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Abstract

Background: Resistance to anti-malarial drugs is a widespread problem for control programmes for this
devastating disease. Molecular tests are available for many anti-malarial drugs and are useful tools for the
surveillance of drug resistance. However, the correlation of treatment outcome and molecular tests with particular
parasite markers is not perfect, due in part to individuals who are able to clear genotypically drug-resistant
parasites. This study aimed to identify molecular markers in the human genome that correlate with the clearance
of malaria parasites after drug treatment, despite the drug resistance profile of the protozoan as predicted by
molecular approaches.

Methods: 3721 samples from five African countries, which were known to contain genotypically drug resistant
parasites, were analysed. These parasites were collected from patients who subsequently failed to clear their
infection following drug treatment, as expected, but also from patients who successfully cleared their infections
with drug-resistant parasites. 67 human polymorphisms (SNPs) on 17 chromosomes were analysed using
Sequenom'’s mass spectrometry iPLEX gold platform, to identify regions of the human genome, which contribute
to enhanced clearance of drug resistant parasites.

Results: An analysis of all data from the five countries revealed significant associations between the phenotype of
ability to clear drug-resistant Plasmodium falciparum infection and human immune response loci common to all
populations. Overall, three SNPs showed a significant association with clearance of drug-resistant parasites with
odds ratios of 0.76 for SNP rs2706384 (95% Cl 0.71-0.92, P = 0.005), 0.66 for SNP rs1805015 (95% Cl 0.45-0.97, P =
0.03), and 0.67 for SNP rs1128127 (95% Cl 0.45-0.99, P = 0.05), after adjustment for possible confounding factors.
The first two SNPs (rs2706384 and rs1805015) are within loci involved in pro-inflammatory (interferon-gamma) and
anti-inflammatory (IL-4) cytokine responses. The third locus encodes a protein involved in the degradation of
misfolded proteins within the endoplasmic reticulum, and its role, if any, in the clearance phenotype is unclear.

Conclusions: The study showed significant association of three loci in the human genome with the ability of
parasite to clear drug-resistant P. falciparum in samples taken from five countries distributed across sub-Saharan
Africa. Both SNP rs2706384 and SNP1805015 have previously been reported to be associated with risk of malaria
infection in African populations. The loci are involved in the Th1/Th2 balance, and the association of SNPs within
these genes suggests a key role for antibody in the clearance of drug-resistant parasites. It is possible that patients
able to clear drug-resistant infections have an enhanced ability to control parasite growth.
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Background

Plasmodium falciparum malaria remains a major cause
of morbidity and mortality among children and preg-
nant women in sub-Saharan Africa. The most recent
global figures show that malaria was responsible for
over 863,000 deaths in 2008 and one fifth of the world’s
population is at risk [1]. 85% of cases and 89% of deaths
due to malaria are found in sub-Saharan Africa [1].
Over the last decade some African countries have seen a
reduction in malaria cases and deaths, probably through
increased funding for disease control measures such as
the use of insecticide-treated mosquito nets. However
parasite resistance to anti-malarial drugs, and mosquito
vector resistance to insecticides, remain a major threat
to the control of malaria.

Development of acquired immunity to malaria, which
is only partially protective, requires persistent, sub-clini-
cal infection over a period of several years (reviewed in
[2]). The partial protection is strain-, stage- and species-
specific. This may account for the observed higher
malaria infection in children than in adults, and indi-
cates that the immune status of the host influences the
severity of malaria disease and the outcome of the treat-
ment [3].

It is known that host genetic factors play a significant
role in determining an individual’s susceptibility to
many infectious diseases, including malaria [4-6]. Fac-
tors such as ethnic background [7], immunity [8,9], age
[10], drug availability [11], co-infecting pathogens [12],
socio-economical status [13], and parasite population
structure [14] may impact on the outcome of infection,
and the development of an effective immune response.

Advances in molecular biology have led to the discov-
ery of genes involved in resistance to commonly used
anti-malarial drugs such as chloroquine and sulphadox-
ine-pyrimethamine [15,16]. However the prevalence of
parasites carrying the “resistant” alleles of these genes
consistently exceeds in vivo treatment failure rates in
malaria endemic settings [17], implying that some
human hosts in malaria endemic-areas are able to clear
genuinely drug-resistant malaria parasites. The ability to
clear resistant parasites is associated with age [10,18],
suggesting that host acquired immunity has a critical
role in the clearance of drug-resistant P. falciparum
infections in endemic regions. Several studies have sup-
ported the role of antiparasite immune responses in the
therapeutic response to anti-malarial drugs during acute
malaria ([19,20], reviewed in [3]). Host genetic factors
such as sickle cell trait (HbAs), alpha-thalassaemia and
haemoglobin E, as well as host pharmacogenetic differ-
ences, can also have an impact on the outcome of treat-
ment with anti-malarial drugs [21-24]. The outcome of
anti-malarial chemotherapy is, therefore, dependent on
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host genetic and immunological factors, as well as the
level of drug resistance shown by the parasites.

In this study, known host genetic factors (other than
haemoglobinopathies) that might account for individual
differences in the clearance of drug-resistant parasites
have been analysed in samples taken from subjects aged
from 5 months old. The study included data from five
African countries from both West and East Africa. The
human gene variants investigated included cytokines
and other immune mediators, thought to be involved in
malarial pathogenesis, together with their receptors, and
promoters. The overall objective of this study was to
identify host immune factors that may be responsible
for in-vivo clearance of drug-resistant P. falciparum by
comparing allele frequencies of known SNPs in patients
who clear genotypically resistant parasites with those
patients who do not.

Methods

Study location and participant recruitment

Individuals were recruited to the study from five African
countries: Burkina Faso, Cameroon, Kenya, Mali and
Sudan (Figure 1). These countries were members of the
International Atomic Energy’s Co-ordinated Research
Project E15019 on “Improved accuracy and immunolo-
gical markers for prediction of efficacy of anti-malarial
drugs”. In all study sites, P. falciparum is responsible for
> 95% of the clinical cases.
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Figure 1 Study sites in Africa. Countries involved in the project
are shaded.
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Individuals aged from 5 months old, with uncompli-
cated P. falciparum malaria, who were treated with anti-
malarial drugs including chloroquine, amodiaquine,
sulphadoxine-pyrimethamine (SP) and artemisinins
according to the policy within each country, were
recruited to standard in vivo drug efficacy studies car-
ried out in accordance with WHO protocols [25].
Details of these studies and their outcomes have been
previously reported: Burkina Faso [26], Sudan [27],
Cameroon [28,29], Kenya [30] and Mali [31], and a
summary is provided in Table 1.

Fingerprick blood samples were collected onto filter
paper from each individual at the time of recruitment to
the study, for genotyping of the parasites present and
for characterisation of the human SNP markers used in
the study.

Ethical considerations

The study protocol was reviewed and approved by the
Institutional Review Boards of the respective participant
countries. Individuals were recruited to the study with
the consent of their parents or guardians (for children),
or with their own consent.

Definition of in vivo drug resistance and sensitivity

The clinical outcomes of treatment were defined accord-
ing to WHO recommendations [25]. Samples were ana-
lysed for markers of parasite drug resistance from those
patients who successfully cleared their infection

Page 3 of 13

("sensitive” or “adequate clinical and parasitological
response (ACPR)“ as well as from those meeting the cri-
teria for treatment failure. Briefly, “sensitivity” is defined
as the clearance of parasites following drug treatment,
without subsequent recrudescence within a defined per-
iod (28 days). An adequate clinical and parasitological
response (ACPR) is defined as the absence of parasitae-
mia on day 28 irrespective of axillary temperature, with-
out previously meeting any of the criteria for early and
late treatment failure [25].

Molecular characterisation of drug resistance

Molecular analysis of parasite DNA from patients was
performed according to standard IAEA protocols
[32,33]. In all studies, parasites appearing during the fol-
low-up period were characterised to distinguish possible
reinfections from genuine recrudescence of resistant
parasites, according to standard methodology [32].

DNA was extracted from the filter paper samples
taken at admission to the study (i.e. before treatment),
and amplified with primers to the genes in P. falciparum
previously reported to be involved in resistance to chlor-
oquine (Pfcrt, Pfimdrl) and to SP (dhfr, dhps). The PCR
product for each gene was then analysed using dotblot
or RFLP to characterize the mutations present that have
been linked to resistance [33]. The set of polymorphisms
within drug resistance genes which were used to define
drug resistance was defined for each country based on
previous studies (Table 2).

Table 1 Molecular Summary of in vivo drug efficacy trials carried out by the participant countries

Country Drugs studied in efficacy trials in vivo Follow-up period (days) Age range of study participants

Burkina Faso Dihydroartemisinin + piperaquine 42 6 months - 53 years
Artemether + lumefantrine 28/42 6 months - 39 years
Amodiaquine 28 6 months - 18 years
Amodiaquine + artesunate 28 6 months - 30 years
Amodiaquine + sulphadoxine-pyrimethamine 42 6 months - 55 years

Cameroon (Yaoundé) Sulphadoxine-pyrimethamine 28 5 - 59 months
Amodiaquine
Amodiaquine + sulphadoxine pyrimethamine

Cameroon (Buea) Artesunate + sulphadoxine-pyrimethamine 28 6 - 60 months
Amodiaquine + artesunate

Kenya Chloroquine 14 5 months-18 years
Sulphadoxine-pyrimethamine 28
Sulphadoxine pyrimethamine + Cotrimoxazole

Mali Chloroquine 14 6 - 60 months
Amodiaquine 28
Sulphadoxine-pyrimethamine

Sudan Chloroquine 28 6 months - 7 years

Sulphadoxine-pyrimethamine

Artesunate + sulphadoxine-pyrimethamine
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Table 2 Molecular definition of drug-resistance according to participant countries
Country Definition of genotypic resistance to:
Chloroquine SP Other
Burkina Faso Pfcrt76T Dhfr511/59R/108N
Cameroon (Yaoundé) n/a Dhfr511/59R/108N + Dhps437G AQ: Pfcrt76T + Pfmdri-86Y
Kenya Pfcrt76T Dhfr108N + one or more of Dhfr511, Dhfr59R, Dhps436A, Dhps540E
Mali Pfcrt76T Dhfr511/59R/108N
Sudan Pfcrt76T + Pfmdri-86Y Dhfr511/108N + Dhps437G/540E

Mutations in Pfcrt and Pfmdr1 were considered for resistance to chloroquine, and in dhfr and dhps for resistance to SP. SP = sulfadoxine-pyrimethamine

AQ = amodiaquine. n/a = not applicable.

Cases of mixed infection, i.e. infections with both the
wild-type and the resistance (mutant) allele, were con-
sidered as resistant. Only those samples that carried
resistant alleles were included in the analysis and were
divided into two groups (i) the cases: drug-resistant
parasite genotype but infection was cleared following
drug treatment, and (ii) the controls: drug-resistant
parasite genotype and infection not cleared following
treatment.

SNP genotyping of human DNA

Human DNA was extracted from filter paper blood sam-
ples (1 ml), drawn at the time of enrolment, using the
Nucleon BACC2 DNA extraction Kit (Amersham Phar-
macia Biotech, Buckinghamshire, UK), according to the
manufacturer’s protocol. The concentration of DNA was
determined using the PicoGreen® double strand (dsDNA)
DNA Quantification Kit (Molecular Probes, Inc.). In
order to increase the amount of human DNA required
for high-throughput genotyping, all samples were sub-
jected to whole genome amplification by primer exten-
sion pre-amplification PCR, using 15N base primers
http://www.genetix.com[34]. The thermal cycling para-
meters were: 1 cycle at 94°C for 3 minutes for an initial
denaturation, followed by 50 cycles of denaturation for 1
min at 94°C, primer annealing for 2 min at 37°C, 0.1°C/
sec to 55°C, primer extension for 4 min at 55°C; and a
final extension for 5 minutes at 72°C as described [35].
Amplified DNA samples were used at 1:10 dilution for
genotyping on the SEQUENOM® iPLEX® platform
according to the manufacturer’s instructions.

Selection of human immune response gene variants and
genotyping

Known candidate gene variants were selected from the
growing list of cytokines and other immune mediators
that are thought to be involved in malarial pathogenesis,
together with their receptors and promoters. In addition,
lymphokines that regulate their expression and the
adhesion molecules and inflammatory mediators that
mediate their pathological effects were included. SNPs
were selected using information from the literature and

dbSNP [36], and reflected a compromise between SNP
function, marker spacing and minor allele frequency
(MAF). The initial SNP selection consisted of validated
markers with minor allele frequency (MAF) > 5%. This
was narrowed down to an economic 67 known SNPs
(Table 3) for which genotyping assays could be designed
into two multiplex reactions for the Sequenom® iPLEX®
mass spectrometry platform http://www.sequenom.com
[37-39]. Genotyping accuracy was assessed by testing
the conformation of the observed genotype distributions
in the controls to the expected distributions under
Hardy-Weinberg equilibrium (HWE). Assays which
deviated from HWE at the 0.1% significance threshold
were excluded from further analysis.

Statistical analyses

Comparisons of age and gender of participants, and
parasitaemia at recruitment, for each country, and for
all countries pooled, between those who did and did not
clear genotypically resistant parasites, were compared
using chi-squared tests (for frequency data), Kolmo-
gorov-Smirnov (K-S) tests (for non-normally distributed
values) or ANOVA (for normally distributed values).
Each SNP was tested for association with the clearance
phenotype using Odds Ratio (Univariate allele-based
association tests). The data were then adjusted for con-
founding factors of age, ethnicity, gender and study
location.

The P-values were not corrected for multiple testing.
The Bonferroni correction, a commonly used correction
which assumes independence between markers, was
considered too stringent in this study as several SNPs
may exhibit high degrees of dependence with one
another, as measured by LD (D’) [40].

The large overall sample size resulting from combining
studies at different sites increases the power to detect
true positive associations and reject false-positives. Inter-
study heterogeneity in association was assessed using
Cochran’s chi-square test (Q-test) under the null hypoth-
esis of homogeneity (significant heterogeneity P < 0.05).
Individual SNPs were investigated using allele- and geno-
type-based models.


http://www.genetix.com
http://www.sequenom.com
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Table 3 Polymorphisms genotyped using SEQUENOM® iPLEX®

Alternative Name* rsnumber gene chr coord ancestral/reference allele* derived allele
rs1803632 GBP7 1 89582690 G @
Duffy - FyA/FyB 152814778 DARC 1 159174683 T C
152179652 RGS2 1 192769826
rs3024500 IL10 1 206940831 G A
IL10-1082 rs1800896 IL10 1 206946897 T C
IL10-3533 rs1800890 IL10 1 206949365 A T
McC (McCoy) rs17047660 CR1 1 207782856 A G
SI (Swain-Lagley) rs17047661 CR1 1 207782889 A G
ILTA G4845T rs17561 ILTA 2 113537223 C A
IL1B A2 rs1143634 IL1B 2 113590390 G A
rs708567 IL17RE 3 9960070 @ T
rs352140 TLR9 3 52231737
15187084 TLR9 3 52261031 G A
rs6780995 IL17RD 3 57138419 G A
rs4833095 TLR1 4 38799710 C T
1s5743611 TLR1 4 38800214 C G
rs5743810 TLR6 4 38830350 G T
rs5743809 TLR6 4 38830514 A G
rs1801033 c6 5 41199959 T G
152706384 IRF1 5 131826880 G T
1520541 IL13 5 131995964 G A
IL-4-589 rs2243250 IL4 5 132009154 @ T
LTA +77 152239704 LTA 6 31540141 C A
LTA NCO1 909253 LTA 6 31540313 A G
TNFa -1031 rs1799964 TNF 6 31542308 T @
TNF -376 rs1800750 TNF 6 31542963 G A
TNF -308 rs1800629 TNF 6 31543031 G A
TNF -238 1s361525 TNF 6 31543101 G A
TNF +851 rs3093662 TNF 6 31544189 A G
152242665 CTL4 6 31839309 C T
rs1555498 IL20RA 6 137325847 C T
rs2075820 NOD1 7 30492237 C T
CD36 T1264G rs3211938 CD36 7 80300449 T G
CD36 G1439C None assigned CD36 7 80302110 G @
rs17140229 CFTR 7 117230283 T C
rs4986790 TLR4 9 120475302 A G
rs4986791 TLR4 9 120475602 C T
158176746 ABO 9 136131322 G T
HbE rs33950507 HBB 1 5248173 C T
HbsS rs334 HBB 1 5248232 T A
157935564 TRIMS " 5718517 G A
rs542998 RTN3 11 63487386 T C
152227507 1L22 12 68642647 T @
rs1012356 1L22 12 68644618 A T
1s2227491 1L22 12 68646521 T C
152227485 1L22 12 68647713 G A
152227478 IL22 12 68648622 G A
15229587 SPTB 14 65263300 T C
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Table 3 Polymorphisms genotyped using SEQUENOM® iPLEX® (Continued)
rs2230739 ADCY9 16 4033436 T C
rs10775349 ADCY9 16 4079823 C G
rs1805015 IL4R 16 27374180 T C
rs2535611 ADORA2B 17 15861332 C T
152297518 NOS2 17 26096597 G C
NOS2A -954 (or -969) rs1800482 NOS2 17 26128509 C G
NOS2A -1173 rs9282799 NOS2 17 26128728 G A
NOS2A -1659 rs8078340 NOS2 17 26129212 G A
rs373533 EMR1 19 6919624 C A
rs461645 EMR1 19 6919753 A G
ICAM1 codon241 rs1799969 ICAM1 19 10394792 G A
ICAM1 codon469 1s5498 ICAM1 19 10395683 A G
rs2057291 GNAS 20 57472043
8386 GNAS 20 57485812 C T
rs1128127 DERL3 22 24179132 G A
Amelogening_SNP1 None assigned AMELX X 11313735 G** AT
Amelogening_SNP2 None assigned AMELX X 11316106 T** Cxxx
Amelogening_SNP6 None assigned AMELX X 11316650 (G AFx*
CD40LG -727 rs3092945 CD40LG X 135729609 T C
CD40LG +220 rs1126535 CD40LG X 135730555 T C
G6PD +376 rs1050829 G6PD X 154110298 T C
G6PD +202 rs1050828 G6PD X 154111023 C T

All SNPs are referenced to dbSNP130 and Ensembl build 56.*Alternative name from the literature or from laboratory usage. *Ancestral alleles are taken from
dbSNP130 and where not identified a reference allele is given based on the human reference sequence on Ensembl. All alleles are with respect to the positive
strand. ** Allele represented on the x chromosome and *** Allele represented on the Y chromosome.

Results

Patient samples

A total of 3,721 samples from five countries (Table 4) were
found to contain “genotypically resistant” parasites accord-
ing to the criteria in Table 2. Of these patients, 2,057
(55%) were able to successfully clear their infection. With
the exception of Kenya (47.7% cleared resistant infections),
more than 50% of individuals in the study were able to
clear genotypically resistant parasites (47.7%-76.4%).

In contrast to previous studies, there was no signifi-
cant difference in age overall between those patients
who successfully cleared their infection (median 5 years)
compared to those who did not (median 5.3 years; K-S
test = 47.0; P = 0.16; Table 4). This could be because
the data were pooled from five countries with different
levels of acquired immunity, and involving different age
groups according to the study design chosen. Individuals
from highly malaria-endemic areas would be expected to
have a higher potential to clear parasites than much
older individuals from less endemic areas, so the influ-
ence of age is masked by pooling. There was no differ-
ence in the gender of patients who successfully cleared
their infection and those who did not in Cameroon (x>
test, P = 0.69) and Kenya (x? test, P = 0.16). However in
Burkina Faso and Sudan, significantly fewer males and

more females than expected successfully cleared a drug
resistant infection (x? tests: BF: P = 2.5 x 104, RR =
0.2; Sudan P = 2.2 x 1077, RR = 0.74). By contrast, in
Mali significantly more males and fewer females than
expected were able to cure a drug resistant infection
(x* test, P = 3.6 x 10, RR = 1.87). These apparent gen-
der effects could however be the result of significant
differences in the age of male and female participants
in some countries in the study. In Burkina Faso and
Sudan, the median age of females was significantly
higher than that of males (K-S test, P = 0.04 (BF); P =
0.02 (Sudan), whereas in Mali, male participants were
older, although this did not quite reach statistical signifi-
cance (K-S test, P = 0.06). Previous studies suggest that
overall, older children are more likely to clear drug-
resistant infections than younger children [10]. The
parasitaemia at admission to the study in those who
cleared and did not clear their infections was not signifi-
cantly different for any of the five countries (K-S tests:
Burkina Faso (P = 0.18), Cameroon (P = 0.84), Kenya
(P = 0.65), Mali (P = 0.37), and Sudan (P = 0.29)).

Single-SNP analysis
Cochran’s chi-test of heterogeneity revealed sufficient
homogeneity between the studies at the loci discussed for



Table 4 Characteristics of patients with genotypically resistant parasites

Country Burkina Faso Cameroon Kenya Mali Sudan Total

Cleared Not Total Cleared Not Total Cleared Not Total Cleared Not Total Cleared Not Total Cleared Not Total

cleared cleared cleared cleared cleared cleared

Number of samples 264 235 499 730 517 1247 656 718 1374 115 104 219 292 90 382 2057 1664 3721
Median age in years 55 7.3 - 4 6 - 1 12 - 3 3 - 14 10 5 53 -
Number male gender 37 186 223 371 257 628 265 317 582 78 38 116 123 66 189 874 867 1741
Number female gender 227 49 276 359 260 619 391 401 792 37 66 103 169 24 193 1183 797 1980
Parasitaemia: median parasite 19960 21070 - 27015 22075 - 22 160 21360 - 19630 17215 - 23360 24380 - 22 425 21220 -
density (parasites per pl)
Parasitaemia: range (parasites 25 - 25 - - 25 - 25 - - 25 - 25 - - 75-179 75-188 - 25 - 25 - - 25 - 25 - -
per ) 44 870 38 990 26 870 31 990 23870 48 190 870 310 27 870 28 090 25870 40213
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the application of meta-analysis (P < 0.05). An initial ana-
lysis of association of each of the 70 SNPs with clearance
of drug resistant parasites revealed 17 SNPs those were
significantly associated with the phenotype (Table 5 P <
0.05). Three SNPs (rs1799969, rs1126535 and rs2814778)
showed a strong association with the clearance pheno-
type with p-values less than 10™ (Table 5).

Further analysis using genotype-based tests (Table 6)
indicated a highly significant association (P < 0.01) of 9
SNPS with the clearance of resistant parasites. 19 of the
25 SNPs showed a significant association (P < 0.05) with
clearance (Table 6). After adjusting the data for age, eth-
nicity, gender and study location, three SNPs remained
significantly associated with the clearance phenotype:
SNP rs2706384 (OR = 0.76 [95%, CI: 0.64 - 0.92]; p =
0.005), SNP rs1128127 (OR = 0.77 [95%, CI: 0.59 -
0.99], p = 0.05), and SNP rs2057291 (OR = 1.27 [95%,

Table 5 Univariate allele-based association tests
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CI: 1.02 - 1.57], p = 0.03). No other SNPs were statisti-
cally associated with the clearance phenotype (Table 6).

Multiple SNP analysis

A multiple SNP analysis was performed in order to cor-
rect for covariate effects (multiple SNPs adjusted for
ethnic group, age, site, and gender) (Table 6). The main
predictive factor of clearance was age as has been
reported previously by others [10,41-43]. Two of the
three SNPs identified in the single SNP analysis
remained significantly associated with the clearance
phenotype: SNP rs2706384 (OR = 0.76 [95%, CI: 0.71 -
0.92]; p = 0.005) and SNP rs1128127 (OR = 0.67
[95%, CI: 0.45 - 0.99], p = 0.05). One additional SNP
(rs1805015) was now found to be associated with the
clearance phenotype (OR = 0.66 [95% CI: 0.45 - 0.97],
p = 0.03).

SNP* Allele Clearance Non-clearance Chi-squared p-value
1/2
Allele 1 Allele 2 Allele 1 Allele 2
151012356 AT 0.53 047 049 0.51 11.38 0.007
152227491 T 0.57 043 0.60 040 7.02 0.008
152227485 A/G 044 0.56 047 0.53 109 0.0009
152227478 A/G 0.64 0.36 0.66 0.34 5.89 0.02
152706384 A/C 041 0.59 046 0.54 189 0.00001
152057291 A/G 0.19 0.81 0.19 0.81 0.17 0.68
CD36 G1439C [@/€] 0.01 0.99 0.01 0.99 149 0.22
rs1799969 A/G 0.04 0.96 0.06 0.94 15.83 7.10°
1520541 T 0.76 0.24 0.74 0.26 6.86 0.009
rs1800750 A/G 0.05 0.95 0.05 0.95 0.70 040
153024500 A/G 0.62 0.38 0.63 0.37 2.10 0.15
rs1805015 (@) 0.37 063 0.36 0.64 1.39 0.24
1517047660 A/G 0.72 0.28 0.74 0.26 8.13 0.004
1517047661 A/G 042 0.58 045 0.55 7.20 0.007
151714022 (2] 0.29 0.71 0.27 0.73 2.80 0.09
rs1126535 C/T 0.22 0.78 0.28 0.72 31.13 10°
1s2230739 A/G 0.86 0.14 0.86 0.14 0.54 046
15229587 T 0.39 061 042 0.58 4.37 0.04
rs2814778 A/G 0.14 0.86 0.20 0.80 55.17 10°
1s3092945 T 0.32 0.68 0.29 0.71 10.69 0.001
rs1128127 A/G 044 0.56 047 0.53 8.19 0.004
rs1803632 /G 0.51 049 0.53 047 4.84 0.03
157935564 A/G 046 0.54 045 0.55 2.39 0.12
rs4833095 (2] 0.84 0.16 0.82 0.18 523 0.02
155743809 (@) 0.06 0.94 0.05 0.95 4.92 0.03

For each SNP, chi-squared comparisons were made of between the allele frequencies found in patients who cleared and did not clear drug resistant parasites.
Highly significant associations are highlighted in bold. *Of the 67 SNPs genotyped for association, 42 SNPs were not included in the analysis because they were
either monomorphic in one or more countries (n = 19) or for deviation from HWE in one or more of the participant countries (n = 23).
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Table 6 Genotype association analysis

SNP Genotype-based tests* Adjusted analysis** Multiple SNP analysis***
(genotype model)
Chi-squared p-value OR p-value OR p-value
[95%, Cl] [95%, CI]
rs1012356 17.20 0.001 1.15 027 123 0.09
(TT vs AT/AA) [0.90 - 1.46] [0.95 - 1.85]
152227491 6.90 0.07 1.04 0.78 0.97 0.88
(TT vs CT/CO) 080 - 1.34] [068 - 1.39]
152227485 11.30 001 1.04 0.74 0.89 0.50
(AA vs GG/AG) [0.82 - 1.32] (064 - 1.25]
152227478 6.60 0.09 1.14 0.36 1.21 0.34
(GG vs AA/AG) [0.86 - 1.51] [0.82 - 1.80]
rs2706384 21.80 0.0001 0.76 0.005 0.76 0.005
(AA vs CC/AQ) [0.64 - 0.92] [0.71 - 0.92]
152057291 11.90 002 127 003 0.91 047
(AA vs GG/AQ) [1.02 - 1.57] [0.71 - 1.17]
CD36 G1439C 930 003 - - - -
(CC vs GG/CG)
ICAM1 CODON241 30.03 0.0001 0.98 0.92 1.04 0.84
(AA vs GG/AG) [0.71 - 1.36] (0.74 - 1.44]
rs20541 23.90 0.0001 0.89 044 1.07 0.70
(TT vs CC/CT) [067 - 1.19] [0.75 - 1.54]
TNF -376 13.40 0.004 1.17 0.56 0.95 087
(AA vs GG/AG) [0.69 - 1.98] [0.50 - 1.80]
r$3024500 880 003 104 0.79 110 060
(GG vs AA/AG) [0.77 - 147] [0.78 - 1.58]
RS1805015 870 0.03 0.84 021 066 0.03
(CC vs TT/CT) [0.65 - 1.10] [045 - 0.97]
1517047660 7.20 0.07 0.95 0.68 1.32 0.23
(GG vs AA/AG) [0.72 - 1.23] [0.84 - 2.07]
1517047661 740 0.06 0.88 0.36 0.72 0.09
(AA vs GG/AG) [0.66 - 1.16] (049 - 1.05]
rs17140229 860 004 1.08 062 141 0.09
(CC vs TT/CT) [0.79 - 1.46] (094 - 2.10]
rs1126535 21.60 0.0001 091 0.52 0.85 0.51
(CC vs TT/CT) [067 - 1.22] (051 - 1.40]
rs2230739 1040 0.02 1.06 0.69 126 029
(GG vs AA/AG) [0.80 - 1.39] [0.82 - 1.92]
1229587 850 004 097 0.76 102 092
(CC vs TT/CT) [0.76 - 1.22] [0.73 - 143]
152814778 33.03 0.0001 0.82 0.38 0.85 0.50
(AA vs GG/AG) [0.53 - 1.28] [0.53 - 1.3¢]
rs3092945 10.60 001 0.83 021 0.89 0.60
(CC vs TT/CT) [061 - 1.11] [0.60 - 1.34]
rs1128127 12.04 0.007 077 005 067 005
(AA vs GG/AG) [0.59 - 0.99] [0.45 - 0.99]
rs1803632 7.04 0.071 0.78 0.10 0.76 0.21
(GG vs CC/CQ) [0.58 - 1.05] (049 - 1.17]
rs7935564 21.10 0.0001 1.02 081 093 0.59
(AA vs GG/AG) [0.84 - 1.25] [0.70 - 1.22]
rs4833095 6.90 0.08 0.75 0.12 0.86 0.50
(TT vs CC/CT) [0.52 - 1.07] [0.57 - 1.33]
rs5743809 11.40 001 1.25 0.59 1.23 0.63
(CC vs TT/CT) [057 - 2.74] [0.53 - 2.84]

Highly significant associations (P < 0.01) are highlighted in bold; significant associations (0.01 < P < 0.05) are underlined. OR = odds ratio; *Single locus based
tests; **Each SNP adjusted for age, ethnic group, gender, and study location. ***Multiple SNPs adjusted for ethnic group, age, gender, and study location.
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Discussion

The malaria parasite has had a substantial evolutionary
influence upon the genetic constitution of its human
host (recently reviewed in [44]). Individuals living in
malaria-endemic regions seem to develop an ability to
clear drug-resistant parasites (following treatment) as
they get older [10], which is presumably the result of
increasing acquired immunity. The influence of human
host polymorphisms in immune response-type genes on
the likelihood of clearance of drug-resistant parasites
has so far received little attention.

In the present study, a single SNP locus analysis was
carried out to investigate the contribution of the host
genetic factors in the clearance of drug-resistant para-
sites following treatment, by examining the classic, pre-
viously published SNPs, which may play a critical role in
individuals’ ability to clear drug-resistant malaria para-
sites. The effects of polymorphisms in a number of
genes, including B-globin, G6PD, TNF-a, IFN-y, CD36,
ICAM-1, IL10, IL4R, and LTA (Table 3), upon the
clearance of malaria parasites in African individuals was
investigated across five large association studies from
Burkina Faso, Cameroon, Kenya, Mali, and Sudan.

Amongst the 70 SNPs investigated in this study,
seventeen were found at significantly different frequen-
cies (P < 0.05) in people who cleared drug resistant
infections than those who did not (Table 5). Further
analysis using genotype-based tests indicated that nine
SNPs were strongly associated (P < 0.01) with parasite
clearance (Table 6). Following adjustments for the possi-
ble confounding factors of age, ethnicity, gender and
study location, and analysing multiple SNPS to correct
for covariate effects, three SNPs remained significantly
associated with the clearance phenotype, across Africa
and with three different drugs. It is, however, important
to note that the demonstration of association with clear-
ance phenotype of these three SNPs does not necessarily
imply that any of the SNPs are functional in the clear-
ance of drug-resistant parasites. The SNPs may simply
be reflecting the signal of a different functional variant
(s) in moderate-to-high LD with them [45].

SNP rs2706384 is in the 5" upstream region of the
interferon regulatory factor IRFI gene, 1710 bp upstream
of the ATG start codon and -415bp from the transcrip-
tional start site. Individuals with a homozygous AA geno-
type at this locus were significantly less likely to clear
drug resistant infections than those homozygous CC
or heterozygous (OR = 0.76 [95% CI: 0.71 - 0.92]; P =
0.005). The A allele was found more frequently in indivi-
duals who did not clear their drug-resistant infection
than in those who did (P = 0.00001).

IRF-1 is a transcription factor that has been shown to
regulate expression of a number of genes involved in
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both innate and adaptive immunity, notably TLRY,
MHC Class I and II genes, IL-15, iNOS in macrophages,
IL-4 and IL-12/p40 [46]. Interferon-y, the strongest
inducer of IRF-1, is thought to be a key player in the
control of pre-erythrocytic and blood stage infection,
both in rodent malaria infections [47] and in human
malaria infections [48,49]. Healthy individuals homozy-
gous AA at rs2706384 were found to have significantly
higher IRF-1 mRNA expression than CC homozygotes
[50]. Thus individuals of the AA genotype may produce
higher levels of IRF-1 in response to the same IFN- y
stimulus, which may shift the balance more towards a
Thl response and away from a Th2 response through
repression of IL-4 transcription and increased IL-12/p40
expression. This suggests that antibody may play a key
role in the control of drug-resistant parasites. In addi-
tion, the binding of NF-kappa B to the C allele was
significantly higher than to the A allele [50]; this tran-
scription factor may have a negative regulatory role in
IFN-induced gene expression [51,52].

Previous work has shown an association of the same
SNP, rs2706384, with protection against P. falciparum
infection in two West African ethnic groups [53]. How-
ever, in that study the C allele was associated with a
higher risk of having a P. falciparum infection for Mossi
but not for Fulani, and in Fulani CC and AA individuals
were more frequently parasitized than heterozygous
individuals.

Rs1805015 is a missense mutation (Ser503Pro) within
the insulin-IL4 receptor motif (I4R) of the alpha subunit
of the interleukin4 receptor gene /L4R. Individuals with
a homozygous CC genotype (encoding 503Pro) at this
locus were significantly less likely to clear drug resistant
infections than those who were homozygous TT or het-
erozygous (OR = 0.66 [95%, CI: 0.45 - 0.97], p = 0.03),
but there was no significant difference in the frequency
of the C allele in individuals who cleared or did not
clear their drug-resistant infection (P = 0.24), suggesting
that the failure to clear infections was associated with
the CC homozygote.

The interaction of IL-4 with its receptor results in
binding of JAK to the I4R motif of IL4R-a; however,
this binding is unaffected by the Ser503Pro substitution
[54]. The Ser503Pro substitution appears to reduce the
subsequent binding and phosphorylation of STAT6 [54].
Since phosphorylated STAT6 controls cell differentia-
tion and gene transcription [55], the Ser503Pro substitu-
tion could therefore lead to a reduction in response to
IL-4, such as reduced B-cell proliferation and antibody
production, further supporting the role of Th2 responses
in the clearance of drug-resistant parasites.

However, a previous malaria case-control study in
Sudan found the CC genotype to be at a significantly
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lower frequency in malaria cases compared to non-
malaria controls in Sudan [56], whereas in this study
CC genotypes were less able to clear drug resistant
infections than individuals of genotype AA or AC. Indi-
viduals with the Ser503Pro /IL4R mutation were found
to have lower IgE levels [54] and a separate study found
a significant association with atopy and asthma-related
phenotypes [57].

SNP rs1128127 is a missense mutation (Ala211Val)
within the Derl-like domain family gene Der/3. Indivi-
duals with a homozygous AA genotype (encoding
211Val) at this locus were significantly less likely to
clear drug resistant infections than those who were
homozygous GG or heterozygous (OR = 0.77 [95%, CI:
0.45 - 0.99], P = 0.05). The A allele was also found
more frequently in individuals who did not clear their
drug-resistant infection than in those who did (P =
0.004). This suggests that GG or AG individuals have an
advantage over AA genotypes in their ability to control
drug-resistant infections.

The derlin family of proteins are found in the endo-
plasmic reticulum (ER) and are thought to be involved
in the degradation of misfolded glycoproteins within the
ER [58-61]. Deri3 is expressed at high levels in specific
tissues such as the placenta, pancreas, small intestine
and spleen, whereas other members of the family have
more widespread expression [61]. There does not appear
to be any previous study linking mutations in Derl3 to
the control of infectious disease. The frequency of het-
erozygous AG individuals is much higher in sub-
Saharan Africans (0.65) than in Europeans (0.183) [62],
which could be explained by positive selection of hetero-
zygous AG individuals in populations exposed to
malaria, because of their enhanced ability to clear (drug-
resistant) parasites.

Host genetic factors such as cytokines may be the key
determinants of malaria severity and outcome. Several
studies suggest that the balance between pro- (TNF-a,
IFN-vy, IL-8) and anti-inflammatory (IL4, IL-10, TGF-B)
cytokines determines the degree of malaria parasitaemia,
the level of anaemia, the clinical severity, the presenta-
tion, and/or the outcome of infection [63-65]. IFN-y has
been suggested to be a key molecule in human anti-
parasite host defence, and appears to be essential for the
control of parasitaemia. The role of IL4 is less clear;
some studies have not supported direct involvement of
IL-4 (or IL-13) in the clearance of P. falciparum para-
sites [63], and IL-4 has been shown to suppress macro-
phage-mediated killing of P. falciparum in vitro [66].

This study is the first to assess the role of specific
human genetic variants (SNPs) in the clearance of drug-
resistant parasites after anti-malarial treatment. Three
SNPs were found to be strong predictors of the clear-
ance of drug-resistant parasites, even after correction for
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age, ethnicity, gender and study location. Two of the
three SNPs identified are in loci associated with pro-
inflammatory (interferon- y) and anti-inflammatory (IL-
4) cytokine responses.

The assessment of the role of human genetic determi-
nants may improve understanding of the interface
between host immunity and anti-malarial drug resis-
tance. The relationship between host polymorphisms
and malaria parasite clearance is complex, and larger
studies in other settings will be required, both to con-
firm these associations, to investigate further the weak
associations, and also to investigate the contribution of
the host immunological factors and the parasite per se
in the clearance of drug-resistant parasites.

Conclusions

The study has identified a significant association of
three loci in the human genome with the ability of para-
site to clear drug-resistant P. falciparum. One locus, a
SNP in the promoter region of the IRF-1 gene, has pre-
viously been linked to the control of malaria parasite
density, and it is possible that patients able to clear
drug-resistant infections have an enhanced ability to
control parasite growth, perhaps through a more Th2-
biased T cell response. The association of clearance with
a SNP within the IL-4R gene, that possibly reduces the
response to IL-4, supports the hypothesis that a stronger
Th2 response assists clearance of drug-resistant para-
sites. The third locus encodes a protein involved in the
degradation of misfolded proteins within the endoplas-
mic reticulum, and its role, if any, in the clearance phe-
notype needs to be further investigated.
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