-infrared spectra of mos-
quito cuticle, was able to accurately and cost-effectively 
identify both species and age class among three closely 
related Africa vectors, Anopheles gambiae, Anopheles 
arabiensis and Anopheles coluzzii [73]. Hopefully, this 
method can soon be applied to Latin American and other 
regional malaria vectors and make a significant impact 
on malaria transmission reduction.

Conclusions
Malaria incidence in Peru is highest when the interac-
tions between the various ecological and human fac-
tors are optimal for malaria transmission [28] and may 
be region specific. For example, in Roraima state, Bra-
zil, peak malaria incidence and the highest parity rates 
occurred during the dry season [45], whereas in south-
ern Venezuela, the peak malaria incidence occurred one 
month after peak biting rates by Ny. darlingi and Nysso-
rhynchus marajoara, and there was no correlation with 
rainfall [74]. In the present study, malaria transmission is 
optimal during the rainy season when there is an abun-
dance of breeding sites, parous female Ny. darlingi, and 
available human hosts, especially outdoors during the 
early evening hours that coincide with the peak human 
biting rates of Ny. darlingi.
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