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Abstract

Background: The burden of malaria has decreased dramatically within the past several years in parts of sub-
Saharan Africa. Further malaria control will require targeted control strategies based on evidence of risk. The
objective of this study was to identify environmental risk factors for malaria transmission using remote sensing
technologies to guide malaria control interventions in a region of declining burden of malaria.

Methods: Satellite images were used to construct a sampling frame for the random selection of households
enrolled in prospective longitudinal and cross-sectional surveys of malaria parasitaemia in Southern Province,
Zambia. A digital elevation model (DEM) was derived from the Shuttle Radar Topography Mission version 3 DEM
and used for landscape characterization, including landforms, elevation, aspect, slope, topographic wetness,
topographic position index and hydrological models of stream networks.

Results: A total of 768 individuals from 128 randomly selected households were enrolled over 21 months, from
the end of the rainy season in April 2007 through December 2008. Of the 768 individuals tested, 117 (15.2%) were
positive by malaria rapid diagnostic test (RDT). Individuals residing within 3.75 km of a third order stream were at
increased risk of malaria. Households at elevations above the baseline elevation for the region were at decreasing
risk of having RDT-positive residents. Households where new infections occurred were overlaid on a risk map of

elimination.

RDT positive households and incident infections were more likely to be located in high-risk areas derived from
prevalence data. Based on the spatial risk map, targeting households in the top 80" percentile of malaria risk
would require malaria control interventions directed to only 24% of the households.

Conclusions: Remote sensing technologies can be used to target malaria control interventions in a region of
declining malaria transmission in southern Zambia, enabling a more efficient use of resources for malaria

Background

The burden of malaria has decreased dramatically in
parts of sub-Saharan Africa [1]. While some of this
decline is attributable to intensified control efforts, parti-
cularly the use of more effective anti-malarial drugs and
the scale-up of insecticide-treated nets (ITNs) and indoor
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residual spraying (IRS), the situation is more complex [2].
In several sites the decline in malaria preceded wide-
spread introduction of control strategies. In Kilifi, Kenya,
for example, the decline in paediatric hospitalizations for
malaria began a year before the large-scale distribution of
ITNs and two years before the availability of artemisinin-
combination therapy (ACT) [3].

Declines in the burden of malaria have been observed
in Zambia, coincident with the widespread implementa-
tion of malaria control strategies, including the use of
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ACT as the first-line treatment regimen, the distribution
of long-lasting insecticidal nets (LLINs), and targeted
IRS [4]. The overall prevalence of malaria parasitaemia
in children younger than five years of age decreased
53% from a baseline prevalence of 22% between 2006
and 2008 [5]. In Choma District, southern Zambia, pae-
diatric hospitalizations at Macha Hospital for malaria
decreased from approximately 1,400 admissions per
malaria season in 2000-2001 to fewer than 50 per year
in each of the past three years. This decline began in
2004, shortly after the introduction of ACT, but before
widespread distribution of LLINS.

The decline in the burden of malaria in parts of sub-
Saharan Africa has led to interest in malaria elimination
and eradication [6]. One strategy for regional elimina-
tion is a step-wise approach starting with countries at
the margins of endemic transmission [7], including the
southern margins of malaria transmission in Africa [8].
Within the countries of southern Africa there is a range
of Plasmodium falciparum parasite rates, corresponding
to different levels of endemicity and phases of control
[9]. Understanding the local epidemiology of malaria in
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southern African is thus critical to assessing the feasibil-
ity of regional malaria elimination.

Targeting interventions to hotspots of malaria trans-
mission results in more efficient and cost-effective accel-
erated malaria control efforts [10] but requires
identification of individual, household, and environmen-
tal correlates of transmission. Remote sensing technolo-
gies were applied to determine if readily generated
environmental data are of sufficient detail and validity
to identify heterogeneity in spatial risk factors for
malaria transmission in southern Zambia, where the
burden of malaria has decreased and elimination may be
feasible.

Methods

Study population

Satellite images were used to construct a sampling frame
for the random selection of households enrolled in pro-
spective longitudinal and cross-sectional surveys of
malaria parasitaemia in the catchment area of Macha
Hospital in Southern Province, Zambia (Figure 1).
Macha Hospital is approximately 70 km from the
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Figure 1 Map of the study sites in Choma District, Southern Province, Zambia.
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nearest town of Choma and the catchment area is popu-
lated by traditional villagers living in small, scattered
homesteads. Anopheles arabiensis is the primary vector
responsible for malaria transmission, which peaks during
the rainy season from December through April [11].
The sampling frame for the random selection of house-
holds was constructed from a Quickbird™ satellite
image obtained from DigitalGlobe Services, Inc. (Denver,
Colorado). The image was imported into ArcGIS 9.2
(Environmental Systems Research Institute [ESRI], Red-
lands, California) and locations of households were iden-
tified and enumerated manually. Structures of
appropriate size and shape were identified as potential
residences, and consisted of one or more domestic
structures where members of a family resided. Smaller
structures, such as kraals, and larger structures, such as
schools, were excluded. Selected households were allo-
cated to one of two study cohorts: longitudinal and
cross-sectional. Households in the longitudinal cohort
were surveyed repeatedly approximately every two
months and households in the cross-sectional cohort
were surveyed once. Cross-sectional and longitudinal
household surveys were conducted approximately every
other month (during alternate months) from April 2007
through December 2007 in the first study area and from
February 2008 through December 2008 in the second
study area. Data from all cross-sectional households and
the first longitudinal household visit were used to
develop the spatial risk model. Model validation was
conducted with the full longitudinal dataset. The study
was approved the Johns Hopkins Bloomberg School of
Public Health Institutional Review Board and the Uni-
versity of Zambia Research Ethics Committee.

A field team was provided with images and coordi-
nates of the randomly selected households. After obtain-
ing permission from the local chief and head of
household, and individual written informed consent, a
questionnaire was administered to each participant
residing within the household and a blood sample was
collected by finger prick. Rapid diagnostic tests (RDT;
ICT Diagnostics, Cape Town, South Africa) were used
to detect P. falciparum histidine-rich protein 2. This
RDT was shown to detect 82% of test samples with
wild-type P. falciparum at a concentration of 200 para-
sites/pL 98% of test samples with a concentration of
2,000 parasites/pL, with false positives in 0.6% of clean
negative samples [12]. Individuals who were RDT posi-
tive were offered treatment with artemether-lumefan-
trine (Coartem®™) by trained medical personnel.
Households in which at least one individual tested posi-
tive by RDT were classified as a positive household.
Positive and negative households were plotted as a data
layer in ArcGIS 9.2.
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Landscape characterization

A digital elevation model (DEM) for the area with 1 m
horizontal resolution was derived from the Shuttle
Radar Topography Mission (SRTM) version 3 DEM
with 90 m pixels. Elevation values correspond to the
reflective surface on the earth and represent soil surface,
vegetation or man-made structures. The SRTM imagery
was collected during a 2001 space shuttle mission using
a multi-frequency, multi-polarization radar system. Each
pixel represented a 30 m average elevation around each
pixel’s center. The relative horizontal accuracy was +15
m (90% circular error) with a relative vertical accuracy
of +6 m (90% vertical error).

Topographic wetness

The digital elevation model was processed in Imagine
9.1 (Earth Resource Data Analysis System [ERDAS],
Norcross, Georgia) and imported into ArcGIS 9.2. Ima-
gery and point locations were geo-referenced to UTM
zone 35S, WGS 1984. The ArcGIS extension Terrain
Analysis Using Digital Elevation Models extension [13]
was used to model water flow and calculate an index of
topographic wetness (ITW). Data were smoothed to fill
in isolated elevation pits or spikes typically representing
errors or areas of internal drainage that interrupt esti-
mates of water flow. Slope and flow directions were
determined using the multiple direction algorithm
(MDA) [14] and the flat area flow direction methods
[15]. The MDA method used the steepest slope of trian-
gular facets, allowing water to flow in any direction. The
ITW is an indicator of potential moisture, assuming sur-
face homogeneity for soil and vegetation, and is calcu-
lated using the ratio of upslope contributing area and
local slope (the tangent of slope = tanff). A pan-shar-
pened Quickbird imagery scene (DigitalGlobal, Long-
mont, Colorado) (2.5 m mulitspectral) collected on June
12, 2007 was used to evaluate the hydrological model.
Drainages were categorized according to the Strahler
stream order classification into first through fifth order
streams [16,17], such that, for example, a second order
stream is formed when two first order streams join.

Topographic position index

The topographic position index (TPI) was generated in
ArcView 3.3 (ESRI, Redlands, California) with an exten-
sion by Jenness [18]. The TPI classifies the landscape by
slope position (low, middle, high) and landform type
(plain, valley, ridge), and represents the difference
between the elevation at a point and the elevations of
neighbourhood cells. TPI values near zero are typical of
flat or mid-slope locations. High values signify areas,
such as hill tops and ridges, while low values are indica-
tive of valley floors. Because the TPI is scale dependent,
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local (500 m) and area-wide (2 km) scales were consid-
ered. The 500 m neighbourhood detected local valleys
and hills while the 2 km neighbourhood identified larger
scale features such a large U-shaped valleys, gently
sloped hills and tops of plateaus.

The magnitude of the TPI and the area’s slope were
used to classify the slope position according to Weiss
[19], based on the TPI score standard deviations and
slope values. Slope position classes were valley, lower
slope, flat slope, middle slope, upper slope and ridge.
Ten landform classes (deep streams, shallow valleys and
mid-slope drainage pathways, upland drainage areas, U-
shaped valleys, plains, open slopes, upper slopes and
mesas, local ridges and hills in large valleys, mid-slope
of ridges and small hills in plains, and high ridges) were
generated by comparing standardized TPI values (stan-
dardized TPI = [TPI - TPI mean]/[TPI standard devia-
tion]) for TPI values at 500 m (TPI5q), 2 km (TPI;,000)
and slope [19].

Statistical analyses

Incident malaria infections were estimated using data
from the longitudinal survey. An incident infection was
defined as an individual with a positive RDT after a
prior negative RDT, or an individual with two consecu-
tive positive RDTs more than 30 days apart. The month
of infection was taken as the mid-point between a
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negative and positive RDT test, or the midpoint between
one month after the first positive RDT and the time of
the subsequent positive RDT. Logistic regression was
used to identify environmental conditions associated
with the odds of a household having an individual with
a positive RDT. Distances of the surveyed households
from the five stream orders were aggregated into quar-
tiles. Household elevation above the study area baseline
(1,009 m) in 10 m increments and slope were included
in the model as continuous variables. Aspect was coded
so that households with an eastern or south-eastern
exposure were coded as 1, those with western and
northwestern exposure were coded -1 and all others as
0. Analyses were performed using Statistix version 8.0
(Analytical Software, Tallahassee Florida). The spatial
structure of residual errors was examined using Global
Moran’s I to determine if there was a systematic depar-
ture from the assumption that errors were spatially
independent (i.e. spatially autocorrelated), which would
overinflate the significance of the environmental risk
factors estimated by logistic regression.

Results

Characteristics of the study population

There were 8,751 households identified from the Quick-
bird satellite image in the study area (Figure 2). A total
of 768 individuals from 128 randomly selected
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Figure 2 Spatial distribution of households with and without RDT positive individuals. Brown circles indicate all households in the study
area. Yellow circles indicate sampled households in which at least one resident was RDT positive at the study visit. Green circles indicate
sampled households in which no resident was RDT positive at the study visit. First through fifth order streams are indicated.
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households were enrolled over 21 months (Figure 2),
from the end of the rainy season in April 2007 through
December 2008. The 128 households represented 1.5%
of the 8,751 households documented in the 1,650 km?
study area. The study area surveyed from April to
December 2007 was east of the study area surveyed
from January to December 2008 (Figure 1). Thirty-five
households were enrolled in the longitudinal survey and
were visited more than once. Initial RDT results from
the 270 individuals residing within these 35 households
were used to characterize the prevalence of malaria in
these households. These data were combined with the
498 individuals in 93 households enrolled in the cross-
sectional survey.

The median age of study participants was 12.8 years
(interquartile range [IQR]:5.2, 31.8) in 2007 and 14.3 years
(IQR: 6.4, 34.3) in 2008. Of the 768 individuals tested, 117
(15.2%) were positive by RDT. These individuals resided in
56 (43.8% of 117) households, with 36 (69.2% of 56)
households enrolled in 2007 and 20 (26.3% of 56) house-
holds enrolled in 2008. The prevalence of RDT positive
individuals in the 2007 longitudinal survey was 25.5%
compared with 27.2% in the cross-sectional survey. The
prevalence of RDT positive individuals was 4.3% in the
longitudinal survey in 2008 (west of the 2007 study area),
compared with 9.8% in the cross-sectional survey.

Landforms and aspect of sampled households were
representative of households in the study area
Landforms occupied by the surveyed households were
similar to those not surveyed in the study area. Surveyed
(n = 128) and non-surveyed (n = 8,623) households
were found on plains (85% vs. 75%, respectively), mid-
slope drainage pathways (6% vs. 7%), mesas (4% vs. 6%),
ridges (3% vs. 5%), canyons (2% vs. 2%), U shaped val-
leys (0% vs. 5%) and open slopes (0% vs. 0.002%).
Households in U-shaped valleys were not represented in
the surveyed households, as were two landforms not
present in the study area, open slopes and headwaters.
The aspect of the land described by the compass
direction of the steepest slope for an individual pixel
was used to determine the direction the sloping land
faced (flat surfaces were assessed separately). Generally,
western and northwestern facing slopes are warmer and
drier than comparable eastern and south-eastern facing
slopes in the southern hemisphere. The distribution of
slope directions for all households within the study area
was proportional to the slope directions for land in the
study region, indicating residents did not preferentially
select a particular aspect when constructing households
(see Additional File 1). Land aspects of the surveyed
households matched the distribution of the non-sur-
veyed households, with the exception of slight under
sampling of households on northwestern facing slopes
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and a slight excess of households facing north-east (see
Additional File 1).

Lower elevation was associated with increased risk of
malaria

The elevation of households in the study area ranged
from 1,009 to 1,268 m above sea level. Households with
RDT positive individuals were significantly lower in ele-
vation on average (elevation mean + standard deviation:
1,079.1 + 28.92 m; range 1,014 to 1,143 m) than house-
holds with only RDT negative individuals (1,105.6 +
46.21 m; range 1,040 to 1,247 m) (P = 0.0001).

Lesser slope was associated with increased risk of malaria
Households with RDT positive individuals were approxi-
mately 50% more likely than RDT negative households
to occupy eastern and south-eastern facing slopes (see
Additional File 1). Conversely, RDT negative households
were twice as likely to occupy north-western and wes-
tern-facing slopes compared to RDT positive house-
holds. The slope of the land, as measured in degrees,
characterizes the rate at which the elevation of the local
area changes. The study area was generally flat, with the
average slope surrounding households 0.026° + 0.019°.
On average, RDT positive households were on flatter
ground (slope of 0.024° + 0.014°) than RDT negative
households (slope of 0.031° + 0.023°; p = 0.04).

Proximity to third order streams was associated with
increased risk of malaria

The risk of malaria associated with living increasingly clo-
ser to each of the five stream orders was assessed using
logistic regression, with the furthest distance used as the
reference category. Households with at least one RDT
positive individual were compared with households in
which no individuals were RDT positive. Only distances
from third and fifth order streams were associated with
the odds of a household having an RDT positive indivi-
dual. The risk decreased the closer a household was to the
only fifth order stream in the region. Households within
4.5 km of a fifth order stream were 2.6 (95% CI 1.1-6.2)
times less likely to be positive than households greater
than 20.6 km from a fifth order stream. In contrast, living
in proximity to a third order stream increased the risk of
RDT positivity. Households within 1.98 km of a third
order stream were 2.8 (95% CI 1.2-6.9) times more likely
to have an RDT positive resident than households situated
more than 6.0 km from a third order stream.

The multivariable logistic model identified the nearest
quartile of distance to third order streams, and between
the first and median quartiles of distances to third order
streams, as significant predictors of the odds of a house-
hold having an RDT positive individual (Table 1). There
was an increased risk of malaria for persons living
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Table 1 Spatial risk factors for malaria
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Number of % Positive Unadjusted OR P Adjusted OR P
households households (95% Cl) (95% Cl)
Third order streams
<198 km 31 18 285 (1.18,6.9) 0.020 3.93 (1.55,9.93) 0.0008
1.98-3.74 km 33 16 1.80 (0.76, 4.2) 0.179 347 (1.20, 10.05) 0.004
3.74-5.95 km 32 13 1.08 (044, 2.7) 0.862 1.38 (0.52, 3.70) 0.194
> 595 (ref) 32 13 1.00
Fifth order streams
<4.55 km 32 7 0.39 (0.16, 0.91) 0.030
4.55-11.92 km 32 8 0.22 (0.09, 0.58) 0.002
11.92-20.57 km 32 17 044 (0.18, 1.09) 0.078
> 20.57 (ref) 32 23 1.00
Aspect
Eastern or south-eastern 32 18 2.06 (0.91, 4.70)
Western or north-western 20 5 043 (0.14, 1.32)
Negative households Positive households
Elevation above baseline (1009
m)
10 m increments 11056 £ 462 m 1097 £ 482 m 0.95 (091, 0.98) 0.006 0.87 (0.81, 0.95) 0.0001
Slope 0.03 + 0.023 002 £ 0014

within 3.75 km of a third order stream. Households at
elevations above the baseline elevation for the region
(1009 m) were at decreasing risk of having an RDT
positive individual. For every 10 m rise in elevation the
risk decreased by approximately 13%. No other environ-
mental characteristics were significantly associated with
the odds of a household having an RDT positive indivi-
dual in the multivariable analyses. The residual errors
did not show significant spatial autocorrelation (I =
-0.07), so alternative model structures were not incorpo-
rated. Generalized linear mixed models were evaluated
but they did not improve the fit of the model and were
not considered further.

Spatial risk map for malaria

A spatial risk map for the study area was generated
based on the regression analyses (Figure 3). Areas of
higher risk for malaria increased in the north of the
study region and in proximity to third order streams.
However, there was a large region of low risk between
the northern region and the two fourth order streams
running south.

Validation of the risk map using incidence cases
An estimate of incident malaria cases from the longitu-
dinal surveys was used to evaluate the predictive ability
of the risk map based on prevalence data and to locate
areas where new malaria cases were identified.

A total of 102 individuals from 17 households were
enrolled in the longitudinal survey in 2007. A single
RDT was performed on 27 individuals (three of whom

were RDT positive) and they were excluded from analy-
sis. The remaining 75 individuals contributed 410 per-
son-months at risk, the period at risk being determined
by the interval in weeks between negative tests and
allowing for a 30-day period of no risk after treatment
of an individual with a positive RDT. There were 37
incident malaria infections in 2007 (20 of which were in
individuals with a positive RDT after a previous negative
test and 17 were consecutive positive RDTs in the same
individual more than 30 days apart), resulting in 9.02
events/100 person-months of observation. Nine incident
cases were identified in April, 15 in May, 10 in June,
two in August and one in September.

A total of 117 individuals from 19 households were
enrolled in the longitudinal survey in 2008. A single
RDT was performed on 17 individuals and they were
excluded from analysis (none of whom were RDT posi-
tive). The remaining 100 individuals contributed 771
person-months at risk. There were four events in 2008
(three of which were in individuals with a positive RDT
after a previous negative test and one of which was due
to consecutive positive RDTs in the same individual
more than 30 days apart), resulting in 0.52 events/100
person-months of observation in 2008. One incident
case occurred in March, two in April and one in May.

In total, there were 1,181 person-months of risk for
175 people during 21 calendar months in 2007 and
2008. There were 41 RDT events or 3.47/100 per per-
son-months of observation. Households where new
infections occurred were overlaid on the risk map of
RDT positive households (Figure 4). Incident infections
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Figure 3 Malaria risk map. Malaria risk map generated using households with prevalent RDT-positive malaria cases, showing all households in
the study area and first through fifth order streams. Yellow and orange shading indicates regions of high risk and blue shading indicates regions

of low risk.
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Figure 4 Incident malaria cases and the malaria risk map based on prevalent cases. Households with and without incidence malaria cases
detected by RDT overlaid on the malaria risk map and first through fifth order streams. The size of the circle represents the number of person-
years of observation within each study household.
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were more likely to be located in high-risk areas based
on the prevalence data. The incidence of an RDT posi-
tive individual within a household showed a rapid rise
as the value of the logistic function exceeded 0.52 (Fig-
ure 5). In households where the function exceeded 0.60,
household incidence of an RDT positive individual aver-
aged 10%/month compared with 1.9%/month for house-
holds with lower risk (Figure 5).

Using the spatial risk map to target malaria control
interventions

To explore the consequences of identifying households
for targeted interventions based on the risk map, the
proportion of households above different thresholds in
predicted risk of having an RDT positive individual was
determined and these estimates were extrapolated to all
the households in the region. To identify 50%, 80% and
90% of the households with RDT positive individuals,
logit estimates of p > 0.53, 0.31 and 0.26, respectively,
were used from the empirical distribution of predicted
values. Among the surveyed households, this resulted in
fewer households with RDT positive individuals being
excluded (27, 11 and 5 households with at least one
RDT positive individual being missed, respectively). As a
measure of specificity, these thresholds also included 43,
21, and 17 households with no RDT positive individuals,
so that 62%, 66% and 77% of households below these
thresholds would have no RDT positive individuals.

In addition to the presence of individuals with RDT
positive results in the households, there also was a sub-
stantial difference in the frequency of infection as mea-
sured by the proportion of tests performed that gave
positive results. For example, when the threshold was
selected to capture 90% of the households with any
RDT positive results, only five of the 338 (1.5%) RDT
tests performed in households below the threshold were
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Figure 5 Household incidence of malaria compared with log
odds of residing in a high risk area.
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positive. By comparison, in households above the
threshold there were 40 households with at least one
RDT positive individual and there was a substantially
higher proportion of positive RDTs among individuals
residing in these households (114/579 = 19.7% tests).

To target malaria control interventions to all house-
holds at or above the 90" percentile of predicted risk
would require that 38.8% (3,398) of the 8,751 house-
holds in the region receive the intervention. Households
in the top 80'™ percentile would require targeting of
malaria control interventions to 23.6% (2,067) of the
households, and the top 50™ percentile required target-
ing interventions to 20.3% (1,775) of the households.

Discussion

Remote sensing enabled identification of environmental
risk factors for P. falciparum parasitaemia in a region of
declining malaria transmission in southern Zambia and
the generation of a spatial risk map predictive of incident
malaria cases. Proximity to third order streams and low
altitude were environmental characteristics associated with
households in which a resident had parasitaemia, presum-
ably because of proximity to anopheline breeding sites in
these ecological settings. A strength of this methodology is
that parasite prevalence was measured in symptomatic
and asymptomatic individuals residing in randomly
selected households using satellite images and was not
subject to biases inherent in passive detection at health
care facilities or limited to symptomatic individuals.
Furthermore, the landforms of surveyed households were
representative of all households in the study area. This
study is one of the first to identify environmental risk fac-
tors for malaria in a region of declining malaria transmis-
sion and accelerated control efforts. Using data readily
generated with remote sensing technologies, this approach
can be used to guide targeted malaria control interven-
tions to further reduce malaria transmission.

Remote sensing has been used to identify risk factors for
malaria in regions of high malaria transmission [20]. Com-
monly identified risk factors include land elevation [21]
and proximity to vector breeding sites. In a region of high
malaria endemicity in Ghana, small-scale heterogeneity in
risk was identified between villages, with increased risk in
those households closer to the forest fringe [22]. Prior stu-
dies have identified proximity to bodies of water as a risk
factor for malaria, although none identified a specific
stream order. In a region of low malaria endemicity in
northern Tanzania, living close to the river was an inde-
pendent predictor for malaria infection based on passive
case detection at a health care facility, and the authors
suggest that interventions should be targeted to house-
holds close to the river [23]. Hydrologic modelling was
used to assess the risk of malaria in the highlands of wes-
tern Kenya [24]. Topography-derived wetness indices were
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significantly associated with household-level malaria inci-
dence, independent of elevation. Specifically, households
with cases of malaria were located 280 m closer to regions
with high wetness indices than control households. How-
ever, in a highly malaria endemic area in western Cote
d’Ivoire, proximity to a river was not significantly asso-
ciated with the risk of malaria after adjusting for spatial
correlation [25].

A malaria risk map was generated based upon the envir-
onmental risk factors that allowed us to extrapolate
malaria risk throughout the study area. This map was
based on parasite prevalence data from randomly selected
households and validated with incidence data, confirming
the biological significance of the identified risk factors.
Other, potentially more biased, sampling methods have
been used to generate malaria risk maps. For example,
local clustering was identified and risk maps generated
from malaria morbidity data in East Shoa, Ethiopia and
digital elevation models [26], and risk models have been
generated on smaller scales [27]. Generating risk maps
from modelling approaches such as logistic regression
makes strong assumptions about the form of the residual
variation, especially that the errors are independently dis-
tributed rather than retaining spatial structure. Thus, test-
ing for spatial structure in the residual variation is needed
to ensure that the significance of the point estimates of
the environmental risk factors is not overestimated, and
that at the scale of the analysis remaining, undetected co-
factors have not been ignored.

Conclusions

For national planning of malaria control strategies, large-
scale maps are needed. Validated, remote sensing technolo-
gies allow generation of large-scale risk maps for targeting
of malaria control interventions. Using readily available
ecological data and remote sensing technologies, a malaria
risk map was generated for targeted interventions in a
region of decreasing malaria transmission in southern
Zambia. This analysis suggests that increasing the targeted
area from 50% to 80% of high-risk communities requires
reaching a much smaller proportion of households than
increasing the target area from 80% to 90% of high-risk
households. Although different settings may have a differ-
ent set of predictors, such information can guide allocation
of limited resources to achieve further malaria control in
regions of declining malaria transmission.

Additional material

Additional file 1: The percentage of households situated in
different aspects of the land, by RDT positive and negative
households, unsurveyed households and the total landscape.
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