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Abstract

Background: The relative roles of climate variability and population related effects in malaria transmission could be
better understood if regional-scale dynamical malaria models could account for these factors.

Methods: A new dynamical community malaria model is introduced that accounts for the temperature and rainfall
influences on the parasite and vector life cycles which are finely resolved in order to correctly represent the delay
between the rains and the malaria season. The rainfall drives a simple but physically based representation of the
surface hydrology. The model accounts for the population density in the calculation of daily biting rates.

Results: Model simulations of entomological inoculation rate and circumsporozoite protein rate compare well to
data from field studies from a wide range of locations in West Africa that encompass both seasonal endemic and
epidemic fringe areas. A focus on Bobo-Dioulasso shows the ability of the model to represent the differences in
transmission rates between rural and peri-urban areas in addition to the seasonality of malaria. Fine spatial resolution
regional integrations for Eastern Africa reproduce the malaria atlas project (MAP) spatial distribution of the parasite
ratio, and integrations for West and Eastern Africa show that the model grossly reproduces the reduction in parasite
ratio as a function of population density observed in a large number of field surveys, although it underestimates
malaria prevalence at high densities probably due to the neglect of population migration.

Conclusions: A new dynamical community malaria model is publicly available that accounts for climate and
population density to simulate malaria transmission on a regional scale. The model structure facilitates future
development to incorporate migration, immunity and interventions.

Background
Models of malaria transmission are useful tools to aid
understanding of the disease dynamic[1] and have long
been applied to assess the potential for intervention [2-4].
As weather parameters such as temperature and precipita-
tion are important in determining the disease niche, there
is also potential, given accurate forecasts/projections of
these parameters, to use malaria models that account for
climate in early warning systems in epidemic regions [5,6]
or to assess potential shifts in niche regions under climate
change scenarios [7], although in both cases incorporation
of other socio-economic factors is desirable [8-10].
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As in other climate-related sectoral fields, predictive
systems are often based on statistical models, which relate
past case numbers to climate anomalies through regres-
sion techniques [5,11]. The skill of statistical models
depends on the data resources available for the region
of interest. Such approaches can incorporate interven-
tions, and have increased in complexity to include random
errors and relevant socio-economic indicators [12] as in
a recent model developed for dengue fever in Brazil [13].
Poor, sparse or short data records confound the derivation
of a reliable statistical model.
Dynamical models instead explicitly model the key

equations describing the disease dynamic. A good under-
standing of the disease is required but if this is available
this approach has the advantage of being able to incorpo-
rate day-to-day and even sub-daily diurnal variations in

© 2013 Tompkins and Ermert; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Tompkins and ErmertMalaria Journal 2013, 12:65 Page 2 of 24
http://www.malariajournal.com/content/12/1/65

climate variables and thus differentiate transmission sea-
son risk due to sub-seasonal variability [14]. Such models
can potentially be applied to different regions to those
in which they were developed, although local calibration
may still be required.
Early dynamical disease models used idealized

equations to describe the vector and host dynamic as
separate discrete compartments [2,15]. Many models
have focused on the disease development within the host,
with rate equations determining the passage between
uninfected, infectious and recovering states and vectors
given a parasite-free or infectious status. These models
frequently include categories to account for immune
status of the host, either to improve the model per se
[16-18], or to improve our understanding of the process
of immunity acquisition by determining which model
best fits the available data [19-21]. Often the impact of
climate was either neglected or incorporated through the
force-of-infection related transmission rates.
Some recently developed dynamical models have

focused on improving particular climatic aspects of the
vector and parasite life-cycles. A dynamical model for the
vector life-cycle has been introduced that also included a
treatment of water bodies [22]. The model was designed
to be run on a local scale with knowledge of the water
body in question, and included the temperature sensitivity
of larvae while linking water temperature to air temper-
ature through a function of cloud cover. Another recent
study also introduced a simple generic treatment of the
rainfall influence on breeding sites into a dynamical model
applied to single locations [23]. The Liverpool Malaria
Model (LMM), which has been applied regionally to fore-
casting and climate projection issues [24,25], includes the
temperature effect on the sporogonic and gonotrophic
cycles, explicitly representing the parasite and egg growth
stages, as well as including a treatment of the temper-
ature impact on vector mortality rates[26]. The model
was designed to be run over a regional scale but did not
include an explicit representation of the surface hydrol-
ogy; egg laying rates were proportional to the 10-day rain
rate. Since flushing of larvae at intense rain rates could be
important in reducing malaria [27,28], this relation was
modified to a highly nonlinear function to account for this
[29,30].
While successfully applied to modelling the parasite-

vector cycles, one drawback of these models is that
they do not explicitly represent the interaction between
host and vector. The lower parasite ratio (PR) values in
urban areas compared to rural areas is due to a range
of socio-economic factors that impact access to health
facilities and treatment. Field study and survey based
statistical modelling imply a reduction of entomolog-
ical inoculation rate (EIR) with increasing population
density in peri-urban environments [31-33], indicating

that surface hydrology and decreasing ratio of vector to
host is key. Dynamical models that fail to incorporate
host-vector dynamics may not differentiate between peri-
urban and rural malaria. Moreover, inclusion of the host
dynamic allows for an improved representation of human
behaviour in malaria propagation, including interven-
tions, treatments and also economic migration, which can
reintroduce the disease into malaria-free zones [34-36].
A dynamical model has recently focused on the inter-

action between the host and vector, which used climate
data from a single location in central Tanzania in a set
of idealized simulations to investigate the impact of inter-
ventions such as bed net usage, although no comparison to
data was conducted for the location [37]. Another malaria
model [38,39] used an agent-based approach to repre-
sent vectors and included population density. The study
mapped out a rural village at a 10 m spatial scale, mod-
elling growth of breeding sites using a two dimensional
hydrological model and followed the evolution of each
individual vector within the village domain. Such a mod-
elling approach would be impossible to apply on a regional
scale for planning purposes, due to the shear numerical
cost and the lack of the detailed input required on a wide
scale. While [38,39] claimed that explicitly modelling each
small scale breeding site of the anopheles vector and its
interaction with its host was vital to present malaria trans-
mission, we note that in the atmospheric sciences reliable
weather predictions are made without explicitly mod-
elling effects occurring below the truncation scale of the
model (such as clouds and convection), but instead rep-
resenting their bulk statistical effects collectively via a so-
called parametrization scheme [40,41]. In the same way,
a regional-scale malaria model can incorporate important
small-scale effects such as the growth of available breeding
sites (ponds and puddles) in the rainy season, representing
the net bulk impact in a parametrization scheme.
The aim here is to introduce a new dynamical malaria

model that can be used on a relative fine spatial resolu-
tion of order 10 km but applied over a regional scale and
explicitly incorporates vector-host interaction in addi-
tion to a treatment of the aggregate effect of seasonal
temporary bodies in a pond model. While idealized, the
hydrological component puts a framework into place that
will allow future development such as incorporating land-
surface related permanent breeding sites and coupling to
a more complex surface hydrology. Moreover, the inclu-
sion of the population density will facilitate the future
study of such phenomena as host migration, interventions
and urbanization. Thus the model presented here pro-
vides a tool that takes a first step towards fulfilling two
of the recommendations of [42]: to understand the rela-
tionships between climate and climate-sensitive diseases
and health issues under different environmental condi-
tions by incorporating other data into ... health forecast
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services, for example population, rural vs. urban residence,
[and] migration. After introducing the model framework,
an evaluation the model is conducted in an idealized
framework and also using point and gridded regional inte-
grations comparing the model to field studies of entomo-
logical parameters, malaria atlas project (MAP) processed
survey data and an existing dynamical model. This evalu-
ation demonstrates the ability of model to predict the sea-
sonality and spatial distribution of malaria transmission,
before the future directions are summarized.

Methods
Overview of the VECTRI model
The malaria model presented is a grid cell distributed
dynamical model and is referred to as VECTRI; the vector-
borne disease community model of the International
Centre for Theoretical Physics, Trieste. This manuscript
documents VECTRI release version v1.25 as of June 2012.
In as far as possible, the model physics and associated
parameters are taken from the literature for the Anophe-
les gambiae complex and the Plasmodium falciparum
malaria parasite. In the present version each location (grid
cell) is independent, but the structure of the model will
allow communication between grid cells such as vector
flight or human populationmigration to be easily incorpo-
rated. The following sections describe the basic structure
of the model, with emphasis placed on its novel aspects.
Since one goal of the model is its successful applica-

tion regionally to forecast epidemic outbreaks in malaria
marginal zones in addition to representing malaria trans-
mission in endemic regions, it is important to represent
the delay between the rainy season onset and the malaria
season. Thus the model explicitly resolves the growth
stages of the egg-larvae-pupa cycle in addition to the
gonotrophic and the sporogonic cycles using an array of
bins for each process, similar to the LMM. The struc-
ture of the model is depicted schematically in Figure 1. It
shows the division of the larvae life cycle (L) into a num-
ber (NL) of discrete fractional bins (i). The real number
stored in each bin, Li, gives the larvae density (per square
metre) at a particular fractional growth stage f (where f
ranges from 0 to 1). Oviposition results in eggs added to
the first bin and each timestep of themodel larvae advance
a number of bins at a fractional growth rate RL (units
s−1), depending on the local water temperature, until they
reach the final bin LNL (representing f = 1) and develop
into adult mosquitoes. The equations solved are thus the
classic advection equation:

dL
dt

= RL
dL
df

. (1)

The vector status is also bin resolved, consisting of
two properties: the gonotrophic and sporogonic cycles.
It is thus represented as a two dimensional array

V (Ngono,Nsporo). All vectors in the first gonotrophic bin∑Nsporo
j=1 V (1, j) are in meal-searching mode, and once a

meal is obtained, the vectors advance in terms of the egg
development state at a rate RV ,gono related to ambient tem-
perature until the final bin is reached (using the advection
equation similar to eqn. 1). At this point the vector lays a
new raft of eggs and is recycled to the first meal-searching
bin.
Each timestep, parasite transmission may occur to a

proportion of the biting vectors, and the status of these
vectors will subsequently additionally progress in the
sporogonic dimension, with the rate RV ,sporo again deter-
mined by temperature. Once vectors reach the final bin
they are infective to humans and remain so until death.
A third array of bins maps the status of the disease in the
human host (H) population (dimensionNH ), with the first
bin representing the uninfected population. The model
does not include age or immunity factors, which is the
subject of present model development.
Thus, while the model introduces new relationships

regarding the surface hydrology and the explicit interac-
tion between vector and host, the underlying numerical
structure is similar to that employed in the LMM [26].
A timestep of one day is used to integrate the model
equations, although a shorter timestep could be used if
input data (temperature/rainfall) are available on these
timescales, and the advection equation is solved using a
simple upstream numerical scheme.
The model can be flexibly integrated using a wide range

of horizontal resolutions. Since the model presently does
not permit vectors to move to neighbouring grid cells, the
model resolution is limited to an upper (finest) level on the
order of 1-5 km; an indicated range belowwhichmosquito
movement can become significant [43-45]. Integrating the
model at O(10 km) resolution is desirable, even if corre-
sponding observational data of clinically proven malaria
cases is available only on coarser scale health districts.
This is because malaria transmission is a highly nonlin-
ear function of its drivers such as climate and land surface
and thus it is preferable to use highest possible spatial
resolution inputs of population density, land surface and
weather to account for this, while the model output is sub-
sequently aggregated to the spatial scale at which health
data is available for comparison.

Structure of the VECTRI model
The following section describes the details of the
parametrizations used to describe the temperature-
sensitive progression rates and details the new
developments in the VECTRI model concerning the
representation of the human population density, which
impacts the biting rates, and the treatment of surface
hydrology which determines the overall vector num-
ber. To enable VECTRI to be used in a multi-model
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Figure 1 Schematic of the VECTRI model. The top row shows the larvae status divided into a series of bins representing the fractional
development state. The ’X’ in each bin represents the density of larvae in a specific fractional growth stage. The middle block represents the vector
state in two dimensions: the egg development within the female and the infective state. The lower row models the host infective state. The curved
arrows represent the progression direction of the larvae, vector and host state, while the straight red arrows mark the parasite transmission
pathways between host and vector.

ensemble approach to assess model uncertainties, multi-
ple parametrization choices are incorporated to facilitate
this. All the constants are listed in Table 1.

Larvae cycle
Previous laboratory studies have shown that the larvae
growth rate follows the degree day concept [46] based
on a linear function of water temperature Twat above a
threshold value TL,min below which larvae growth ceases:

RL = Twat − TL,min
KL

. (2)

There is considerable uncertainty in the setting of the
rate coefficient KL, however, with [47] KL value of 90.9
degree days, while a linear approximation of the relation-
ship derived by [48] results in a much slower rate of 200
degree days. A further source of uncertainty is the spec-
ification of the water temperature itself, which depends
on the shading of the pool and its dimensions in addi-
tion to the ambient air temperature, and is described in
the hydrology component below. VECTRI also permits
the user to avoid this uncertainty by following [29] in set-
ting a fixed larvae growth rate (i.e. independent of Twat) to
have a cycle of 12 days. The sensitivity to this relationship
is investigated later. Irrespective of the scheme used, an

upper temperature limit TL,max is specified above which
larvae death occurs.
Egg hatching into larvae and the pupae development

stage are both typically on the order of one day [48,49] and
thus are poorly resolved by the daily timestep employed by
VECTRI and other similar dynamical models. In order to
avoid truncation problems the length is fixed in VECTRI
to last exactly one day and is temperature independent.

Larvaemortality
The mortality rate of larvae is an important factor for
transmission, and is strongly temperature dependent [50].
The VECTRI model sets a base daily survival rate for
larvae PL,surv0 = 0.825 taken from [29], slightly lower
than the values given by [26,38]. Development of lar-
vae is negatively affected by larvae over-population due
to competition for resources [51]. This is incorporated
in VECTRI by reducing survival rate proportionally by a
factor related to resource constraints:

PL,surv =
(
1 − ML

wML,max

)
KflushPL,surv0. (3)

In the first term on the right,ML is the total larvae biomass
per unit surface area of a water body, and w is the frac-
tion coverage of a grid cell by potential breeding sites (not
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Table 1 VECTRI default constants

Symbol Value Units Description Reference

E + I 250 mm day−1 Total evaporation and infiltration losses based on [85]

KL,Jepson 90.9 K day Larvae growth degree days [47]

KL,Bayoh 200 K day Larvae growth degree days [48]

Kgono 37.1 K day Gonotrophic cycle degree days [46]

Ksporo 111 K day Sporogonic cycle degree days [46]

Kflush,∞ 0.4 Larvae flushing factor for infinite rain rate based on [27]

Kw 1 m−1 Pond growth rate factor set by tuning or local knowledge of basin

Kmar1,0 0.45 Constant of Martens I vector survival scheme [61]

Kmar1,1 0.054 °C−1 Constant of Martens I vector survival scheme [61]

Kmar1,2 -0.0016 °C−2 Constant of Martens I vector survival scheme [61]

Kmar2,0 -4.4 Constant ofMartens II vector survival scheme [62]

Kmar2,1 1.31 °C−1 Constant ofMartens II vector survival scheme [62]

Kmar2,2 -0.03 °C−2 Constant ofMartens II vector survival scheme [62]

ML,max 300 mg m−2 Carrying capacity of water bodies [38]

Negg 120 Number of eggs per batch that result in
female vectors

[30]

PL,surv0 0.825 Larvae base daily survival rate [29]

Phv 0.2 Probability of transmission from infective
host to vector during single bloodmeal

[29]

Pvh 0.3 Probability of transmission from infective
vector to host during single bloodmeal

[29]

Twat 2 K Pond water offset from air temperature [92]

TL,min 16 °C Minimum Twat for larvae development based on [48]

TL,max 38 °C Maximum Twat for larvae development based on [48]

Tgono,min 7.7 °C Minimum T2m for egg development [46]

Tsporo,min 16 °C Minimum T2m for sporogonic cycle [29]

τflush 50 mm day−1 Larvae-flushing rainfall e-folding factor based on [27]

τzoo 50 km−2 Population density zoophilic factor set by tuning

wmax 0.04 Maximum temporary pond fraction in cell set by tuning or local knowledge of basin

List of constants in VECTRI.

open water) and is given by the surface hydrology compo-
nent described below. If w = 0, the survival rate PL,surv is
also zero. The maximum carrying capacity, ML,max, is set
to 300 mgm−2 and larvae mass is assumed to increase lin-
early with a stage 4 larva having a mean mass of 0.45 mg,
both following [22,38] closely. All larvae die above a water
temperature of TL,max.
Flushing of larvae by heavy rainfall has been suggested

to be an important cause of larvae mortality [52,53]. Using
an artificial pond apparatus [27], a 17.5% daily mortality
rate of first stage larvae reducing to 4.8% for forth stage
larvae was estimated, although the authors state that these
figures could represent an underestimate due to the sym-
metry of the pond apparatus and the lack of sampling
of more extreme rainfall amounts during the experiment

campaign. On the other hand, vegetation in natural pools
and the apparent ability for Anopheles gambiae larvae to
take avoidance measures to avoid flushing could imply a
lower flushing rate [54]. In order take the simplest possi-
ble relationship in VECTRI, flushing rate is represented as
exponential function of rain rate, and is related linearly to
the larvae fractional growth state Lf :

Kflush = Lf +(1−Lf )
(

(1 − Kflush,∞)e
−Rd
τflush + Kflush,∞

)
,

(4)

where Rd is the rainfall rate in mm day−1, τflush describes
how quickly the effect increases as a function of Rd, and
Kflush,∞ is the maximum value of Kflush for newly hatched
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first stage larvae at extremely high rain rates. In contrast
the flushing effect is zero (Kflush = 1) at all rain rates for
stage 4 larvae just prior to adult emergence (Lf = 1, cor-
responding to the larvae bin i = NL). The relationship is
illustrated in Figure 2. Since flushing is a function of daily
rain rate at relatively high spatial resolution τflush is set to
50 mm day−1. In order to give mortality rates of first stage
and forth stage comparable to [27] for typical daily rain
rates in the tropics, a value of 0.4 is adopted for Kflush,∞.

Gonotrophic cycle
All female vectors are assumed to find a blood meal in
the first night of searching, although this fraction can be
set as a model parameter. Insecticide treated nets are, for
example, able to frustrate host-seeking mosquitoes [55]
and reduce the mosquito population number. It would
depend on the human population and availability of ani-
mals. In this way both newly emerging and existing adult
mosquitoes might be prevented from progressing in the
feeding cycle.
Once the blood meal is taken, the egg development

proceeds at a rate determined by the local 2 metre air tem-
perature T2m, again following the degree day concept and
is thus given:

Rgono = T2m − Tgono,min

Kgono
. (5)

At the end of the cycle the female vector lays Negg eggs
that will eventually hatch into females; as is usual in
such models, the eggs laid that result in the males are
neglected. She subsequently cycles to the meal searching
box. The number of eggs is highly variable and depends
on vector species. The choice of Negg=120, correspond-
ing to a batch size of 240 assuming equality between the
sexes, follows [30] but [56-58] indicate that this could be
an overestimation. Present model development underway
will permit stochastic variation of parameters such asNegg
in the future to account for their considerable degree of
uncertainty in an ensemble modelling framework.

Sporogonic cycle
When the female vector takes a blood meal there is a
certain finite probability that malaria transmission takes
place, either from the host to vector or vice versa. The
probability of transmission to the vector during a blood
meal from an infective host is considered a constant Phv =
0.2 (following [29]), and thus the overall transmission
probability Ph→v is the product of Phv and the propor-
tion of hosts that are infective, namely the ratio of the
population density of infected hosts Hinf divided by the
population density H :

Ph→v = Hinf

H
Phv. (6)
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Figure 2 Larvae Flushing. Fractional reduction in larvae survival rate (Kflush) as a function of larvae growth stage (Lf ) and rain rate as implemented
in VECTRI.
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It should be noted that this assumes bites are randomly
taken and not influenced by the host’s infective state.
Heterogeneous biting can impact the basic reproductive
number considerably [59,60]. Heterogeneity of feeding
habits is related to a wide array of factors, including host
attractiveness to the vector and their vicinity to breeding
sites, and heterogeneity in interventions such as the use of
bed nets, in particular the increased use by hosts suffering
from clinical malaria. Some of these effects could easily be
included in VECTRI if relevant data were available.
Each timestep, a proportion of vectors Ph→v become

infected, and the parasitic development in the midgut of
the vector begins, once again governed by a degree day
concept:

Rsporo = T2m − Tsporo,min
Ksporo

. (7)

After a number of days the sporozoites invade the sali-
vary glands of the mosquito which subsequently becomes
infective to humans. The mosquito is assumed to remain
in this infective state until its death.

Vector survival
In addition to the larvae, gonotrophic and sporogonic
cycles, temperature also plays a role in determining the
mortality of vector. High air temperatures increase vector
mortality, but the relationship is uncertain, especially at
the high and low temperature bounds of transmission. As
in the larvae cycle, two schemes are incorporated in the
VECTRI model to permit a multi-model approach, with
constants given in Table 1:
Scheme 1: follows [52,61] and gives the survival rate as

a quadratic function of temperature:

PV ,surv1 = Kmar1,0 + Kmar1,1T2m + Kmar1,2T2
2m (8)

Scheme 2: follows [62,63], revising the relationship as

PV ,surv2 = exp
(

−1.0
Kmar2,0 + Kmar2,1T2m + Kmar2,2T2

2m

)

(9)

The results in this paper are obtained using scheme 2,
referred to in [29] asMartens II.

Host community
One of the new aspects of the VECTRI model is that it
explicitly allows the interaction between vector and host
population on a district and regional scale. The VECTRI
model specifies the population densityH using the Africa-
only AFRIPOP [64] or global GRUMP [65] datasets which
have a nominal 1 km and 4.5 km spatial resolution, respec-
tively. Thus at each location (model spatial grid cell), the
ratio of biting vectors to hosts is known and is given
by (

∑Nsporo
j=1 V (1, j)/H). This is important to represent the

vector-to-host transmission rate. The number of bites B
that any particular individual receives in a given time the
human biting rate (hbr) is considered to be a random pro-
cess, and thus distributed following a Poisson process with
a mean biting rate of

hbr =
(
1 − e

−H
τzoo

) ∑Nsporo
j=1 V (1, j)

H
. (10)

The factor 1−e
−H
τzoo represents the level of vector zoophily.

While members of the Anopheles gambiae complex are
in general considered anthropophilic to varying degrees
[66], with arabiensis more zoophilic than sensu stricto
[67], vectors take an increasing proportion of blood meals
from cattle in lower population density rural areas with
high livestock numbers [68], although the effectiveness
of zooprophylaxis is still debated [69]. The exponential
factor reflects this, with the e-folding population den-
sity for the effect set to τzoo=50 km−2. Thus the factor
only has a significant impact for rural populations below
this number and avoids the model producing excessively
high biting rates and EIR for sparsely populated locations.
In future, VECTRI will allow vector movement between
cells allowing anthropophilic vectors to cluster around
population centres.
The daily number of infectious bites by infectious vec-

tors, EIRd , is the product of hbr and the circumsporozoite
protein rate (CSPR). Specifically in the VECTRI notation,
this is V (1,Nsporo)/H , with the 1 indicating that the cal-
culation is restricted to the vectors that are biting within
the present timestep of the model. This implicitly assumes
that there is no change in the intensity of biting or the
gonotrophic cycle length between uninfected and infec-
tious vectors; a simplification according to [70]. If the
transmission probability from vector to host for a single
bite of an infective vector, Pvh, is assumed a constant then
the transmission probability for an individual receiving n
infectious bites will be 1−(1−Pvh)n. The impact on trans-
mission due to blocking immunity is neglected. Thus the
overall transmission probability per person per day in the
model can be obtained by the integration over the bite
distribution:

Pv→h =
∞∑
n=1

GEIRd (n)
(
1 − (1 − Pvh)n

)
(11)

where GEIRd is the Poisson distribution for mean EIRd . If
bed nets are in use, eqn. 11 could be modified to incorpo-
rate this, increasing the mean bite rate for a subset of the
unprotected population. This involves a number of com-
plications however, since accurate data would be required
concerning bed net distribution and use, how this usage
correlates to host infective state, and which proportion of
bite are taken during the hours of sleeping.
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The impact of using eqn. 11 is to reduce the mean
transmission rate, particularly when the mean bite rate
is small, resulting in a strong positive skewness of the
Poisson distribution (Figure 3). While this is an improve-
ment on the simple assumption that all hosts receive equal
numbers of bites, the Poisson distribution is likely under-
dispersive compared to reality, since a number of factors
such as unequal host attractiveness to vectors and noc-
turnal behaviour affecting exposure will likely lead to an
uneven distribution of biting rates [71-73]. Figure 3 also
emphasizes that the model is relatively insensitive to the
choice of Pvh for values exceeding around 0.2. The default
value that VECTRI adopts for Pvh is 0.3 following [29], but
there is considerable uncertainty in this parameter, which
also depends on immune status, with [74] reporting that
half of a small group of 10 malaria naive volunteers were
infected after being exposed to 1 to 2 infective bites, while
[75] estimated a value of just 1 in 13 in an endemic area.
The host population is represented by the vector

H(Nhost), and each VECTRI timestep a proportion Pv→h
of hosts become infected and progress through the array
until 20 days later they assume an infective status, an aver-
age value for immune and non-immune subjects [76-79].
Non-immune hosts clear infections at an e-folding rate of
Cni = 150 days. Even after a century of study of the dis-
ease, the paradigm of naturally acquired immunity (NAI)

is still hotly debated [21]. Therefore the present version of
the model neglects host immunity, and the impact of the
various representations of immunity in VECTRI will be
the subject of a companion article.

Surface hydrology
The VECTRI model includes a simple, physically-based
surface hydrology model that at each timestep provides a
calculation for the fractional coverage of each model grid-
cell by potential breeding sites for the malaria vector, w.
This fraction consists of two components since the model
distinguishes between breeding sites provided by tempo-
rary ponds, wpond, and those associated with permanent
water bodies such as lakes, rivers and streams that contain
water year-round, wperm:

w = wperm + wpond . (12)

Considering first wperm, converting land use and terrain
information into a fractional coverage of breeding areas
provided by permanent water bodies is a significant chal-
lenge. Wave/ripples action that can drown larvae [80] and
the presence of predators in larger bodies [81] imply that
larvae exist only in a sub-fraction of such water bodies,
in pooling that occurs on the edges of lakes and rivers or
the shallow edges of ponds. Higher soil moisture in the
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vicinity of large water bodies can boost available breeding
sites by reducing infiltration loss and increasing the life-
time of temporary puddles and ponds. Lastly, rivers and
streams can even confound classic relationships between
rainfall and vector density by actually providing more
breeding sites during drought periods when flow slows or
stops altogether [82]. This remains the subject of current
research and the default VECTRI model therefore sets
wperm to zero in each grid cell, implying that the breed-
ing site availability is dominated by seasonal ephemeral
ponds and malaria incidence will be potentially under-
estimated in the vicinity of larger semi-permanent water
bodies. A user operating the model for a local area with
knowledge of permanent water bodies can set this value
appropriately.
The net aggregated fractional coverage by temporary

pools wpond is derived from a simple water balance model.
Ponds are replenished by surface runoff Q, while infil-
tration I (seepage) and evaporation E and pond overflow
reduce their water content. An important parameter is the
maximum coverage of the temporary ponds wmax, which
described the extent of depressions that could potentially
become water filled at the peak of a wet season, which
are often small in scale, with total catchments of the gully
systems studies in Niger in the HAPEX-SAHEL experi-
ment measuring 0.2 km−2 [83]. Presently it is assumed
that the runoff Q that fills the ponds mostly falls within
these depressions and thus the runoff is set toQ = wmaxP,
where P is the precipitation rate. Thus sub-surface infiltra-
tion occurring within the depressions is also considered
a water source for temporary pools [83]. Future devel-
opments will introduce an improved runoff treatment
accounting for soil texture and slope.
The source from precipitation is balanced by evapora-

tive, infiltration and overflow losses. In high-resolution
simulations of surface hydrology in Niger, [84] found over-
flow losses to be approximately 20% of total losses, more
than three times the losses due to evaporation. It should
also be noted that overflow losses in field campaigns are
difficult to measure and thus are often incorporated in the
infiltration, which is calculated as a residual in the water
balance calculation. Losses through pond overflow are
assumed to increase linearly with pond fraction in VEC-
TRI, achieved by scaling the runoff by a factor 1 − wpond

wmax
.

Once the pond fraction reaches its maximum, all sur-
face runoff overflows and is lost. Infiltration losses vary
substantially depending on soil texture and life-scale of
the pond in question. Often the infiltration is a highly
nonlinear function of water body extent, since silting
may significantly reduce infiltration in the lowest part of
longer-lived or semi-permanent pools [83]. This results in
a fast initial decay after rain events due to high infiltration
rates at the pool edges, followed by a slower decay, while
temporary, shorter lived water bodies tend to have more

uniform infiltration rates. These rates can be very high,
exceeding 600 mm day−1 [85]. Presently the VECTRI
model simply sets a fixed constant infiltration rate per unit
pond area.
Combining these factors, the volume of water vpond in

ponds per unit area thus evolves as

dvpond
dt

= wmaxP
(
1 − wpond

wmax

)
− wpond(E + I). (13)

Evaporation is set to 5 mm day−1, equivalent to a latent
heat flux of 145 Wm−2. It is possible to derive evapo-
ration losses from water temperature, and atmospheric
wind speed and relative humidity, however, as evapora-
tion is a relative minor loss term relative to infiltration and
overflow, a simple fixed evaporation rate suffices. With I
set to a reasonable value of 245 mm day−1, total losses
from infiltration and evaporation are thus 250 mm day−1.
For closure, the pond fractional coverage needs to be
related to the volume. Individual ponds have been mod-
elled previously using a power law approximation [86],
which would lead to a relationship dw

dt ∝ w−p/2 dv
dt , where

p is the power law exponent. However, [86,87] show that p
can vary by almost an order of magnitude from one water
body to another and depends in particular on the lifetime.
In the present version model this factor is neglected and
the coverage is simply linearly related to pond coverage
introducing a tunable factor Kw:

dwpond
dt

= Kw
(
P(wmax − wpond) − wpond(E + I)

)
.

(14)

As the pond coverage can change rapidly, eqn. 14 is
integrated using a fully implicit solution. An example evo-
lution of the fractional pond coverage for a site near
Bobo-Dioulasso is given in Figure 4, which shows that
the simple empirical approach mimics the pond evolution
modelled by high resolution hydrological models for sites
in Niger [38] and ponds modelled in Senegal [88]. The
present empirical formulation is similar to the approaches
of [23,37]. It is seen that at the fringes of the rainy season,
puddles and small ponds have limited longevity on the
order of a few days, implying that they are unsuitable for
vector breeding. VECTRI represents the bulk behaviour
of ponds, rather than the ultra-high resolution model of
[84] which individual models puddles at the 10 m scale
and thus can model the lifetime of ponds as a function of
their explicit size (see their Figure Seven). Obviously, the
linear relation between rainfall and the growth of potential
breeding sites in parameter Kw is a simplification, while
the other terms should be related to atmospheric con-
ditions, soil type, vegetation coverage and terrain slope
demonstrated to be important for malaria transmission in
the Kenyan highlands [89].
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Figure 4 Surface hydrology. An subsection of a multi-year VECTRI integration for Bobo-Dioulasso showing the evolution of model water fraction
for three rainy seasons.

Presently, the two unknowns wmax and Kw in the frame-
work are set using a simple Monte Carlo suite of station
data integrations in a subset of locations to minimize
EIR errors compared to field data. An example sensitiv-
ity integration is shown in Figure 5, which is a integration
conducted for Bobo-Dioulasso using station data to drive
the model (see below for experimental set up details). It is
seen that transmission intensity increases with wmax and
Kw as expected, since these increase the pond coverage for
a given rain rate, while increasing the loss rate acts in the
opposite direction. For a given station there are a range
of reasonable parameter values, with the present param-
eter settings chosen using a small number of locations
in West Africa. Nevertheless, the physically based frame-
work facilitates future improvement currently underway,
which will include direct validation of the revised hydro-
logical model constants using in situ and remotely sensed
data.
Finally, it is recalled that the pond dimension limits lar-

vae mortality rates through the availability of breeding
sites governed in eqn. 3. This is an approximation of
the net affect of crowding which leads to higher mortality
rates, longer development times and smaller adults [90],
which in turn have a competitive disadvantage [58]. The
biomass is considered to be distributed equally through
all available breeding sites and variability between breed-
ing sites in neglected, supported by [91] who noted that
females avoid ponds that are overcrowded with existing
larvae.
In addition to pond dimension the other important

parameter of water bodies is the temperature of the water

near the surface. The Depinay model [22] developed a
complex empirical function for water temperature as a
function of ambient relative humidity and water body
size. As the VECTRI model is applied regionally, spe-
cific information about individual water body size may
not be included. The temperature in shallow ponds and
puddles is homogeneous to a good approximation and is
often one or two degrees warmer than the air temperature
[92,93]. VECTRI therefore assumes that the temperature
of pools Twat to have a fixed offset relative to the air tem-
perature. The default value adopted is a positive offset
of 2 K, however, in hot locations it is likely that vector
will preferentially choose shaded breeding locations and
a lower or even negative offset may be more appropri-
ate. If accurate gridded weather information for wind and
surface radiation were available, this aspect of the model
could be potential improved implementing a single energy
balance model along the lines of [94,95]. While larger per-
manent water bodies such as lakes and rivers can have
complex stratification of the vertical temperature profile,
as discussed above, larvae development occurs mostly in
the shallow waters and pools that form on the lake/river
boundaries and thus the temperature relation for the per-
manent water fraction is treated in the same way as the
temporary ponds.

Evaluation of VECTRI
Evaluationmethodology and data
VECTRI is evaluated using a series of three testbed
arrangements. The first test determines the sensitivity
of the force of infection measured by EIR in relation to
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Figure 5 Sensitivity of pondmodel to parameter settings. Simulated mean EIR for multi-year VECTRI integrations at Bobo-Dioulasso between
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different infiltration rate.

climate in an idealized setting of so-called ’equilibrium
runs’. The model is driven to equilibrium in an array of
experiments using constant values of temperature and
rainfall and compared to the reference model described
below.
The VECTRI model is next confronted with a wide

range of entomological data consisting of EIR and

circumsporozoite protein rate (CSPR) measurements col-
lected from field campaigns located throughout West and
Central Africa and which were collated in a review by
[96]. These campaigns are divided between rural and
urban environments. In particular, the availability of a
large number of both peri-urban and rural field studies in
and nearby Bobo-Dioulasso documented in [97-106] lead
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to this location being used as a focus site. For each loca-
tion, the models are driven by daily weather data from
the nearest available station, which for points in or nearby
population centres is often within 10 km, but can be much
further for isolated rural locations. A simple interpola-
tion methodology is used to fill temporal data gaps [96].
While the malaria field campaigns are often only available
for a single year, and never more than a few seasons, the
malariamodels are integrated for over four decades to give
an indication of interannual variability, with results from
these ’station integrations’ shown from 1973 to 2006.
Lastly, the malaria prevalence is evaluated from

’regional integrations’ conducted with VECTRI, the first in
Eastern Africa (domain 27°E-42°E and 12°S-6°N) and the
second for West Africa (18°W-9°E and 4.5°N to 19.5°N).
Integrations last for 10 years and use a horizontal spa-
tial resolution of 0.1 degrees, equivalent to approximately
11 km. As freely available daily station data is sparse,
the model is instead driven with satellite-derived rain-
fall using the NOAA FEWS RFE product [107], available
from late 2000 to the present on a 11 km resolution
which is interpolated to the VECTRI grid using conserva-
tive remapping. The gridded 2 metre height temperature
data is taken from the ECMWF ERA-Interim reanalysis
product [108]. As the resolution of the reanalysis is rela-
tively coarse at approximately 75 km in the tropics, it is
statistically downscaled using a constant adiabatic lapse
rate of 6.5 K km−1 [109] to correct for the height error
between the model topography and the ETOPOv2 topog-
raphy [110] bilinearly interpolated to the VECTRI grid.
Starting from artificial initial conditions of 5% of the pop-
ulation carrying the parasite, the model is integrated for a
spin up period of 3 years cycling the first year of weather
data to allow the malaria loading in the population to
equilibrate before the integration runs freely. Focus is on
the integration for Eastern Africa due to the wide range
of topography and the consequential inclusion of malaria
free, epidemic and endemic zones, which are compared
to the MAPmalaria analysis [111-113]. The MAP analysis
ingests PR survey data occurring up to 2010 into a sta-
tistical model that also incorporates environmental data
to provided gridded values of PR [114]. The reliability of
the MAP data depends on the local availability of survey
data. In Africa, for most areas there is a large uncer-
tainty of the MAP prediction. For example, the prediction
is less certain for Uganda and Tanzania, which represent
under-surveyed countries. More certain is the MAP anal-
ysis for most parts of Kenya, although [113] marks the
coastal and western regions with high uncertainty despite
the far greater densities of survey data available there. The
two regional runs are thus also compared to direct sur-
vey data from 199 field campaigns using the analysis of
[33] in order to assess the impact of population density on
EIR.

Comparisonmodel
The VECTRImodel is contrasted to the LiverpoolMalaria
Model (LMM), which has been applied in various forms
to regional malaria modelling across Africa for both sea-
sonal timescale forecasting [24] and to investigate climate
change impacts on transmission [115]. The original ver-
sion of LMM described by [26] was updated in terms of
its surface hydrology by [29,30], and referred to here as
LMM2010. The LMM2010 is a dynamical mathematical-
biological malaria model, which is driven by the two
variables of daily mean temperature and precipitation.
The treatment of surface hydrology in LMM2010 differs
significantly to VECTRI. It applies a fuzzy distribution
model to relate egg-larvae development to the decadal
(10 day accumulated) rainfall amount, with optimal con-
ditions assumed to occur with 1 mm day−1 average rain
rate. Egg-laying rates are reduced below 1 mm day−1 rain
rates to reflect the lack of breeding sites, and also above
this threshold since flushing effects are then assumed to
dominate. The use of a ten day average rainfall essentially
equates to the assumption that rainfall feeds ponds and
pools which have a ten day mean lifespan.Water tempera-
tures are not considered by the LMM2010 in the egg-larval
development rates.
The LMM2010 uses similar entomological and parasito-

logical numerical components to VECTRI. By contrast,
the LMM2010 neglects the population density and is only
calibrated to malaria observations from rural locations in
West Africa. This means that the LMM2010 is not able to
simulate urban malaria conditions. The model is also not
valid for irrigated malaria areas, where malaria transmis-
sion is not depending solely on rainfall. The vector-host
contact is furthermore static in the LMM2010 since a fixed
proportion of the mosquito bites is taken up by humans
and animals.

Results and discussion
Equilibrium integrations
The VECTRI model is driven to equilibrium in an array
of experiments using constant values of temperature
and rainfall, and compared to the reference LMM2010
(Figure 6). In terms of temperature, the range at which
malaria transmission occurs (EIR > 0.01) of 18 to 37
degrees is similar to the LMM2010, although the upper
limit is controlled by the maximum in water temperature
and thus is lower than the LMM2010, which ignores the
impact of water temperature. It is noted that, unlike larvae
which have limited potential to avoid high water temper-
atures, mosquitoes are able to change behaviour such as
resting habits to avoid extreme air temperatures [116].
Therefore, the usual attribution of the upper temperature
limit of malaria transmission to excessive vector death,
as also determined by the LMM2010, may be misleading.
On the other hand, the water temperature is an uncertain
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Figure 6 Equilibrium integrations. Equilibrium integrations of (a) VECTRI and (b) LMM2010 as a function of constant input of daily mean
temperature (T2m) and daily rainfall amounts.

parameter, and greatly variable shading and availability of
sites in a grid cell may imply the water temperature is a
less important parameter than indicated by VECTRI.
In terms of rainfall sensitivity, the two models dif-

fer considerably. The nonlinear function that determines
number of egg laid as a function of rainfall in the
LMM2010 model is very sensitive to rainfall. As the rain
rate deviates from the assessed ideal value of 1 mm/day,
the EIR decreases quickly. Thus in the rainy season,
when daily rainfall amounts usually exceed 1 mm/day,

it is likely that the LMM will produce an anticorrela-
tion between rainfall amount and malaria transmission
intensity. Instead, although the VECTRI model includes
a flushing parametrization, the effect is much weaker at
these moderate rain rates of 0 to 20 mm day−1 and rainfall
is therefore positively correlated with transmission inten-
sity. Moreover, above 2 to 3 mm day−1, the sensitivity of
EIR to rain rate is much lower in VECTRI than LMM2010,
which is likely to result in a lower interannual variability
of malaria in endemic regions in the former model.
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Station integrations
A summary of the results for a selection of stations across
the region (Figure 7) the control model LMM2010 agrees
well with the range of EIR values, which is not surprising,
considering these data were used to calibrate the model
settings. Although VECTRI was not calibrated with the
data, at seven of the eight locations the rural VECTRI
EIRa values overlap with the field observations mean-
ing that the VECTRI runs produce realistic transmission
values for most parts of West Africa. In comparison to
the LMM2010, VECTRI shows a much smaller year-to-
year variability and some field observations lie outside
the range of the model interannual variability. To a cer-
tain extent, this is to be expected, since the model is
only able to simulate the interannual variability due to cli-
mate - other factors such as interventions are neglected.
Instead, the LMM is calibrated to reflect all variability in
the observations in its sensitivity to rainfall and tempera-
ture, as seen in the earlier equilibrium integrations. That
said, VECTRI underestimates the malaria transmission in
the northern Sahel. Too small transmission values are sim-
ulated by VECTRI in Podor for example. Transmission in
urban areas appears to be under-simulated, and in two
urban locations in Dakar no transmission at all occurs in
the model. Further south, where more rainfall occurs dur-
ing the monsoon season, VECTRI in general simulates
somewhat too high EIRa values in comparison to the rural

observations. VECTRI also seems to simulate too high
transmission values in equatorial Africa in Douala, which
is subject to high annual rainfall rates. The simulated EIRa
values exceeding 500 infectious bites per human per year
are rarely observed in Africa with 13 surveys out of a total
of 180 reported by [32] registering EIR in this range.
A further detailed analysis is made for Bobo-Dioulasso

in southwest Burkina Faso, which was chosen due to a
particularly large number of field experiments with which
to compare the models. Malaria is seasonally endemic in
this location and a number of field campaigns have sam-
pled EIR and CSPR in both (peri) urban and rural (some
with nearby irrigation schemes) environments [97-106].
Only one integration is conducted for the LMM2010 since
it is unable to account for population density. This is com-
pared to two VECTRI integrations representative of rural
(latitude 11.43°N, longitude 4.25°E, human population
density H=32.2 km−2) and urban (latitude 11.2°N, longi-
tude 4.30°E,H=1040 km−2) field locations. The timeseries
of annual EIR and CSPR values from the 3 integrations
(Figure 8) show that both models reproduce the correct
order of magnitude for these two variables in the rural
location. The EIR in the VECTRI model and LMM2010 lie
within the spread of measured EIR. The significant vari-
ability between the observed EIR values is noted, which
could derive from differences in terrain, topography, alti-
tude, vicinity to water bodies, irrigation and land use,

Figure 7 Observations and simulations of EIR and CSPR. Box-and-whisker plots of the VECTRI and LMM2010 simulated annual Entomological
Inoculation Rate (EIRa ; in infectious bites per human per year) for eight West African locations. The box-and-whisker plots of the LMM2010 are
illustrated in blue. VECTRI results in terms of rural and urban areas are taken green and red, respectively. Also the latitudinal, longitudinal position,
and used population density (km−2) is indicated. Climate varies from a semi-arid (Podor) to a tropical climate (Douala). Field EIRa observations are
furthermore included as brown squares, black dots and blue triangles in rural, urban and irrigated areas, respectively. The number of field
observations is entered behind the location names in the following order: 1) rural, 2) urban, and 3) irrigated observations. The number of clustered
observations on the logarithmic scale is indicated by a digit above the symbols.
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Figure 8 EIR and CSPR interannual variability in Bobo-Dioulasso. Simulated and observed malaria transmission in the area of Bobo-Dioulasso.
(a) Annual EIR rates (EIRa ; in infectious bites per human per year) and (b) annual mean CSPR (CSPRa ; in %). The blue lines represent LMM2010 and the
red and green lines VECTRI simulations (red: human population density H = 1037 km−2; green: H = 32.2 km−2). The brown squares, blue triangles,
and black dots stand for observed EIRa and CSPRa values in rural, irrigated and urban areas, respectively. See [30] for a definition of rural, irrigated and
urban areas and for the sources of the field observations (their Additional file Two; the Word Meteorological Organisation (WMO) station number
65510 of Bobo-Dioulasso is assigned to the data).

interventions and simply experimental sampling error. It
emphasizes the uncertainty in individual measurements
and the need for ensembles of experiments to gauge this
uncertainty. The EIR is generally lower in rural locations
with irrigation, possibly as a result of preditor estab-
lishment in longer-lived pools but may also be due to
irrigation providing farmers with higher incomes per-
mitting further prevention and treatment measures. This

emphasizes the difficulty in gauging such influences in the
w0 parameter of the VECTRI model.
Intercomparing EIR from the two malaria models, the

very high interannual variability of the LMM2010 is obvi-
ous, related to its elevated sensitivity to rainfall demon-
strated in the earlier constant-input experiments. The
LMM2010 EIR value ranges by more than an order of
magnitude between the lowest and highest year, while
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the interannual variability is less than a factor of two for
the VECTRI model. It is interesting to note that, despite
the basic underlying structure being very similar in the
two models, the parametrization choices, in particular
the implementation of the surface hydrology in the VEC-
TRI model, results in almost a zero correlation between
the two models in their representation of interannual
variability; indeed, the EIR appear anti-correlated indicat-
ing that rainfall variability is determining the interannual
variability to a large extent.
The black squares in the figure give EIR values for high

population areas in peri-urban Bobo-Dioulasso, which
are much smaller than in the rural environments but
nevertheless non-zero. The LMM2010 is not designed to
simulate these urban cells, however the VECTRI model is
seen to reproduce reasonably well the contrast between
rural and urban areas. Even though the treatment of the
surface hydrology is identical in urban and rural environ-
ments - a gross oversimplification - the VECTRI model is
able to mimic the drop in EIR which derives merely from
the lower ratio of vector to host in urban areas. In contrast
with the otherWest African locations, urban transmission
is overestimated in this location. In the second panel, it
is seen that while both models are again similar and per-
form well in reproducing the observed CSPR rates, the
VECTRI model does less well in reproducing the distinc-
tion between rural and urban environments. Although the
CSPR is lower in urban environments, it is still far larger
than the observations in VECTRI. An possible implication
is that vector lifetimes for urban areas are too long in the
model.
The seasonal cycle of EIR is shown in Figure 9 which

demonstrates the onset, peak and consequential cessa-
tion of the season for the three model integrations, with
symbols marking the same characteristics in observa-
tions. If transmission is assumed to be significant once
the monthly EIR value exceeds 1, both models predict
the timing of the onset, peak and cessation well for rural
locations, although VECTRI maintains a very small back-
ground transmission rate for the two or three months
prior to the onset. The higher interannual variability in
the LMM2010 in the EIR value of the peak month is appar-
ent. In urban environments the season is shorter, with a
slightly later onset. It is notable that in 1982, both mod-
els predict an earlier than usual onset for the malaria
season, while they disagree on an anomalous outbreak
predicted by VECTRI in 2004. In fact, while health facili-
ties in endemic areas are usually well prepared to deal with
the regular transmission season, such information con-
cerning the potential for an earlier than usual onset could
be very useful in a forecasting system. This is also clear
from Figure 10, which shows the PR annual cycle for rural
location predicted by VECTRI. The box whiskers show
the interannual variability, and it is seen that the greatest

variability is in the onset phase of the malaria season.
After the PR saturates in the peak of the season the inter-
annual variability is limited. Thus predictions of an early
onset could provide some valuable information to health
planners even in endemic regions allowing them to better
prepare for anonymously early seasons.

Regional integrations
The strength of the VECTRI model is its ability to run on
a regional scale at a relatively high horizontal resolution.
The VECTRI integration made for Eastern Africa is com-
pared to the MAP malaria analysis (Figure 11). As this is
a single deterministic integration of the malaria model it
is simply compared to the mean PR of MAP, but future
work will integrate the malaria model in a multi ensemble
stochastic framework. This simple comparison of mean
PR distributions indicates that the model is able to repro-
duce the general patterns observed in the MAP analysis,
with high rates in central and northeastern Uganda and
Western Kenya, but dropping over the higher terrain, with
the central Kenya, central Tanzania and most of Rwanda
largely malaria-free (EIRa < 0.01, PR < 1%), as is the
southwestern-most tip of Uganda.
The VECTRI model also reproduces the malaria zones

in the warmer and more humid coastal regions in Kenya
and Tanzania, but with values of PR along the Kenyan
coast and northern Tanzania in VECTRI (30-70%) appear
to greatly exceed those in the MAP analysis (0-30%).
This is a region in which the survey data incorporated
into the MAP analysis is dense, although Figure Three of
[113] still identifies this coastal region as relatively uncer-
tain. A large part of the discrepancy between VECTRI
and MAP is likely due to the increasing interventions
including widespread distribution of insecticide-treated
nets (ITNs) that have occurred over the past decade that
have greatly decreased parasite ratios and hospital admis-
sions [117,118]. For example, the survey of 30 villages in
Malindi, Kilifi, and Kwale Districts carried out in the late
1990s before ITN distribution started [119] (included in
the MAP analysis) reported a parasite prevalence ranging
from 38 to 83%, with a mean slightly exceeding 60% in
each district, in close agreement with the VECTRI model.
This highlights the importance of the future incorpora-
tions of interventions into VECTRI if it is to be applied to
the seasonal forecasting task.
One key new component of the VECTRI model is the

potential for water temperature of the surface hydrol-
ogy model to impact larvae growth rates over regional
scales, however, it was highlighted that the relationship
was highly uncertain. To quantify this relative sensitivity
to the temperature of water, a second set of high res-
olution (0.1 degree, equivalent to approximately 11 km)
regional simulations were repeated using a domain that
covers both West and East Africa. The first uses the
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Figure 9 Seasonal transmission in Bobo-Dioulasso.Monthly mean EIR rates (EIRm) for (a) LMM2010 (b) rural VECTRI (density 32.2 km−2) and (c)
urban VECTRI (density 1037 km−2). The large letter ‘X’ highlights the month in which the model produces a maximum in EIR. The start (‘S’), peak (‘X’)
and end (‘E’) months for transmission measured in various field campaigns are marked in smaller font. The rural observations (brown) are placed on
the left of the square of a particular month, the irrigated observations (blue) in the middle and the urban observations (black) to the right.

default fixed larvae lifecycle lifespan of 12 days while the
second uses the degree day parametrization with degree
day of 90 days. The VECTRI output is compared to the
MAP data using a joint probability function (Figure 12).
There is agreement on where regions are malaria-free,

and a positive correlation between the MAP data and
the two VECTRI experiments. In both cases the VECTRI
model appears to overestimate the PR in locations where
malaria exists compared to the MAP data, due to the lack
of interventions and treatment in the VECTRI model. For
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Figure 10 Annual cycle of PR in Bobo-Dioulasso. Annual cycle of monthly mean asexual parasite ratio (PRm ; in %) for a rural area near
Bobo-Dioulasso from the 34 year simulation of VECTRI. The boxes mark the 25 and 75% quantiles while the whiskers give the minimum and
maximum values.

example, the default clearance rate of 150 days is likely to
be too long in endemic areas with widespread immunity.
Moving from a constant larvae growth rate to a tempera-
ture sensitive growth rate sharpens the contrast in parasite
loading between the lowlands and highlands, and this is
seen in the disappearance of the intermediate values of PR
in the VECTRI simulation, with PR either less than 0.1
or greater than 0.4 in these regions. This overestimation
will likely improve once immunity and interventions are
included in the model.
One of the new elements of the VECTRI model is the

incorporation of the population density in the calculation
of biting rates and subsequent transmission probabilities.
The decreasing biting rate as population increases has
been previously noted by [31-33], although the relation-
ships vary due to contrasting methodologies of calculating
EIR and the differing locations of the studies. The sen-
sitivity of EIR to population density in the deterministic
East Africa integration (Figure 13) reveals a decreasing
force of infection with increasing population. In Eastern
Africa, the overall infectious biting rates are quite low in
VECTRI, ranging from less than 1 year−1 in city centres
to around 80-100 year−1 in rural areas , which is to be
expected as much of the highlands are malaria marginal or
free. In contrast the VECTRI EIR rates forWest Africa, are
greater, exceeding 150 year−1. The VECTRI West Africa
domain excludes central Africa, for which still higher
transmission rates are expected. The sensitivity of the EIR
to population is comparable to the pan-continental field
study summaries of [31], who reported a mean urban EIR

of 7.1 year−1 increasing to 167 year−1 in rural areas. Like-
wise the analysis of 199 surveys by [33] reproduced in
the figure lie in the range of the VECTRI simulations,
although VECTRI appears to underestimate transmission
at high population densities, relative to this particular
study. Part of the reason for this could be the present
neglect of population migration in VECTRI, which would
tend to reduce the disparities between urban and rural EIR
via its effect on PR. Other key parameters in the model
could also be the cause. For example, as mentioned above,
the malaria clearance rates set to 150 days neglect the
potential acceleration of clearance with strong immunity.
The slow clearance leads to PR values that are either close
to zero in malaria unsuitable zones, or between 0.4 and
0.9 in endemic zones. In addition, the survey data is sub-
ject to high uncertainty due to sampling, highlighted by
the contrast between the results of [31,33] for urban areas.
It is emphasized that these are single deterministic inte-

grations of the VECTRI model using its default parameter
settings, and an important next step will be to docu-
ment how sensitive this relationship is to the parameter
settings in a stochastic integration framework [18]. Never-
theless, Figure 13 includes the sensitivity to the parameter
τzoo, chosen as it is a tuned parameter in the model, with
integrations using values of 35, 70 and 100 km−2 also
applied. As expected, these altered values impact the bit-
ing rate at low population densities, with lower values τzoo
significantly increasing EIR in sparsely populated areas.
Above, 200 people per km−2 the parameter setting has
no impact, and for all settings the model over-sensitivity



Tompkins and ErmertMalaria Journal 2013, 12:65 Page 19 of 24
http://www.malariajournal.com/content/12/1/65

Figure 11 Regional simulation of PR in Eastern Africa.Mean asexual parasite ratio (PR; fraction) from (a) a 10 year-long VECTRI integration for
East Africa and (b) MAP PR analysis. See text for details of model integration and data source.
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Figure 12 Joint probability function of PR. Joint probability density function of PR from MAP and VECTRI (a) with larvae growth rate fixed to 12
day cycle and (b) water temperature dependent growth rate according to [47].

Figure 13 Sensitivity of EIR to population density. VECTRI modelled annual EIR as a function of population density divided into Western and
Eastern zones of Africa, and the field survey data adapted from Figure Two of [33] (see their Figure One for survey locations). The VECTRI integrations
were rerun with a range of values for τzoo , shown by the thin bars, representing values of 35, 50 (default), 70 and 100 km−1 respectively from left to
right.
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relative to [33] remains. This is because the parameter
is designed to account for increasing zoophilicity at very
low population densities, and thus are unable to repre-
sent the impact of human population movements which
impact PR at low and high population densities. Never-
theless, while the model presently neglects differences in
surface hydrology in peri-urban versus rural areas [120],
urban micro meteorology and housing differences [121],
the result indicates that a zero order impact of population
density is the dilution effect, where increasing population
densities reduce the probability of parasite transmission
to the vector [31,122].

Conclusions
A new open source community model (contact the corre-
sponding author) for malaria is presented that specifically
represents dynamical equations for the relevant tempera-
ture sensitive cycles in the transmission ofmalaria, namely
the larvae growth cycle in addition to the sporogonic and
gonotrophic cycles. Each cycle is divided into an array of
bins to resolve the respective processes in order to model
the delay in the malaria season with respect to the driving
cycle of rainfall, while temperature affects development
rates. The VECTRI model implements a framework to
consider the surface hydrology of temporary water bodies
and ponds. It also incorporates the human/vector element
by accounting for population density in the calculation of
transmission probabilities, enabling the VECTRI model
to differentiate between urban, peri-urban and rural envi-
ronments and permitting the future incorporation of
various interventions into the modelling framework in
addition to a treatment of urban-rural and transnational
migration.
The model has been integrated in an idealized equilib-

rium environment to compare the sensitivity of weather
parameters to an existing dynamical model LMM2010, and
the contrasting response to rainfall due to the incorpo-
ration of surface hydrology in VECTRI was noted. Two
further sets of experiments confronted the model with a
range of observational data for infectious biting rates and
parasite ratios in the human population taken from sev-
eral hundred field studies mostly based inWest or Eastern
Africa. The model reproduces mean rural infectious bite
rates for a range of locations throughoutWest Africa quite
well, with a seasonal cycle of PR that appeared reasonable.
The incorporation of the population density in the bit-

ing rate calculation enables VECTRI to differentiate peri-
urban and rural environments and it was demonstrated
that the model was also able to reproduce the much lower
EIR andCSPR ratesmeasured in a peri-urban suburb envi-
ronment of Bobo-Dioulasso less than 20 km distant from
a rural site with far higher transmission. This is inter-
esting as it indicates that simply representing the lower
ratio of vector to human numbers is sufficient to represent

the lower transmission intensities generally found in peri-
urban environments without invoking differences in sur-
face hydrology, access to health facilities, housing quality
or use of ITNs. Regional integrations for Eastern Africa
highlighted this ability of VECTRI to grossly reproduce
EIR rates as a function of population density, in addi-
tion to its reasonable distribution of endemic and malaria
free regions, separated by intermediate altitude, epidemic
regions, although relative to the MAP data, the VEC-
TRI model tends to overestimate PR in endemic zones.
Whether this is due to missing processes, such as immu-
nity or migration, or poor parameter choices remains
unclear and the subject of investigation.
While already representing a useful tool to aid research

into the understanding of malaria transmission, the VEC-
TRI is undergoing further development to incorporate
further aspects important for malaria transmission. These
developments include: a flexible incorporation of various
models for host immunity, a stochastic ensemble frame-
work to account for uncertainty in model parameters and
observations, improved surface hydrology that accounts
for terrain slope, soil type and land use characteristics, a
dynamical host model that includes migration, population
demographics and urbanisation, explicit incorporation of
commonly employed interventions, and lastly multiple
vector types and vector dispersion.
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