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Abstract

developmental changes on parasite dynamics in infants.

Background: Although 80% of malaria occurs in children under five years of age, infants under six months of age
are known to have low rates of infection and disease. It is not clear why this youngest age group is protected;
possible factors include maternal antibodies, unique nutrition (breast milk), and the presence of foetal haemoglobin
(HbF). This work aims to gain insight into possible mechanisms of protection, and suggest pathways for focused
empirical work, by modelling a range of possible effects of foetal haemoglobin and other red blood cell (RBC)

Methods: A set of ordinary differential equations was created to investigate the leading hypotheses about the
possible protective mechanisms of HbF-containing red blood cells, in particular whether HbF suppresses parasite
population growth because parasite multiplication in individual RBCs is lower, slower or absent. The model also
incorporated the intrinsic changes in blood volume and haematocrit that occur with age, and the possibility of
parasite affinities for HbF-containing RBCs or reticulocytes.

Results: The model identified several sets of conditions in which the infant remained protected, or displayed a
much slower growth of parasitaemia in the first few months of life, without any intervening immune response.
The most protective of the hypothesized mechanisms would be the inhibition of schizont division in foetal RBCs
so that fewer merozoites are produced. The model showed that a parasite preference for HoF-containing RBCs
increases protective effects for the host, while a preference for reticulocytes has little effect.

Conclusions: The results from this simple model of haematological changes in infants and their effects on
Plasmodium falciparum infection dynamics emphasize the likely importance of HbF and RBC number as an
explanatory factor in paediatric malaria, and suggest a framework for organizing related empirical research.
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Background

Malaria disproportionately affects children under five
years of age [1]. Repeated infection builds immune
responses that protect against severe clinical disease and
reduce parasitaemia [2-4], and, presumably, older chil-
dren in endemic areas have been exposed more often
and to a wider range of antigens than younger children.
Hence age is often considered a surrogate for cumulative
exposure, and age differences in response are attributed
accordingly. There may be more to the explanation,
however, given that intrinsic developmental differences
between children under five and older children, or
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adults, may affect responses to malaria infection [5,6].
Among the developmental age differences that may
affect the course and outcome of a malaria infection are
the age-specific abundance and properties of red blood
cells (RBCs).

A human malaria infection begins when the parasite
enters the bloodstream in the saliva of an infectious, bit-
ing mosquito. The parasite invades the liver, multiplies
there for approximately 10 days, and then releases thou-
sands of merozoite forms into the bloodstream. Each
merozoite invades a RBC, multiplies, and — if Plasmo-
dium falciparum or Plasmodium vivax, the most com-
mon species — in about 48 hours bursts the RBC to
release eight to 32 new merozoites, which invade new
RBCs and continue the cycle [7]. Virtually all of the
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pathology of human malaria is associated with this cycle
in RBCs, which continues until the host mounts an
immune response sufficient to control the infection, or
the host dies.

Presumably, the basic biological process of parasite
invasion and multiplication in RBCs is independent of
the literal age of a host (i e, the parasite does not “know”
how old its host is), and so, whatever the host’s age,
cycles proceed roughly as sketched above, with regular
numbers of merozoites released at each cycle, in cycles
of regular length. The total blood volume of a host
increases very significantly with age and size [8,9].
Therefore, all else equal, overall parasitaemia will in-
crease more rapidly in hosts with smaller total numbers
of RBCs - younger children — and the consequent
anaemia will become more severe more quickly. That is,
while the RBC count of 4—6 x 10° ml™ of blood may be
similar between infants and adults, the blood volume of
an adult is 10-15 times that of an infant, so any given
population of parasites in an adult host will represent a
much lower total parasitaemia than in an infant host.

Another notable difference between infants and older
children is that a much higher proportion of RBCs in
infants contain foetal haemoglobin (HbF) rather than
adult haemoglobin (HbA). HbF is produced only in
humans, apes and Old World monkeys: it has a stronger
affinity for oxygen than HbA, and so facilitates oxygen
transfer across the placenta from mother to foetus dur-
ing gestation [10]. Beginning in the final trimester of
pregnancy, and continuing into the first months of life,
haemoglobin production usually largely switches from
HbF to HbA, and the fraction of RBCs that contains
HbF declines accordingly. The fraction of RBCs that
contains HbF at birth varies from about 50% to 100%
among neonates [11,12]. Variation may be related to
differences in gestation period and/or in the complex
polygenic control of haemoglobin production [13-15].
In most adults only about 1% of RBCs contain HbF, but
in those with hereditary persistence of foetal haemoglo-
bin (HPFH), a benign condition in which mutations or
deletions in the - or y-globin genes or regulatory
regions alter normal haemoglobin switching, 10-100% of
RBCs contain HbF.

Infants under six months of age have a low rate of
infection and incidence of severe disease compared to
older children [16], despite the relative immaturity of
their immune systems. Several factors may contribute to
this protection, including passively transferred maternal
antibodies, unique nutrition (breast milk), and elevated
HbF [17]. Current evidence suggests that HbF retards
the expansion of a Plasmodium population because
Plasmodium parasites do not survive as well in HbEF-
containing RBCs as in those containing HbA [18-23],
though details and specific mechanisms remain unclear.
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There could be several reasons for the retardation: the
HbF cell may be a “dead end,” meaning that the parasite
can invade but cannot replicate, or cannot escape, and
so dies within the RBC. Alternatively, the growth process
may be suppressed or slower in HbF-containing RBCs,
such that fewer merozoites are released per infected
RBC, or they take longer to develop to the point of
bursting. In addition, P. falciparum may have a higher
affinity for HbF-containing RBCs than HbA-containing
RBCs. P. falciparum may also have (like P. vivax) a
higher affinity for reticulocytes — the youngest age class
of RBCs — which may be present in higher proportions
in growing infants, and so may affect infection dynamics.
In any case, the proportion of HbF-containing RBCs
may be a factor in the protection of infants from severe
clinical disease and high parasitaemia: by slowing para-
site population growth, they may provide extra time for
an effective response by the infant’s developing immune
system or maternal antibodies.

Although several possible factors underlying variable
protection in infants have been suggested, including the
effects of maternal antibodies, nutritional differences,
and HbF, none has yet been confirmed. Foetal haemo-
globin is one of a number of mechanisms, reviewed in
an earlier paper [6], that could help to explain the
observed neonatal protection from severe disease. Infants
have immature immune systems, in which key elements
are developing asynchronously [6], so any added protect-
ive factors are likely to be of particular importance. This
is a difficult set of topics to study, however, given the age
group and multiple confounding factors.

No mathematical model to date has investigated the
effects of any developmental age difference on a malaria
infection. Here previous models of RBC dynamics in
malaria infections are extended to focus specifically on
the effects of lower RBC counts and higher HbF propor-
tions on the dynamics of P. falciparum infections in
infants [24-26].

Methods

A set of ordinary differential equations (ODEs) was used
to model the dynamics of circulating RBCs, including
the effect of infant growth on total blood volume (via
the rate of growth of erythropoietic tissue), the switch in
production of HbF- to HbA-containing RBCs, and the
change in haematocrit in the first few months of life.
The dynamics of two RBC lines were modelled — the un-
infected (1) foetal and (2) adult erythrocytes — then the
dynamics of malaria infection were incorporated into
the dynamics of the circulating RBCs. Three main popu-
lations of Plasmodium parasites are involved in the path-
ology of malaria in an infant: (1) those in infected foetal
erythrocytes, (2) those in infected adult erythrocytes,
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and (3) free merozoites in the blood. (Gametocytes and
any cryptic sexual forms were ignored in the model.)
Thus, the dynamical model considered has five separate
populations, describing the dynamics of uninfected and
infected foetal (HbF) RBCs, uninfected and infected adult
(HbA) RBCs, and free merozoites within an infant host.
For conciseness, vector and matrix notation (Additional
file 1) are used to describe the dynamical equations.

Basic structure of the dynamical model

Consider an N x I vector P, the components of which
may evolve in time. Define T(P) to be the sum of the
components of P. Let the following ordinary differential
equation (ODE) system in time ¢ determine the evolu-
tion of the components:

dP/dt = S(t)8(1) —AD P (1)

where S(t) is greater than or equal to zero for all £, A >0
and dA =0. The components of the vector §(1) are zero
except for the first one. Matrix D is sparse with all diag-
onal components = 1, and all components just below the
diagonal = —1; see Additional file 1 for details. One can
show that the contribution to —dT (P)/dt from S at time
t - At is approximately a Gaussian function of At with a
mean D=N A" and standard deviation c=D N2
[24,27]. The ODE system described by equation (1)
models the dynamics of individual organisms with total
population T(P) and source term S(¢). If individuals age
with an average lifespan of D with standard deviation o,
then knowing the tangible quantities D and o sets the
abstract quantities N and A. (If D = o, the ODE system
reduces to one of simple exponential decay with a
source term.) Although the vector-matrix notation is
introduced for brevity, P itself can be thought of as con-
taining all the information about the “state” of the popu-
lation possible in this model. The matrix A D operates
on the state vector P, incorporating the contribution of
the source S(%) into the time evolution of P. This formal-
ism may seem complicated initially, but it incorporates
the non-instantaneous propagation of changes in the
source S() into the population. One could think of other
formalisms that incorporate time delays and dispersion
in aging, but this particular one allows the use of effi-
cient ODE solvers.

Total blood volume

In uninfected individuals, RBCs containing HbA circu-
late for ~120 days, while RBCs containing HbF circulate
for ~70 days, at which point the RBC is cleared by the
spleen [28]. In adults, there are ~5 x 10° RBCs per pl of
blood. In neonates, the haematocrit dips within the first
few months of life, and then rises again to adult levels
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Table 1 Hematological parameters

Parameter Symbol Value

Maximum adult reticulocyte Pamx, 121%10°% (kg hr)
production rate per kilogram

of tissue

Maximum foetal reticulocyte Pfmx 1.7x10% (kg hn)
production rate per kilogram

of tissue

Minimum foetal reticulocyte Pfmn 248 % 10° (kg hr) B
production rate per kilogram

of tissue

Time offset for production of tosa 50 days

adult erythrocytes

Time constant for production Tca 75, 150, and 300 days
of adult erythrocytes

Time constant for decay of Tcr 50, 100, and 200 days
production of foetal reticulocytes

Volume of adult red blood cell Vs 80x 108 um?
Volume of foetal red blood cell Ve 125x 107 pym?

Baseline parameters for adult (HbA) and foetal (HbF) RBCs [44].

[29]. Presumably, this transient dip is related to changes
in RBC production in combination with the growing
mass, and thus total blood volume, of the infant.

Since RBC and parasite populations are assessed
empirically as cell counts per pl of blood, the model
dynamics were formulated to consider the population
per unit volume of blood rather than the total popula-
tion in the host. However, the volume growth of the
child must be carefully incorporated. If the state of a
population of a parasite or RBC line is given by P, then
consider p =V ' X P, where Vj is the blood volume of

Table 2 Populations used in the model

Population State  Average Standard
vector duration (h) deviation (h)

Merozoites M Du=0.1 ou=01=Du

Ring stage in adult RBC Ra Dpa=12 Opa=12

Early trophozoite in adult RBC ~ Ea Dea=12 Opa=12

Late trophozoite in adult RBC  La Di,=12 OLa=12

Schizont in adult RBC Sa Dsy=12 Os3=1.2

Ring stage in foetal RBC Rf Dre=12 opr=12

Early trophozoite in foetal RBC ~ Ef Dgr=12 og=12

Late trophozoite in foetal RBC ~ Lf Dee=12 of=12

Schizont in foetal RBC Sf Ds,=120r72 0g=0.1

Adult Reticulocyte Rea DRea =36 ORea =6

Adult mature RBC Ma Dya = 2844 Oma = 168

Foetal Reticulocyte Ref Drer=36 Opef=6

Foetal mature RBC Mf Dyr= 1644 omr= 120

Durations of intracellular parasite stages in adult (HbA) and foetal (HbF)
RBCs [45]. Merozoite duration [46], Adult erythrocyte durations: [47], Foetal
erythrocyte durations [28]. The standard deviations are plausible guesses.
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the host. (For simplicity, uniform mixing in the blood is
assumed.) The time evolution of p is given by

dp/dt =d(Vg~')/dt P+ V5!
dP/dt = 5(¢)8(1)—(AD + AyI)p

where
s(t) = Va~'S(1)
and
Ay = Vg 1d(Vp)/dt (2)

The sum of the components of p, T(p), is V 5 ' X T(P),
the density of the population in the blood. So from the
point of view of population density, the growth of blood
volume contributes a decay factor Ay: a growing volume
tends to dilute the concentration of cells. Note that Ay
itself is time dependent, as the rate of volume growth
slows as the child ages.
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Erythrocyte source

Near the time of birth, haemoglobin production usually
switches from predominantly HbF to predominantly
HbA. The timing of this switch, and the rate and degree
of change, vary from infant to infant. The levels of circu-
lating HbF usually reach adult levels of 1 — 2% around
one year of age. The production of foetal erythrocytes
per kilogram of mass of the host decreases nearly expo-
nentially with age (¢) as the host ages, while the produc-
tion of adult erythrocytes per kilogram of mass of the
host is a sigmoid-like function of ¢ that reaches a max-
imum some months after birth. (For a review, see [13])
The time evolution of the erythrocyte sources in equa-
tion (5) is modelled by

ESa(t) = Pamx Xtanh((t + tosa) /tca)X W(t) Va(t) ™
ESf(t) = (Pfimx Xexp(—t/tce) + Pfimn)X W (t) Vi(t)™"

(3)
Here W(t) is the mass of the host at age z. The time

evolution of W(%) and Vj(t) is discussed in Additional file 1.
The values of the parameters Pamx, toss,, Tca Pfinx, tce
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and Pfinn are given in Table 1. Three pairs of time con-
stants were used to model different changes in the rates
of HbF and HbA production (Table 1). Using these para-
meters, the HbF:HbA ratio reaches 1:1 at 65, 97, and
163 days of age.

As a measure of the health of the host, the haemato-
crit sic was tracked, calculated as

he = 100%X (V,(T (Rea) + T(Ma)) + Vi(T(Ref) + T (Mf)))
(4)

Here V; and V, are the mean volumes of foetal and
adult erythrocytes. Their values are given in Table 1.
Rea and Ma are the population state vectors for the reti-
culocytes and mature RBCs for adult RBCs and Ref and
Mf are the corresponding state vectors for the foetal
RBCs; see next subsection. If the value of sc drops under
24%, it is assumed that the host dies.

Red blood cell populations

Some evidence indicates that P. falciparum preferentially
invades young RBCs — reticulocytes — regardless of
haemoglobin content [19,30], and also that P. falciparum
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preferentially invades HbF-containing RBCs [21]. It
remains uncertain whether P. falciparum in fact prefers
HbF-containing RBCs, or, given the shorter lifespan and
changing production patterns in the first few months of
life, the key factor is that HbF-containing RBCs have a
younger age distribution, skewed toward reticulocytes.
The ability to test these possibilities was incorporated
into the model by creating a reticulocyte subgroup and a
mature subgroup for both the foetal and the adult RBC
populations. The model incorporates the effects of
the switch from the production of foetal erythrocytes
to adult erythrocytes, as well as the increase in blood
volume as the host ages. The equations that describe the
dynamics of the RBC populations are:

dRea/dt = ESa(t)8(1) — (AreaD + (Grealt + Av)I)Rea
dMa/dt = AgeL(Rea)8(1) — (ApaD + (¢palt + Av)I)Ma
dRef/dt = ESf(t)S(l) — (ARefD + (CRefl,l + Av)I)Ref
de/dt = ARefL(Ref)S(l) — (AMfD + (CMfll —I—Av)I)Mf

(5)

Here, I is the identity matrix and ESa(t) and ESf{t) are
the source rates of production of adult and foetal
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Figure 2 The time until the host clears infection (y-axis: below h = 0) or the host dies (above h = 0; haematocrit < 24%), when infected,
occurs between one and 100 days of age (x-axis). Parameters set to values in Tables 1 and 2. Results are shown for three different values of
pr, the number of merozoites released per bursting schizont in foetal RBCs. The number of merozoites released from bursting schizonts in adult
RBCs, pa, is 16 for all cases. For more explanation of this figure, see Additional file 2.
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reticulocytes, respectively, per unit volume of blood.
These quantities change as the host ages, in a manner
specified below. (grear (par (rep and (e are the binding
affinities of the merozoites to the respective RBCs; the
values are defined in the next section. The state vector
of the merozoites is p. The rates Apea, Anvar Arets Amet
and the vector lengths were defined as in the subsection
“Basic Structure of Dynamical Model” using the values
specified in Table 2.

Parasite populations
Five morphologically distinct populations of asexual
parasite cells were considered: (1) ring stage, (2) early
trophozoites, (3) late trophozoites, (4) schizonts, and
(5) merozoites. The possibility is allowed that the
parasite can develop in either foetal or adult erythro-
cytes, but possibly at different rates of development and
with different efficiencies of reproduction in each type.
The list of populations as well as the average durations
of individual residence in those populations, along
with the standard deviations in the durations, is given
in Table 2.

The primary release of merozoites from the liver
apparently involves the release of thousands of merozoites

Page 6 of 12

in clusters [31]. For simplicity it is assumed that primary
release occurs over a duration Tpg =24 hr with total of
10° merozoites released into the blood volume Vg at a
constant rate per unit volume Kpg = 10° 24 h X V)L
The average number of merozoites subsequently released
by bursting schizonts of P. falciparum in human blood
culture is known from direct microscopy to be >16 [32],
so in this report the average number of merozoites
released from a bursting schizont formed in an adult
erythrocyte is taken to be p,=16. The possibility is
allowed that the average number of merozoites released
from a bursting schizont formed in a foetal erythrocyte,
P may be different from p,. The binding affinity of mero-
zoites to target RBCs is inferred from observations of
parasite growth in neurosyphilis patients treated for mal-
aria therapy [33,34], and inoculated volunteers [35], to be
10° - 10° pl hr'l. Here, {1, the binding affinity of a
merozoite to the mature adult RBC, is taken to be
3.33333x 10° ul hr'. The possibility is allowed that
the merozoite binding affinity to adult reticulocytes, (gea
mature foetal RBCs, (v and foetal reticulocytes, (res
may differ from (y;,. The value is only changed when
directly stated.

Using the information above, letting ¢ be the time
since the birth of the infant, and taking Agpr as the age
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Figure 3 The number of circulating HbF- and HbA-containing RBCs in the model, in an uninfected infant, with parameters set to the
values in Tables 1 and 2.
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of the infant when primary release starts, the ODE sys-
tem for the parasite populations is:

dp/dt = xprO(t — Agpr)O(Agpr — Tpr — £) + pallsaSansa
+ peAseSEnst — (Grea T (Rea) + ¢y, 7' (Ma)
+epet T (Ref) + ¢y T(ME) + Ap + Av)pu
dRa/dt = (¢reaT'(Rea) + ¢vo 7'(Ma) ) 8(1)
— (AgaD + AyI)Ra
dEa/dt = Ag,L(Ra)8(1) — (Ag.D + AvI)Ea
dLa/dt = Ag,L(Ea)8(1) — (AL.D + AvI)La
dSa/dt = A,L(La)8(1) — (As,D + AyI)Sa
AR /dt = (6ref T (Ref) + Gy T(ME) (1)
— (LgeD + AvI)RE
dEf/dt = Ag¢L(RE)8(1) — (AgeD + AvI)Ef
dLf/dt = ApeL(E)8(1) — (AgD + AyI)LE
dSf/dt = AreL(LE)3(1) — (AsD + AvI)SE (6)

(Here, ® (x) =1 if x > 0, zero otherwise.)

Note that since Dy = oy, the state vector for the mero-
zoites, p, has only one component, so it was treated it as
a scalar in equation (6). The rates Ap, Aga, Apa ALa
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Asay Arp App AL Ase and the vector lengths were
defined as in the subsection “Basic Structure of Dyna-
mical Model,” using the values specified in Table 2.

For further details on the Methods, see Additional
file 1.

Results

Because little is known about the protective effects of
HbF at the single-RBC level, several hypotheses about
the failure of P. falciparum to develop normally within
an HbF-containing RBC were modelled. First, the possi-
bility was investigated that HbF-containing RBCs release
0, 2, or 16 merozoites (p;=0, 2, or 16), while HbA-
containing RBCs always release 16 (p, = 16). Second, the
rate at which infants produce HbF and HbA during the
first few months of life was varied (t¢¢ =50, 100, or 200;
Tca =75, 150 or 300). Third, the possibility was examined
that P. falciparum has no preferential affinity, an
increased affinity for HbF-containing RBCs, or an
increased affinity for reticulocytes ((rer>Cpir and (gea
> Cpar OF (Rer> (rea and Qe > Oyia)- Last, the possibility
that in HbF-containing RBCs the schizont stage is
delayed 60 h (Ds; =72), (so that the life cycle is 108 h
instead of 48 h), was modelled. Figure 1 shows the
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Figure 4 The effect of different rates of HbF:HbA production. Three distinct sets of parameters were used: Tcf =50 and Tc, =75; Tcr =100 and
Tca =150; or T¢r =200 and ¢, =300. As expected, when Tcr and T, are larger (i.e. there is more HbF for longer), the host is protected for a longer
period of time. The solid lines are repeated from Figure 2 for comparison.
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changing rates of parasite population growth under
these sets of conditions if an infant is infected at 40 days
of age, for example. In these plots, it is clear that if HbF-
containing RBCs release fewer merozoites per infected
cell, the rate increases more slowly than if they release
the same number as an HbA-containing cell. Adding
other effects either amplifies (when p¢=0, the infection
increases more slowly — graphically, a lower slope) or
diminishes this effect (i e, the slope of ps=0 and pg=2
approaches that of p;=16). Adding a delay is mildly pro-
tective for the host, as it slightly lowers the parasite
population growth rate, which increases the time until
host death. This change is seen in Figure 1B as a slightly
lower slope in the number of infected RBCs. An
increased affinity for HbF is very protective for the host:
if an infant is infected at 40 days of age and p;=0, for
instance, as in Figure 1C, the infant actually clears the
infection, rapidly. An increased affinity for reticulocytes
is harmful for the host: parasite population growth
increases more rapidly than if all RBCs are infected at
equal rates (Figure 1D compared to Figure 1A).

With the parameters set to the values in Tables 1 and
2, the model shows that if HbF-containing RBCs release
no new merozoites (ps=0), the infant remains protected
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from a fatal outcome of infection through approximately
the first 15 days of life, despite the complete absence
of an immune response (Figure 2; Additional file 2).
If the HbF-containing RBCs release only two mero-
zoites (pr =2), the infant dies but the time until death
increases, most significantly in the first two months of
life. If the HbF-containing RBCs release 16 merozoites
(pr = 16), the same as HbA-containing RBCs, there is no
effect; i e, this serves as a control. Now, other parameter
modifications will be introduced and compared to this
set of parameters.

The rate of change of the ratio of HbF- to HbA-
containing RBCs is known to vary dramatically from
infant to infant. While some infants reach adult levels of
HbA at three months of age, others do not reach adult
levels until six months. Three different rates of change
were modeled by modifying the values of t¢r and tc,,
such that the host reaches a HbF:HbA ratio of 1:1 at 65,
97, and 163 days of age. Figure 3 shows the rate of
change of HbF- to HbA-containing RBCs when t¢¢=
100, and tc, = 150. Figure 4 shows the effect of these
rate variations on the infection dynamics across the first
100 days of life. If HbF-containing RBCs release fewer
merozoites than HbA-containing RBCs, then the infants
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with more HbF are more protected. Figure 4 shows that
when tcr=200 and tc, =300 the infant is most pro-
tected from a fatal outcome.

In normal conditions, the P. falciparum life cycle
within a RBC is 48 hours. It is possible that the pre-
sence of HbF delays this life cycle. A delay of 60 hours
in the schizont phase of HbF-containing RBCs, lead-
ing to a total 108-hour life cycle (Dgs; =72) was modelled.
This delay has little effect if the HbF-containing RBCs
act as a “dead end” (0 merozoites released; ps=0) for
the parasite (Figure 5; also Figure 1B) compared to
the normal life cycle. If pf =2, and the infant is infected
at one day of age, the delay increases the time to
host death by about 300 hours. This gain in time to
host death slowly decreases as the age of the host at
the time of infection increases. Similarly, if pr = 16
(the control) in an infant infected at one day of
age, the delay increases the time to host death by
400 hours, a gain which slowly decreases as the age at
infection increases.

Foetal haemoglobin-containing RBCs may be preferen-
tially invaded due only to their younger age distribution,
or there may be some inherent HbF-related RBC prop-
erty for which P. falciparum has a greater affinity. This
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possibility was modelled by increasing the parasite’s
affinity for HbF RBCs 10-fold (Crer> Crea and Qe > (ua)-
Compared to (rer= (rea and {yir = {var the stronger HbF
affinity changes infection dynamics in favour of the
host, most significantly when p;=0 (Figure 6). Adding
the 60-hour delay to this preferential binding affinity
shifts infection dynamics even further in favour of the
host, and makes the most significant change in time
to host death from the two affinities without delay
when p¢=2.

It has been reported that P. falciparum has a higher
affinity for reticulocytes than for adult RBCs [30]. This
possibility was incorporated into the model by increasing
the parasite’s affinity for reticulocytes by 10-fold ({gea
> Uvia and (rer> Guvir). An increased preference for reticu-
locytes slightly changes infection dynamics, although
the maximum time to host death does not decrease
dramatically (Figure 7). Incorporating a 60-hour delay
in merozoite release in this scenario does not appre-
ciably change the effects from those without the delay if
pe=0 or 2. If py=16 (the control), in an infant infected
at one day of age, the time to host death increases by
400 hours, a gain which slowly decreases as the age at
infection increases.
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Discussion

The model presented here incorporates haematological
changes that occur in infants under six months of age,
and the results may offer some help toward explaining
why neonates are relatively protected from severe
malaria. The results are in accord with empirical studies
which show that the youngest among the age group in
question are protected, but the point at which the shift
occurs varies based on transmission: in areas of high
transmission, infants are protected only through the first
three months of life, while in areas of low transmission,
infants seem to be protected through six months [36].
It is possible that in areas of high transmission, HbF-
containing RBCs are destroyed more quickly as a result
of infection and, therefore, the switch to HbA-
containing RBCs occurs more quickly. Thus, in areas
of high transmission, infants may be protected for a
shorter period of time. In a study of three regions of
Togo, parasitaemia prevalence increased from 18.2% in
infants zero to two months, to 43.0% in infants three to
five months. The prevalence of anaemia was also
reported to have increased from zero to two months to
three to five months of age, with “anaemia more likely
in children with parasitaemia.” Overall, there was no
significant difference in parasite burden in the different

regions, and, in all regions, most clinical disease was
observed in infants under two years of age [37]. Another
study examined infants younger than three months of
age in Gabon, and found a parasite prevalence of 0.1%,
concluding that parasitaemia in infants younger than
three months of age is very uncommon [38]. A study in
Malawi that measured the parasitaemia of all paediatric
admissions (<15 yrs) found that 4.8% of positive smears
were in children <6 months and 80.7% were in children
between six months and five years of age. They con-
cluded that although the risk of infection is lower in
children in the younger age group than in older children,
the risk does increase in early infancy and that this age
group is at a greater risk for infection than previously
thought [16].

In the model, when the parameters are set as in
Tables 1 and 2, if ps= 0, the host is protected for the first
two months of life, despite the complete absence of an
immune response. For the next few months of life, the
rate at which parasitaemia increases in the course of an
infection is slower than in an adult host, and this differ-
ence may be sufficient to allow for effective immune
intervention: any host factor that slows down parasite
population growth buys time for protective responses by
maternal antibody or the developing, immature infant
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immune system. Whatever the mechanism by which
HbF retards the expansion of a Plasmodium population —
whether parasite multiplication in an individual RBC
is lower, slower or absent — the presence of HbF would
appear to be an unmitigated benefit to the malaria-
exposed, of any age. Yet the sparse evidence suggests
that HPFH is rare, in areas of high malaria endemicity as
elsewhere. Sickle cell anaemia and [-thalassaemia are
generally accompanied by elevated HbF levels, but the
degree of elevation is highly variable [39,40]. Because ele-
vated HbF levels ameliorate the clinical symptoms of
sickle cell disease and [-thalassaemia, and the switch
from HbF to HbA production is neither complete nor
irreversible, therapeutic reactivation is an active area of
research [41]: hydroxyurea is the standard agent in
current clinical practice [42]. The potential of these
approaches for interventions in malaria-endemic regions
apparently remains unexplored [43].

It seems possible that there are opportunities for
laboratory researchers to gain important insights from
in vitro work. For instance, if sufficient quantities of HbF-
containing RBCs could be obtained, and parasite cultures
established in them, critical observations could be com-
pared to those from the usual cultures of HbA-containing
RBCs, on the number of merozoites released per infected
HbEF-containing RBC, and the time from when the para-
site enters the HbF-containing RBC until it bursts.

The hypothesis that HbF-containing RBCs release
fewer merozoites has a greater overall effect on infection
dynamics than a delay in the parasite life cycle. Empir-
ical research suggests that the parasite may have a reti-
culocyte preference, and that this may confound the
seeming preference for HbF in vivo through the differing
age distributions of HbA- and HbF-containing RBCs
[19]. Although a reticulocyte preference seems more
beneficial to parasite persistence than host survival, in
combination with a reduced merozoite release the over-
all effect still benefits the host.

Conclusion
It has long been accepted that children under six
months of age are protected from severe infection, and
this is widely reflected in the literature on paediatric
malaria. This topic has recently been analysed more
carefully, as noted above, and it appears that the malaria
burden in this age group — while still relatively low —
may be higher than previously acknowledged [16]. It
may be that age-related variation within the overall age
group arises from variation in HbF levels and transmis-
sion intensity.

The results from this simple model of haematological
changes in infants and their effects on P. falciparum
infection dynamics seem intuitively sound in a qualitative
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sense, and they emphasize the likely importance of HbF
as an explanatory factor in paediatric malaria. The model
provides a framework for examining hypotheses about
the protective effects of foetal haemoglobin, organizing
empirical observations and making critical quantitative
comparisons among them.
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