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Abstract

Background: The practice of consanguineous marriages is widespread in countries with endemic
malaria. In these regions, consanguinity increases the prevalence of a*-thalassemia, which is
protective against malaria. However, it also causes an excessive mortality amongst the offspring due
to an increase in homozygosis of recessive lethal alleles. The aim of this study was to explore the
overall effects of inbreeding on the fitness of a population infested with malaria.

Methods: In a stochastic computer model of population growth, the sizes of inbred and outbred
populations were compared. The model has been previously validated producing results for inbred
populations that have agreed with analytical predictions. Survival likelihoods for different a*-
thalassemia genotypes were obtained from the odds of severe forms of disease from a field study.
Survivals were further estimated for different values of mortality from malaria.

Results: Inbreeding increases the frequency of a*-thalassemia allele and the loss of life due to
homozygosis of recessive lethal alleles; both are proportional to the coefficient of inbreeding and
the frequency of alleles in population. Inbreeding-mediated decrease in mortality from malaria
(produced via enhanced a*-thalassemia frequency) mitigates inbreeding-related increases in fatality
(produced via increased homozygosity of recessive lethals). When the death rate due to malaria is
high, the net effect of inbreeding is a reduction in the overall mortality of the population.

Conclusion: Consanguineous marriages may increase the overall fitness of populations with
endemic malaria.

and intensity of Plasmodium falciparum in the population

Background

Marriages between close biological relatives account for
up to 60% of all marriages in many parts of Asia, Middle
East and Africa [1]. A common finding among consan-
guineous populations is their long history of exposure to
malaria. In fact, the frequency and degree of consanguin-
eous marriages correlates with the geographic distribution

[2]. Today, at+-thalassemia has become the most common
monogenic disorder in humans potentially because it
decreases the probability of death from infection with P.
falciparum [3-5]. An earlier study has shown that the selec-
tion of many recessive alleles can be accelerated by
inbreeding [6] and, recently, this has been demonstrated
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for at-thalassemia in regions where malaria is endemic

[7].

The widespread practice of consanguineous marriages has
conventionally been attributed to its multiple social ben-
efits, e.g., the aggregation of economic wealth, the better
treatment of spouse, and an increased family stability and
security [1,8,9]. However, this theory of social benefits as
being the main motivation for consanguineous marriages
is unconvincing because the same benefits would also
accrue in other populations, should they have chosen to
be consanguineous. Moreover, consanguinity is found in
societies within the same geographic area despite being
racially, linguistically, religiously, and historically very
heterogeneous [1,2]. It seems unlikely that such a cultural
trait, which lowers population fitness, has spread just
because of its socio-economic usefulness amongst these
very diverse populations. In this study, we examined the
potential positive effects of inbreeding (through selection
of a+-thalassemia) versus its well established harmful con-
sequences.

Methods

The model

The genetic benefits (through ar*-thalassemia allele) of
inbreeding against the biological costs (via recessive lethal
alleles) were evaluated in a stochastic model. The model
has been verified by producing the results predicted by
analytical methods (detailed in [7]) and uses the odds of
survival of different a+-thalassemia genotypes from a field
study [3]. In brief, the consanguineous and non-consan-
guineous populations were allowed to grow; their size
(relative fitness) and a*-thalassemia allele frequency were
compared. An initially large population (n = 1000) com-
prising of a.a/aia. genotypes was randomly seeded with a*-
thalassemia using -a,/o.c genotype, so that the initial allele
frequency was 0.03. The model was restricted to exclu-
sively "large" populations as the effect of inbreeding on
the selection of recessive and codominant alleles is signif-
icantly less in smaller populations [6,7]. Additionally,
when malaria emerged as an epidemic infection 4,000 to
10,000 years ago, the Agrarian revolution had already
caused a population explosion, an epidemiological pre-
requisite for the appearance of malaria as an epidemic
infection [10,11]. In this model, the population grows
with the mating of a randomly chosen pair of individuals
with a predetermined mean number of offspring; child's
genotype is assigned using Mendelian rules of inheritance.
After the mean coefficient of inbreeding (F) was allocated
to a population, the couple was made consanguineous
with a probability that equals the mean coefficient of
relatedness, R (R = 2F). Biological relatedness of the cou-
ple was tested for each of the two alleles and, if found to
be absent, another unmarried individual from the popu-
lation was chosen and tested; this was continued until a
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biologically related individual was found -when a new
marriage was arranged [7]. As only the surviving offspring
become members of the next generation, there is no over-
lap between generations. In human consanguineous pop-
ulations, highest reported F is 0.045 but, in the simulated
experiment, the range was extended up to 0.09 because
historically higher rates of inbreeding are possible
[12,13].

Mortality from P. falciparum is highest in the first five years
of life; it decreases with subsequent infections and, during
a single epidemic, malaria can kill up to 50% of a suscep-
tible population. Mortality rates of malaria differ between
various geographic areas; in the same area they may vary
over time [5]. In this simulation, mortality rate was per
generation, which was made constant throughout time.
The survival probabilities of a*-thalassemia genotypes
were derived from the field study data obtained in a pop-
ulation from an area with endemic malaria. The odds
ratio (OR) for the development of severe forms of the dis-
ease that precede death from malaria, is lower in hetero-
zygotes (with a single alpha gene deletion, -o/ao
genotype, OR = 0.66) and is further decreased in homozy-
gotes (with two alpha gene deletions, -o/-a genotype, OR
=0.40) than in those without any a-thalassemia mutation
(ao/aa. genotype, OR = 1.0) [3]. The survival of each of
the three genotypes depends on the mortality from
malaria and is shown in Figure 1. Survival (S) for the three
genotypes is derived from the odds of death from malaria
(r), which are extrapolated to equal the odds of the severe
form of the disease, and mortality rate from malaria (p) so
that

S=1-p'

f_ P
P (1-p+rp)
In order to account for other causes of death, this result is
scaled down to 0.7, i.e., 0.3 of all deaths are arbitrarily
ascribed to non-malarial causes. The offspring of consan-
guineous families have a higher number of deaths (in the
years prior to their reproduction) than offspring of non-
consanguineous families; these deaths are due to
homozygosity of harmful recessive alleles (inbreeding
depression). An individual has on average of 1.4 recessive
lethal alleles and the probability of excessive deaths due to
inbreeding equals 0.7 F [13]. To account for this mortality
in our model, all surviving children were exposed to an
additional risk of 0.7F of dying before being allowed to
reproduce; in the model, this consistently depressed pop-
ulation size in every generation by 0.7F.
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The relative excess of a*-thalassemia allele frequency (red bars) and population size (blue bars) per generation
in an inbred population when compared with a non-inbred population. The survivals (S) of the three genotypes used
in this simulation are shown in the lower part of graph at the intersections with vertical lines which point to the results in the
upper part of graph. The ratio of differential survival of genotypes = (S_,., = S.0/aa)/(S-c/oe = Sacrac)-
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In each set of simulations, the starting allele frequency is
0.03, n = 1000. The mean number of children per couple
varied between 5 and 14 in order to allow a positive pop-
ulation growth and prevent extinction of population
when malaria mortality is high. However, all comparisons
of inbred and outbred populations were performed using
the same set of parameters except the one which was being
tested. All results are the means of 300 simulation runs.

Calculation of relative fitness and allele frequency

The relative fitness (w) and allele frequency change (Ap)
in Figure 2 were determined from

w=1-(1-F)(2pgsh+q’s ) - Fas

h+q(1-h
(1_F)pqs[p +a(1-h) | pas
w w

Ap=

h and s being 0.666 and 0.4, respectively, and correspond-
ing to the ratio of differential survival of 1.39 and n— in
the stochastic model [7,14].

Results and Discussion
When the mortality from malaria is low, consanguinity
depresses the population with a*-thalassemia by causing
an excessive number of deaths via recessive lethal alleles
and by negligibly retarding the selection of a+-thalassemia
allele (Figure 1a). The latter occurs when the difference
between survival of -a,/-o. homozygote and -a/a.o hetero-
zygote genotypes is smaller than the difference between
survival of -a/ao heterozygote and ao/ao homozygote
(ratio of differential survival of genotypes < 1.0). This is
also confirmed analytically, so, when F > 0 and

S S

-a/-a " P-a/oo <S-q/0c0c - Saq/oc(x'

the sum of all the three products of genotype frequencies
[4%(1 - F) + gF, 2pq(1 - F) and p2(1 - F) + pF)] and their sur-
vival is always smaller than when F = 0 [14]; this also
applies to all allele frequencies (p and g = 1 - p). With an
increase in mortality due to malaria, the ratio of the differ-
ential survival increases to 1.0 (Figure 1, lower graph) at
which point, inbreeding has neither a negative nor a pos-
itive effect on the speed of selection of a*-thalassemia- the
inbreeding depression being solely due to the effect of
lethal recessive alleles. When the ratio of differential sur-
vival of genotypes becomes > 1.0, inbreeding starts to
accelerate the selection of a+-thalassemia. This causes an
excess of a*-thalassemia frequency in the inbred popula-
tion, which increases its relative fitness in comparison to
an outbred population (Figure 1b and 1c). This gain in
relative fitness partially or fully compensates inbreeding
depression (halting the expansion of inbreeding depres-
sion) due to recessive lethal alleles as clearly illustrated by
Figurelb.
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As the death rate due to malaria increases, the relative
excess of the frequency of a+-thalassemia in inbred popu-
lations increases further, and inbreeding depression may
switch to inbreeding elevation, which takes place in pop-
ulations with an F of 0.01 to 0.06 (Figure 1c), conspicu-
ously within the range of F in consanguineous human
populations (0 <F <0.045) reported over the last half cen-
tury [13,14].

When the initial frequency of a--thalassemia is low
(0.03), the onset of inbreeding elevation is delayed until
the selection increases the frequency of a+-thalassemia
(Figure 1b and 1c). The relative gain in fitness is greatest
when the frequency of a+-thalassemia is around 0.5 (Fig-
ure 2); then the inbreeding elevation is observed immedi-
ately, from the first generation, and continuously
thereafter in all populations with 0 <F < 0.05 (Figure 3).
In native societies of the Arabian Peninsula, for example,
o+-thalassemia allele frequency is around 0.3 and their
mean F varies between 0.02 and 0.03, which suggests that
overall consanguineous marriages have been genetically
beneficial (before the control of malaria during the recent
times) [15,16].

The reasons for the practice of consanguineous marriages
to begin and persist in a population (with a low frequency
of at-thalassemia) after it experiences an inbreeding
depression (Figure 1, upper graph) remain unclear. It is
also uncertain why consanguinity should increase in pop-
ulations at the time of increased mortality, e.g., cholera
and famine epidemics [17,18]. Figure 4 shows how the
benefits of cousin-cousin marriages are obvious but not
its hazards. When there are a very few a+-thalassemia alle-
les in any population, a carrier family may opt for a
cousin-cousin marriage because of a relative shortage of
suitable marriage partners - caused by the high mortality
due to malaria. In such consanguineous unions, both
spouses are likely to be or-thalassemia heterozygotes.
Conversely, if another member of the same family (who is
likely to be a carrier), marries an outsider- the spouse is
likely to be a non-carrier. On an average, 20% more chil-
dren from consanguineous unions would survive malaria
(Figure 4) - a survival advantage sufficiently big to be
noticed by members of a population under stress. Hence,
more consanguineous marriages would be encouraged to
take place among ot*-thalassemia-carrier families. A sup-
port for unequal benefit to families from consanguineous
marriages (illustrated in Fig. 4) is the observation that
children of consanguineous parents are themselves more
likely to enter into consanguineous unions than the chil-
dren of non-consanguineous parents [19]. However, even
in non-carrier families, consanguinity may not be discour-
aged despite its genetic dangers (like childhood deaths
and increased congenital malformations). This is because
for any specific morbidity to be noticed, the difference
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Figure 2

Effect of a*- thalassemia frequency on the relative fitness of inbreeding populations in the stochastic (upper
panel) and analytic model (lower panel). In the upper panel, initial negative excess of relative fitness (blue bars) in the
inbred population is the effect of recessive lethal alleles. An excess of a*-thalassemia allele (red bars) is seen after 5—6 genera-
tions — after allele frequency (black S-shape line) is increased to around 0.2. Relative excess of a*-thalassemia is maximal when
its frequency is in the middle of the range (~0.35-0.7). Results are for n = 1000 and the ratio of differential survival = 1.39. In
the lower panel, the calculated relative fitness includes only the effect of a*-thalassemia. The fitness ratio is the size of inbred
population divided with that of outbred population. The results are for n — o and the ratio of differential survival = 1.39.
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Figure 3

0.04

0.05 0.06 0.07 0.08 0.09

F

Inbred/outbred fitness ratios (FR) of populations with a high a*-thalassemia frequency over ten generations. At
the start of simulation, the frequency of a*-thalassemia is 0.5. The black lines are trends for the first, fifth and tenth generation.
FR > | is seen in every generation for all 0 <F < 0.05. This graph demonstrates robustness of inbreeding elevation found at all
levels of inbreeding which were observed in human field studies, i.e., 0 <F < 0.045 [13,14].

from the reference (non-consanguineous, in this case) has
to be sufficiently higher than 5%, but is generally much
below this threshold [1,13,20,21]. In addition, the excess
deaths due to recessive lethal alleles may be masked by a
high overall death rate. This mechanism for initiation of
consanguinity and its persistence suggests that consan-
guinity can originate de novo rather than spread by accul-
turation. Further, the genetic benefits from inbreeding
may strengthen the development of endogamy and tribal-
ism. This to some extent corroborates findings from India
which has over 50,000 brotherhoods and the frequency of
a*-thalassemia is higher in tribal than in city populations
[4,22]. As the frequency of a*-thalassemia increases over
time, more families would experience the net genetic ben-
efits of consanguinity. This could explain the social per-
missiveness towards consanguinity in regions where it is
beneficial, e.g., in the societies from regions with endemic
malaria [23].

The results presented agree with the historic conditions,
which existed in the early human settlements, after the
Agrarian revolution. At that time, populations increased
rapidly due to better availability of food through farming
and animal herding. However, the crowding, poor
hygiene and proximity to animals contributed to the
potential emergence of malaria and other epidemic infec-
tions [10,11]. Thus, when human survival became
adversely affected by malaria, intra-family unions resulted
in better survival of the offspring. A recent report of inbred
families having more children than less inbred families in
populations that never experienced malaria [24], further
supports a role of human inbreeding as a facilitator of
adaptation. In our globalized world with greater than ever
mixing of populations, diseases like tuberculosis and
AIDS are still the leading causes of death; protection
against both is provided by codominant and recessive
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* Casualty
‘of malaria

OR of malaria 0.4 0.66 0.66 1.0
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from malaria

Excess deaths 0.044

from inbreeding

Figure 4

0.66 0.66 1.0

0.2

Initiation of consanguineous marriages. In family with a*-thalassemia, shortage of marriageable candidates leads to
cousin-cousin and "cousin"-outsider unions. With the likely distribution of o*-thalassemia alleles shown above, on an average,
20% more children in this consanguineous union will survive malaria than from a non-consanguineous union. Here, the excess

deaths due to inbreeding = 0.7F, i.e., 4.4% [13].

alleles [25,26] whose selection could be accelerated by
inbreeding.

Conclusion

Human inbreeding enhances the speed of fixation of
recessive and codominant alleles. Consequently, the elim-
ination of recessive lethal alleles is increased by an exces-
sive mortality of children in consanguineous populations.
However, an enhanced speed of selection of the codomi-
nant a*-thalassemia allele (in such inbred populations)
increases the relative fitness against malaria. When mor-
tality from malaria is high, this increase in fitness could
offset the loss of life resulting from inbreeding. Therefore,
consanguinity augments the fitness of a population with
endemic malaria through its effect on a*-thalassemia
allele.
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