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Abstract

Mathematical analyses and modelling have an important role informing malaria eradication strategies. Simple
mathematical approaches can answer many questions, but it is important to investigate their assumptions and to
test whether simple assumptions affect the results. In this note, four examples demonstrate both the effects of
model structures and assumptions and also the benefits of using a diversity of model approaches. These examples
include the time to eradication, the impact of vaccine efficacy and coverage, drug programs and the effects of
duration of infections and delays to treatment, and the influence of seasonality and migration coupling on disease
fadeout. An excessively simple structure can miss key results, but simple mathematical approaches can still achieve
key results for eradication strategy and define areas for investigation by more complex models.

Background

Mathematical models are a helpful tool for testing as-
sumptions and elucidating the quantitative implications
of disease features. Most of the time, results of a math-
ematical modelling study match mental models of expert
opinion, which have been shaped by years of research
and experience. Occasionally, surprising or counterintui-
tive results emerge from models. This can happen with
simple compartmental models, but sometimes the sur-
prising nature of modelling results is due to mistaken in-
tuition based on mental or simplified mathematical
models taken too far. Such findings must be examined
closely, but they enhance understanding when validated.
This note examines four examples from malaria eradica-
tion of how modelling can produce useful results that
may initially strike one as unanticipated, especially if one
relies too heavily on simple modelling concepts or men-
tal pictures.

Time to eradication

The classic epidemiological model concept of the basic
reproductive number Ry, nominally represents the sec-
ondary infections resulting from a single primary infec-
tion in an immunologically naive population. Macdonald
developed the original formulation for malaria [1,2], and
others have extended the theory over time [3]. This

* Correspondence: peckhoff@intven.com
Institute for Disease Modeling, Bellevue, WA, USA

( BioMVed Central

concept has become ubiquitous in epidemiological mod-
elling, and while it can be helpful, it can also cause con-
fusion and even misguided planning if used incorrectly.
The basic theory is that if R, is reduced to a controlled
reproductive number R, the number of secondary infec-
tions resulting from a single primary infection under
control measures, below 1, then the disease will dis-
appear eventually. Each infection is replaced by less than
one infection, and prevalence exponentially decays to
zero. While this simplified equilibrium view is true, plan-
ning eradication efforts requires investigation of the dy-
namics and timelines as described by Macdonald and
others [4,5], not just the equilibrium conditions.

This R, tends to be implemented in simple compart-
mental models or ordinary differential equations, charac-
terized by an exponential distribution for infection
durations. A reduction of R to R, <1 corresponds to ex-
ponential decay of the infected population. The fastest
possible decay of the infected population without active
clearance of infections is attained when R.=0 and has
the inverse of the average duration of infection as its
decay constant. For short duration infections, such as
flu, the infectious reservoir decays rapidly. Malaria, on
the other hand, has average infection durations of up to
six months [6-8]. As such, exponential decay of the in-
fectious reservoir can take years under the best case, and
over ten years if R.=0.9. Figure 1 shows the decay of
the malaria infectious reservoir for four values of R,
with infection duration averaging 180 days. A controlled
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Figure 1 Decay of the infectious reservoir for different values of R, for an average infection duration of 180 days (solid lines) and
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reproductive number of 0.9, 0.7, 0.5, or even 0 exhibits
slow declines in the total number of infected individuals.
In contrast, a disease with R, = 0.9 but an infectious dur-
ation of just 3.5 days rapidly depletes its infectious
reservoir.

When human infections are not actively cleared and
elimination is driven by attaining R. <1 solely through
transmission reductions, this slow decay has serious
programme implications that limit the chances of elim-
ination. For many diseases the durations of interventions
that reduce transmission, such as vaccines, are much
longer than the durations of infection. As such, trans-
mission reductions that reduce R, below 1 can succeed
in driving local eliminations of the pathogen while the
interventions are still efficacious without replacement.
For malaria however, the average infection duration of
six months is only a factor of six away from three-year
lifetimes of insecticide-treated bed nets (ITNs). Indoor
residual spraying (IRS) campaigns need to be repeated
every two to six months depending on the active ingre-
dient [9] in areas with year-round transmission and need
to be repeated yearly in highly seasonal settings. These
frequencies are considerably faster than the timelines to
elimination based on transmission reductions alone. The
current lead vaccine candidate, RTS,S [10], has a dur-
ation of efficacy that is not longer than ITNs. As seen in
Figure 1, the infectious reservoir may still be quite ro-
bust by the time these interventions need to be replaced,
or else the reproductive number will rise back above 1
without having achieved elimination.

The result of this matching of decay constants and
intervention durability drives elimination programmes
down one of two routes. The first is that elimination
campaigns need to reduce transmission for many years
to maintain R, <1, with repeated distributions. The sec-
ond possible route is to actively clear the infectious res-
ervoir with drug-based campaigns in order to reduce the
duration of infections and to achieve rapid drops in
prevalence. Reducing the duration of infections in fact

also drives further decreases in R. [3].This makes mal-
aria more like diseases of shorter infectious duration and
more susceptible to transient transmission-driven reduc-
tions of R, <1.

Coverage and R,

In contrast to many common childhood diseases with Rg
ranging from 1.5 to 12, malaria can exhibit an Ry over
100 in well-suited settings [3]. Traditional epidemio-
logical modelling shows that the vaccine coverage re-
quired to interrupt transmission with a perfect 100%
effective vaccine without decay can be calculated as 1-1/
Ro. The higher the value of Ry, the higher the covered
fraction needs to be. If Ry = 2, then exceeding 50% cover-
age will result in R, <1. If Ry =10, then 90% coverage is
required.

The other side of this relationship is that the higher
the coverage, the disproportionately greater R, that can
be overcome for each increase in coverage. With a per-
fect infection-preventing vaccine, one that provides
complete sterilizing immunity in vaccinated individuals,
high levels of coverage provide dramatic increases in the
maximum R, that can be eliminated. Coverage of 50%
can eliminate an R, of 2, coverage of 80% can eliminate
an Ry of 5, and coverage of 90% can eliminate an Ry of
10. Above 90%, the gains become dramatic as seen in
Figure 2: coverage of 95% will eliminate an R, of 20 and
coverage of 99% will eliminate an R, of 100.

This relationship also has implications for the impact
of vaccine efficacy. If a vaccine instead of preventing all
infections prevents only a fraction Vg of infections, with
Veir <1, then the coverage required to achieve R, <1 be-
comes (1-1/Rg)/Veg At some combinations of R, and
Ve this coverage rises above 100% and elimination be-
comes impossible even at full coverage. So if the vaccine
is leaky and exhibits 80% efficacy at preventing infec-
tions, the relationship with maximum R, shifts dramatic-
ally at the high end of coverage, as seen in Figure 2.
Below 80% coverage, the leaky vaccine can eliminate Ry’s
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close to the Ry’s eliminated by the perfect vaccine. At
90% coverage, however, where the perfect vaccine can
eliminate an R, of 10, the leaky vaccine can only elimin-
ate Ry up to 4. Even perfect coverage only approaches a
maximum R of 5. The situation becomes even more dif-
ficult if vaccine efficacy decays over time, requiring re-
peated boosting vaccination, higher coverage, higher
initial efficacy, or all three.

The result of this relationship is to quantify the value
of achieving higher intervention coverage. It is com-
monly accepted that it becomes increasingly costly to in-
crease coverage at higher baseline coverages. To achieve
greater than 90% coverage might be prohibitively expen-
sive. An important counterpoint to these dramatically
rising costs of achieving coverage is that one actually
buys a much higher eliminate-able Ro. The high baseline
R, exhibited by malaria in some pockets also drives non-
linearly increasing value to higher vaccine efficacies. In-
creasing vaccine efficacies has a challenging set of scien-
tific hurdles and increasing coverage has logistical
hurdles, but understanding what is required for success
can quantify the value of surmounting either or both
sets of hurdles. A similar effect of non-linearly increas-
ing benefits of coverage has been demonstrated in model
studies of drug impacts for elimination [11]. In sum-
mary, although coverage increases become increasingly
expensive as baseline coverage increases, the benefits
correspondingly grow.

Case detection delays and transmission-blocking
drugs

There has recently been significant debate about the
possible role of low-dose primaquine in elimination sce-
narios [11]. The basic argument builds from achievable
coverage and time constants. If the average duration of a
falciparum infection is approximately six months, and
the duration of gametocytaemia following clearance with
schizonticidal anti-malarial drugs approximately two
weeks, then clearing an infection reduces 12 times more

onward transmission than adding low-dose primaquine
to the schizonticidal regimen. Thus, if MSAT campaigns
are reaching 50% of the population with an artemisinin-
combination therapy (ACT) to clear infections, adding
primaquine to the MSAT regimen for all 50% would
only reduce the same amount of transmission as increas-
ing ACT coverage to 54%. Limitations in who could re-
ceive primaquine would further reduce this marginal
impact. As has previously been pointed out [11], prima-
quine only begins to have a discernable impact at high
coverages, similar to that discussed in the previous
section.

However, this calculus depends on the assumption of
exponential distributions of infection durations, which is
the standard implementation in most compartmental
and ordinary differential equation (ODE) based models
[12]. Since an exponential distribution is memoryless, no
matter how long an infection has lasted, its expected
remaining duration remains the average duration of an
infection. So in a compartmental or ODE-based model,
any cleared infection removes six months of residual
transmission. As has been seen [6-8], durations of falcip-
arum infections are not exponentially distributed. In pri-
mary infections in tertiary syphilis patients, very few
infections were cleared before three months, although
the average duration was still in the order of half a year.

With a non-exponential distribution of infection dura-
tions, the calculated relative impact of primaquine can
change. Suppose a three-month delay from infection on-
set to treatment: under the simple exponential assump-
tion, clearing that infection prevents six months of
transmission on average. Under the more realistic distri-
bution, which is not memoryless, the three-month delay
in case finding matters. For infections that have lasted
three months, the expected remaining duration is now
only three months instead of six months, as few infec-
tions have been cleared by 90 days. Figure 3 shows the
difference in the probability of infections lasting less
than 90 days for an exponential distribution and a log-
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Figure 3 The difference in remaining distribution of infection duration following a 90-day case detection lag for an exponential distribution
(blue) and a log-normal distribution (green), each with a mean of 180 days.
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normal distribution, both with the same mean duration.
However, the two-week reduction in transmission due to
primaquine remains two weeks, now just a six-fold
smaller relative impact. The longer the delay in case find-
ing, the higher is the relative impact of reducing onward
transmission of adding primaquine to the schizonticidal
regimen compared to just treating with a schizonticidal
regimen.

For drug-based clearance of the infectious reservoir, the
most important factors remain achieving high coverage
with ACT and reducing the delay in case finding, but the
impacts of realistic delays in case finding and data-driven
distributions of infection duration constitute an import-
ant, although minor, effect. This is an example in which
excessively simple assumptions may get the basic result
correct but miss an important nuance, while somewhat
more detailed mathematical approaches can capture real-
istic effects and improve accuracy. Realistic delays in case
finding and data-driven distributions of infection duration
together reduce the target ACT coverage at which adding
a transmission blocking drug (not necessarily primaquine)
to the ACT regimen begins to show equivalent epidemio-
logical impact to a fixed fraction increase in coverage with
the schizonticidal regimen alone. Compared to the previ-
ous two examples, this impact of infection senescence is a
minor effect. However, this effect can still be elucidated
with mathematical analyses.

Metapopulations and synchrony

While malaria transmission is very much a local
phenomenon driven by mixing of mosquitoes and
humans on short spatial scales, malaria eradication is a
global issue. Areas are connected spatially by human mi-
gration and elimination is not possible without consider-
ing the spatial context. Excellent work has been done to
show the impact of human mobility on malaria [13], and
how the coupling of regions raises the difficulty of
achieving elimination. Human movements superimposed
on a landscape of heterogeneous transmission intensities
and campaign coverages have the potential to reintro-
duce infection to temporarily cleared areas before the
benefits of elimination ‘stickiness’ can be achieved, con-
tributing to malaria resurgence [14,15]. As such, initiat-
ing an elimination campaign is largely a regional, rather
than a local decision [16].

Within this spatial context, however, mathematical mod-
elling can help in planning and understanding how spatial
transmission dynamics affect disease fade-out. Herein lies
an easily overlooked result. In a spatially structured
population with local transmission among subpopula-
tions and migration from one subpopulation to another,
these metapopulation dynamics affect whether there is
disease fade-out over the whole population. If there are
oscillations, perhaps due to seasonality, then research
has shown that synchrony among the metapopulations
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actually increases the chance of fade-out [17]. If the os-
cillations in disease prevalence are synchronous, then
all pockets go through the low point at about the same
time. This increases the probability of all simultan-
eously fading out, which is the definition of elimination.
The result is that more synchronous behaviour actually
helps elimination, even if it coincides with higher peak
case counts. A temporally stable transmission pattern is
actually more difficult to extinguish, even if the peak
season is not as dramatically bad. This phenomenon is il-
lustrated in Figure 4, which implements two coupled
populations with stochastic susceptible-infected-recovered-
susceptible (SIRS) dynamics and synchronous (top) and
asynchronous (bottom) forcing, with homogeneous mixing
within each population. Even though the peak number of
cases is higher in the synchronous case, the coupled system
exhibits stochastic fade-out each low season, as seen in the
mean of 100 runs of the system trending downwards
over time. The asynchronously forced system, which
having less dramatically bad high seasons, never comes
close to extinction.

This benefit of synchrony for achieving elimination
has several implications for malaria eradication. The
campaign benefits from seasonal forcing being similar in
phase over locally connected areas, and the chance of
elimination increases if anti-malarial treatments are used
to shorten the length of infections sufficiently to have
rapid decays of the infectious reservoir during the low
transmission season. In addition, locations with more
stable year-round transmission, even if they do not have
the high spikes in case counts of highly seasonal settings,
will be more difficult to eliminate and may require
higher campaign coverages for a given annual average
Ro. Finally, achieving elimination across connected geo-
graphic regions will be easier if the external forcing on
transmission, namely campaign pressures such as vector
control spraying and anti-malarial drug mass screen-and-
treating, are synchronized across the region of interest.
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Conclusions

In summary, each of these four examples demonstrates
the power of data-driven mathematical analyses for
informing malaria eradication strategy. Mathematical
modelling forces one to make assumptions explicit and
reveals the implications of those assumptions. These ex-
amples also show how model structure can impact re-
sults and conclusions for policy while illustrating the
importance of comparing results from simple and com-
plex models. Dynamics and small populations matter in
an eradication context, so checking equilibrium analyses
with both stochastic and deterministic dynamic models
is essential.

Each of the four examples in this note can be exam-
ined in the relatively simple frameworks here or in more
complex microsimulation models. Simple mathematical
analyses can often arrive at the correct big picture, while
small modifications can capture nuances that improve
accuracy, as in the third example. More complicated
models can then confirm results while investigating
whether the effects of realistic details affect policy con-
clusions or not. Since it would be possible to investigate
irrelevant details in complex models forever, simple
models have an additional important role in focusing at-
tention on areas where the capacities of complex models
could influence the answer. Starting with a simple
framework is thus strategically useful.

It is important to make sure that seemingly straight-
forward conclusions from a simple model structure be
rigorously examined with model structures that can ac-
commodate improved realism [11,18-20]. If the same re-
sult for a given question is obtained from simple and
complex models, then one gains confidence in the re-
sults from the simpler structures. More complex micro-
simulation models can recreate and test results obtained
in simple analyses and facilitate extensions of questions
that would have been otherwise less tractable. Such
questions raised by the examples above could include
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Figure 4 Two locations (red and blue) linked by migration with synchronous (top) and asynchronous (bottom) forcing. The mean number of
infected individuals over 100 runs is plotted in bold for each location, along with representative trajectories. No fade-out occurs in the asynchronous
simulation, and the ensemble is continuously depleted by fade-out in the synchronous case. The peak number of cases is substantially higher in the
synchronous case, however.
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the interrelationships among decay of vaccine efficacy,
heterogeneity in vaccine coverage, delivery strategy and
schedule, transmission context, and coverage targets or the
effects on disease fadeout of spatial variation in seasonality
and local heterogeneity in risk. When used properly in con-
cert, a diversity of mathematical models and approaches
will play an essential role in eradication planning.

Received: 15 September 2014 Accepted: 6 December 2014
Published: 11 December 2014

References

1. Macdonald G: Theory of the eradication of malaria. Bull World Health
Organ 1956, 15:369-387.

2. Macdonald G: The Epidemiology and Control of Malaria. London, New York:
Oxford University Press; 1957.

3. Smith DL, McKenzie FE, Snow RW, Hay SI: Revisiting the basic reproductive
number for malaria and its implications for malaria control. PLoS Biol
2007, 5:e42.

4. Smith D, Hay S: Endemicity response timelines for Plasmodium falciparum
elimination. Malar J 2009, 8:87.

5. Macdonald G, Goeckel GW: The Malaria Parasite Rate and the Interruption
of Transmission. Bull World Health Organ 1964, 31:365-377.

6. Sama W, Dietz K, Smith T: Distribution of survival times of deliberate
Plasmodium falciparum infections in tertiary syphilis patients. Trans R Soc
Trop Med Hyg 2006, 100:311-816.

7. Sama W, Killeen G, Smith T: Estimating the duration of Plasmodium
falciparum infection from trials of indoor residual spraying. Am J Trop
Med Hyg 2004, 70:625-634.

8. Eckhoff P: P. falciparum infection durations and infectiousness are
shaped by antigenic variation and innate and adaptive host immunity in
a mathematical model. PLoS ONE 2012, 7:e44950.

9. Pluess B, Tanser FC, Lengeler C, Sharp BL: Indoor residual spraying for
preventing malaria. Cochrane Database of Systematic Reviews 2010. Issue 4.
Art. No.: CD006657. doi:10.1002/14651858.CD006657.pub?2.

10.  RTS SCTP: A Phase 3 trial of RTS, S/ASO1 malaria vaccine in African
infants. N Engl J Med 2012, 367:2284-2295.

11, Johnston GL, Gething PW, Hay SI, Smith DL, Fidock DA: Modeling within-
host effects of drugs on Plasmodium falciparum transmission and
prospects for malaria elimination. PLoS Comput Biol 2014, 10:21003434.

12. Gillespie DT: Exact stochastic simulation of coupled chemical reactions.

J Phys Chem 1977, 81:2340-2361.

13. Wesolowski A, Eagle N, Tatem AJ, Smith DL, Noor AM, Snow RW, Buckee
CO: Quantifying the impact of human mobility on malaria. Science 2012,
338:267-270.

4. Smith DL, Cohen JM, Chiyaka C, Johnston G, Gething PW, Gosling R, Buckee
CO, Laxminarayan R, Hay SI, Tatem AJ: A sticky situation: the unexpected
stability of malaria elimination. Philos Trans R Soc London B: Biol Sci 2013, 368:

15. Cohen J, Smith D, Cotter C, Ward A, Yamey G, Sabot O, Moonen B: Malaria
resurgence: a systematic review and assessment of its causes. Malar J
2012, 11:122.

16. Moonen B, Barrett S, Tulloch J, Jamison DT: Making the decision. In
Shrinking the Malaria Map: A Prospectus on Malaria Elimination. Edited by
Feachem RGA, Phillips AA, Targett GA, Group ME. San Francisco: The Global
Health Group: UCSF Global Health Sciences; 2009:1-18.

17.  Grenfell BT, Bolker BM, Kleczkowski A: Seasonality and extinction in chaotic
metapopulations. Proc Biol Sci 1995, 259:97-103.

18. Smith T, Killeen GF, Maire N, Ross A, Molineaux L, Tediosi F, Hutton G, Utzinger
J, Dietz K, Tanner M: Mathematical modeling of the impact of malaria
vaccines on the clinical epidemiology and natural history of Plasmodium
falciparum malaria: Overview. Am J Trop Med Hyg 2006, 75:1-10.

Page 6 of 6

19. Wenger E, Eckhoff P: A mathematical model of the impact of present and
future malaria vaccines. Malar J 2013, 12:126.

20.  Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, Hinsley W,
Bousema T, Drakeley CJ, Ferguson NM, Basanez M-G, Ghani AC: Reducing
Plasmodium falciparum malaria transmission in Africa: a model-based
evaluation of intervention strategies. PLoS Med 2010, 7:¢1000324.

doi:10.1186/1475-2875-13-486

Cite this article as: Eckhoff et al: Fun with maths: exploring implications
of mathematical models for malaria eradication. Malaria Journal

2014 13:486.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

e Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Time to eradication
	Coverage and R0
	Case detection delays and transmission-blocking drugs
	Metapopulations and synchrony
	Conclusions
	References

