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Abstract

Background: Malaria is the direct cause of approximately one million deaths worldwide each year,
though it is both preventable and curable. Increasing the understanding of the transmission
dynamics of falciparum and vivax malaria and their relationship could suggest improvements for
malaria control efforts. Here the weekly number of malaria cases due to Plasmodium falciparum
(1994-2006) and Plasmodium vivax (1999-2006) in Pert at different spatial scales in conjunction
with associated demographic, geographic and climatological data are analysed.

Methods: Malaria periodicity patterns were analysed through wavelet spectral analysis, studied
patterns of persistence as a function of community size and assessed spatial heterogeneity via the
Lorenz curve and the summary Gini index.

Results: Wavelet time series analyses identified annual cycles in the incidence of both malaria
species as the dominant pattern. However, significant spatial heterogeneity was observed across
jungle, mountain and coastal regions with slightly higher levels of spatial heterogeneity for P. vivax
than P. falciparum. While the incidence of P. falciparum has been declining in recent years across
geographic regions, P. vivax incidence has remained relatively steady in jungle and mountain regions
with a slight decline in coastal regions. Factors that may be contributing to this decline are
discussed. The time series of both malaria species were significantly synchronized in coastal (p =
0.9, P <0.0001) and jungle regions (p = 0.76, P < 0.0001) but not in mountain regions. Community
size was significantly associated with malaria persistence due to both species in jungle regions, but
not in coastal and mountain regions.

Conclusion: Overall, findings highlight the importance of highly refined spatial and temporal data
on malaria incidence together with demographic and geographic information in improving the
understanding of malaria persistence patterns associated with multiple malaria species in human
populations, impact of interventions, detection of heterogeneity and generation of hypotheses.

Page 1 of 19

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19558695
http://www.malariajournal.com/content/8/1/142
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Malaria Journal 2009, 8:142

Background

Malaria is the most significant vector borne disease of
humans; it is the direct cause of approximately one mil-
lion deaths each year, though it is both preventable and
curable. Most malaria in humans is due to Plasmodium fal-
ciparum and Plasmodium vivax [1], which are generally
transmitted by the same species of Anopheles outside
Africa.

Nowadays, developing strategies for malaria elimination
is considered a global health priority [2]. Although reach-
ing such ambitious goal may not be possible, the available
tools will allow reducing the global burden of malaria if
they are properly deployed. Thus, a key element for
malaria elimination programmes is a good understanding
of the malaria transmission dynamics in time and space.
This is especially important in areas with low and interme-
diate seasonal transmission, such as those found in South
America. There, previous elimination efforts, with the use
of chloroquine and DDT, succeeded in vast areas during
the 1970's. While most of the attention has been devoted
to P. falciparum in Africa, an important element in malaria
elimination programs outside Africa is P. vivax, a major
challenge given that it requires an extended treatment in
order to eradicate hypnozoites. Unfortunately, there are
still a limited number of studies considering the joint
dynamic of these two parasites, P. falciparum and P. vivax,
in time and space. In this investigation, the temporal and
spatial trends of these parasites in Pert are explored as an
example of the complex dynamic of these parasites in
areas with seasonal malaria outside Africa. In South Amer-
ica, severe malaria caused by P. falciparum formerly
occurred only at Ecuadorian, Colombian, and Brazilian
borders while P. vivax was the most important malaria
parasite in the region in terms of its morbidity [3]. How-
ever, the incidence of falciparum malaria increased dra-
matically in Perd in the early 1990s, with a seven-fold
increase of malaria incidence between 1990 and 1996 [4].
Nowadays, Pert is ranked second after Brazil in terms of
the number of malaria cases in South America. Specifi-
cally, the Northern Peruvian Amazon (Loreto department
comprising about one fourth of the total surface area of
Perd), with a population clustered in town and villages
throughout the Amazon tributary system, has been the
epicenter of the malaria epidemic since the early 1990s
[3]. While cases of falciparum malaria occur mostly in the
jungle areas of Perd, P. vivax malaria is endemic in the
coastal and mountain as well as jungle areas [5]. Moreo-
ver, P. vivax has replaced P. falciparum as the dominant
species since 2000 [3].

In this paper, the weekly time series of malaria notifica-
tions from the Ministry of Health of Pert are used to ana-
lyse the spatial and temporal trends of P. falciparum
(1994-2006) and P. vivax (1999-2006) malaria across
jungle, mountain and coastal areas. The goal here is to
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increase the understanding on periodicity patterns, per-
sistence and spatial heterogeneity associated with P. falci-
parum and P. vivax malaria at different spatial scales
including national, geographic and province levels. Find-
ings could shed light to public health authorities on how
to effectively distribute resources for malaria control pro-
grammes at the national level.

Methods

Perd is located on the Pacific coast of South America
between the latitudes: -3 degrees S to -18 degrees S. It
shares borders with Bolivia, Brazil, Chile, Colombia, and
Ecuador (Figure 1). Pert total population is about 29 mil-
lion, heterogeneously distributed over a surface area of
1,285,220 km? with distinctive landscapes including a
western coastal plain, the eastern jungle of the Amazon
and the Andes Mountains separating coastal and jungle
areas (Figure 1). The country is divided into 25 adminis-
trative regions composed of 195 provinces [6].

Perd's weather varies from tropical by the Amazon to tem-
perate and glacial in the Andes mountain range, while it is
dry by its coast. Specifically, the jungle (rainforest) has
two main seasons namely a May-October dry season, with
high temperatures and warm nights (with the exception of
June, when temperatures can drop significantly at night)
and a November-April rainy season, with temperatures
reaching 36°C and heavy rainfall that causes rivers to rise
considerably leading to flooding on the smaller tributaries
[3]. The mountain range region also has a May-October
dry season, but characterized by clear, sunny days and
cold nights, and a November-April rainy season, with
heaviest rainfall during the months of January and Febru-
ary and mild daytime temperature that drops at night. The
coastal region has an April-November winter season, with
cloudy and cool days, and a hot and dry summer Decem-
ber-March, except for the northern coast with higher tem-
peratures and rainfall in the summer.

Data sources

The Directorate General of Epidemiology of Pert's Health
Ministry is in charge of epidemiological surveillance,
which is carried out from a network of over 6,000 geo-
graphically distributed notifying units. Perd's epidemio-
logical passive surveillance system includes 95% of the
health centers, and has collected weekly malaria data
since 1994. All symptomatic individuals presenting fever,
chills, headache and general malaise that had been in a
malaria endemic area are routinely tested for the malaria
parasites by microscopy on site or at the closest accredited
laboratory. Notification of malaria cases is mandatory and
is carried out weekly. Malaria patients receive free treat-
ment in accordance with national guidelines. Plasmodium
falciparum symptomatic cases have been reported since
1994 while mandatory notification of P. vivax did not
start until 1999. For each of the provinces the weekly
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Map of Peru with political boundaries of 195 provinces and 25 regions. The geography of Peru covers a range of fea-
tures, from a western coastal plain (yellow), the Andes Mountains in the center (brown), and the eastern jungle of the Amazon
(green). The total population of Per is about 29 million heterogeneously distributed in an area of 1,285,220 km2.
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number of cases at reported symptom onset of P. falci-
parum during the period 1994-2006 and P. vivax cases
during the period 1999-2006 were obtained from the
Health Ministry's Directorate General of Epidemiology. A
total of 163 provinces reported malaria cases sometime
during the period of interest (1994-2006), of which only
78 reported P. falciparum cases. Reports of mixed infec-
tions were rare.

Population, geographic, and climate data

The population size of the Peruvian provinces during the
years 1994-2006 was obtained from the National Insti-
tute of Statistics and Informatics of Pert [7]. The popula-
tion density of each province (people/km?2) is estimated
by dividing the province population size by the surface
area (km2) [8]. These averages ranged from a mean of 22.3
people/km? in the mountain range, to 12.38 in the jungle
areas, and 172 in the coastal areas (Additional file 1).
Each province is classified according to its geographic
location as coastal (n = 77), mountain (n = 89), or jungle
area (n = 29, see Figure 1).

Weekly climate time series were obtained from meteoro-
logical stations located in 28 provinces distributed across
Pert during the period 1994-2006. Out of the 28 meteor-
ological stations, 13 were located in coastal areas, eight in
mountain areas, and seven in jungle areas. Climate data
included mean, minimum, and maximum temperature
(Fahrenheit) and precipitation (inches) [9].

Time series analysis of P. falciparum and P. vivax malaria
across geographic regions

Periodic patterns were analysed through wavelet spectral
analysis [10-12], disease persistence and critical commu-
nity size [13-16], and spatial heterogeneity by applying
two methods derived from econometrics and previously
applied in infectious disease epidemiology, the Lorenz
curve and the summary Gini index [see [17-20]].

Wavelet spectral analysis

Wavelet time series analysis [10-12] has received increas-
ing attention in the last few years as a means of disentan-
gling the non-stationary spatial and temporal dynamics of
infectious disease and ecological systems [21-24]. In the
temporal evolution of the number of disease cases, the
presence of an annual cycle would indicate a single epi-
demic period per year in the time series while, for exam-
ple, a biennial pattern characterizes an epidemic period
every two years. Wavelet time series analyses are primarily
powerful in detecting changes in epidemic periodicity
(e.g., switch from biennial to annual cycles). Here the
wavelet power spectrum (using the Morlet wavelet as in
previous studies [21-24]) was used to investigate varia-
tions in the dominant periodic cycles across the time
series using freely available software [25]. The weekly time
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series were log transformed to manage the variability in
the amplitude of the time series.

Critical community size

Several studies have addressed the problem of disease per-
sistence as a function of community size in island and
non-island populations (e.g. [13-16,26]). It is therefore of
interest to identify a "critical" community size, across geo-
graphic regions, above which malaria typically persists.
Determining the effective or critical community size for a
particular "invasion" is a complex matter because of vari-
ations in herd immunity, immigration rates, the possibil-
ity of disease reintroductions in the population, and the
nature of human interactions. The persistence of malaria
was assessed from the proportion of weeks with no
malaria reports for each of the provinces in the weekly
time series as has been used in previous studies [26].

The possibility of a critical population density (people per
km?2) was also evaluated, but no-significant association
was found between population density and the propor-
tion of weeks with no malaria reports (P. falciparum or P.
vivax).

Spatial heterogeneity

Spatial variations in attack rates have not been extensively
studied. Here, the Lorenz curve and associated summary
Gini index at the province level, an approach derived from
econometrics, are used to quantify spatial heterogeneity
of malaria [17-20]. The Lorenz curve is a graphical repre-
sentation of the cumulative distribution function of a
probability distribution; in this case it represents the pro-
portion of malaria cases associated with the bottom y% of
the population comprised by the provinces previously
ranked by case incidence rates. Equal attack rates (no het-
erogeneity) result in a first diagonal Lorenz curve. On the
other hand, perfectly unbalanced distributions give rise to
a vertical Lorenz line (maximum heterogeneity). Most
empirical attack rate distributions lie somewhere in-
between.

The Gini index summarizes the statistics of the Lorenz
curve (ranging between 0 and 1). It is calculated as the
area between the Lorenz curve and the diagonal represent-
ing no heterogeneity. A large Gini index indicates high
heterogeneous attack rates, that is, a situation where the
highest attack rates are concentrated in a small proportion
of the population. A Gini index of zero indicates that
attack rates are directly proportional to population size
(no heterogeneity).

Results

Temporal patterns of P. falciparum and P. vivax at the
national level

Overall the mean annual incidence rates of P. falciparum
in Perd during 1994-2006 ranged from 57.3 cases per
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100,000 individuals in 2006 to 686 cases per 100,000
individuals in 1998 while the mean annual incidence of
P. vivax during 1999-2006 ranged from 201 cases per
100,000 in 2000 to 461 cases per 100,000 in 1999. Figure
2 shows the overall temporal trend of the malaria burden
due to P. falciparum (1994-2006) and P. vivax (1999-
2006). For both species, wavelet time series analysis indi-
cated that annual cycles have the highest power. Results
also suggest a triennial pattern for the P. falciparum series
during 1998-2003 and a strong biennial cycle for P. vivax
during 2002-2004 (Figure 2). Inspection of the aggre-
gated data at the national level (1999-2006) indicates
that both malaria species follow a significantly synchro-
nized dynamical process. In fact, the weekly counts aggre-
gated at the national level of P. vivax and P. falciparum are
significantly correlated (Spearman p = 0.62, P < 0.001).
However, despite the high levels of apparent temporal
synchronization in the time series of both malaria species,
there are important differences in the magnitude and peri-
odicity in the incidence of P. falciparum and P. vivax
malaria when the time series are stratified into geographic
regions and provinces as shown below.

Temporal trends of P. falciparum and P. vivax malaria by
geographic region

The weekly number of malaria cases due to P. falciparum
and P. vivax malaria in jungle, mountain and coastal
regions are displayed in Figure 3. The annual rates of P.
falciparum have significantly declined across all geo-
graphic regions between 1999 (702.6, 10 and 268.5 cases
per 100,000 people in jungle, mountain and coastal
regions, respectively) and 2006 (213, 0.2 and 0.9 cases per
100,000 people in jungle, mountain and coastal regions,
respectively). On the other hand, the annual rates of P.
vivax have remained relatively steady in jungle and moun-
tain regions during the last few years of the study period
(1283.3 and 96.6 cases per 100,000 people in 2006,
respectively) while declining in coastal regions. Overall, P.
vivax has been the dominant malaria species affecting
mountain regions since year 2000, with only brief and
small peaks of P. falciparum occurrin g in the last few years
(Figure 3).

Periodicity and correlation of malaria time series across
geographic regions

Between 1994 and 1998, the incidence of P. falciparum in
the jungle region was moderately correlated with that in
the mountain range region (p = 0.52, P < 0.0001) but not
in the coastal region (p = 0.07, P = 0.28). Similarly, the
incidence of P. falciparum in mountain range areas was
only weakly positively correlated with coastal areas (p =
0.24, P < 0.0001) during the same period. During 1999-
2006, when P. falciparum incidence started to decline, the
incidence of P. falciparum in the mountain regions was
correlated with that in the coastal areas (p = 0.62, P <
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0.0001). In contrast, in the same period the dynamics of
P. falciparum were weakly negatively correlated in jungle
and coastal regions (p = -0.13, P = 0.006) and uncorre-
lated between jungle and mountain regions (p = 0.008 P
=0.87).

Wavelet time series analysis (Figure 4) indicated that in
jungle regions, annual and biennial cycles dominate the
beginning of the time series of P. falciparum infections
until about year 2000 when a stronger triennial pattern
seems to emerge. In coastal regions, an annual pattern
shows the highest power almost continuously. In addi-
tion, a strong triennial pattern shows high power during
1998-2002. In mountain regions, the annual pattern
shows high power during 1995-1997 and again during
1999-2002. In addition, there is a strong triennial pattern
between 1997 and 2002. As shown below the interpreta-
tion of these periodic patterns needs to be carried out with
caution due to spatial aggregation effects.

For P. vivax (1999-2006), annual cycles show a strong
pattern across geographic regions (Figure 5). Mountain
regions also show a strong biennial pattern between 2002
and 2005. Moreover, the weekly incidence in the jungle
was not correlated with that in the mountain range (p =
0.04, P = 0.38) and was weakly negatively correlated with
that in the coastal region (p =-0.13, P = 0.008). Similarly,
P. vivax incidence in the mountain range region was
weakly negatively correlated with that in the coast (p = -
0.13, P = 0.01) during 1999-2006. These findings are in
agreement with the phase lag in the seasonality of P. vivax
observed in the mountain regions with respect to jungle
and coastal regions, as shown in Figure 3.

With regards to synchronization by geographic region, the
time series of P. falciparum and P. vivax during 1999-2006
were significantly and positively correlated with each
other in coastal (p = 0.9, P < 0.0001) and jungle regions
(p=0.76,P <0.0001) and slightly correlated in mountain
regions (p = 0.2, P < 0.0001) where sharp and brief spikes
of P. falciparum corresponded to troughs in P. vivax (Fig-
ure 3).

Temporal P. falciparum and P. vivax malaria trends and

climate at the spatially refined province level

In order to better understand the factors associated with
such seasonality differentials, analyses at a smaller spatial
scale were carried out to look for the Provinces in each of
the geographic regions where most of the malaria burden
in Pert is located. The association between malaria inci-
dence and climatological variables (mean temperature,
minimum temperature, maximum temperature and pre-
cipitation) was also analysed for those 28 provinces for
which weekly climatological data were available.
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Weekly number of
malaria cases in Peru

Figure 2
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The weekly time series of the number of Plasmodium falciparum (1994-2006) and P. vivax (1999-2006) in Peru
during the period 1994-2006 (in logarithmic scale) and the corresponding wavelet power spectrum for both
malaria time series. For both time series, annual cycles have the highest power. There is also a strong triennial pattern for

the P. falciparum series during 1998-2003 and a strong biennial cycle for P. vivax during 2002—-2004.
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The weekly number of cases due to Plasmodium falci-
parum (solid line) and P. vivax (dotted line) in Perua
stratified by geographic region (jungle, mountain
range, coast) during the period 1994-2006 (notifica-
tion of P. vivax did not start until 1999). A decline in the
number of malaria cases due to P. falciparum in the mountain
and coastal areas can be observed in the last few years while
P. vivax has only been declining in coastal regions in the last
few years.

Jungle regions

The weekly malaria counts, due to P. falciparum and P.
vivax, for the provinces with the highest malaria burden in
jungle regions are shown in (Additional file 2 and Addi-
tional file 3), respectively. A map highlighting these prov-
inces is given in Additional file 4. It can be seen that while
P. falciparum is most concentrated in the northern part of
the jungle, P. vivax extends from the northern to the
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southern jungle region. P. falciparum and P. vivax inci-
dences are significantly correlated in Alto Amazonas
(Spearman p = 0.65, P < 0.0001), Datem del Maranén (p
= 0.71, P < 0.0001), Mariscal de Caceres (p = 0.80, P <
0.0001) and San Martin (p = 0.70, P <0.0001). By inspec-
tion of the wavelet power spectrum at the province level,
the periodicity of P. falciparum cases was found to be dom-
inated by a triennial pattern to which the provinces of Alto
Amazonas, Jaen, Mariscal de Caceres, and San Ignacio
contribute the most (Additional file 5). Moreover, a
switch from an annual to a biennial pattern in 1997 and
then to a triennial pattern about 2000 can be observed in
the province of Datem del Maranén. Similar changes in
periodicity can be observed in the provinces of Loreto,
Jaen, Utcubamba and San Ignacio. By contrast, the
dynamics of P. vivax in jungle regions are dominated by
annual cycles particularly by the province of Alto Amazo-
nas.

In jungle regions, P. falciparum incidence was weakly cor-
related with precipitation in the province of Atalaya
(Spearman p = 0.18, P < 0.0001). Similarly, the correla-
tion between P. vivax and precipitation was weak in the
province of Alto Amazonas (Spearman p = 0.15, P <
0.0013). Mean temperature in the province of San Martin
was weakly correlated with P. falciparum (0.19, P <
0.0001) and P. vivax (0.34, P < 0.0001). Additional files 6
and 7 show the weekly time series of climatological varia-
bles and P. falciparum and P. vivax incidence in the Prov-
ince of Alto Amazonas located in the jungle region.

Coastal regions

Plasmodium vivax is the dominant species in coastal areas
(Additional file 4) and is highly localized in the northern
coastal region. Plasmodium falciparum and P. vivax are
highly synchronized in Ayabaca (Spearman p = 0.88, P <
0.0001), Sechura (p =0.68, P < 0.0001), Paita (p =0.86, P
< 0.0001), Zarumilla (p = 0.72, P < 0.0001), Contralmi-
rante Villar (p = 0.75, P < 0.0001), and Huancabamba (p
= 0.76, P < 0.0001). The dynamics of P. falciparum in
coastal regions are dominated by concurrent annual and
triennial cycles, primarily observed in the provinces of
Ayabaca, Sechura, Paita, and Zarumilla. Simpler dynamics
are observed for P. vivax with dominant annual cycles
across provinces except for a few provinces with concur-
rent annual and biennial cycles including Zarumilla, Lam-
bayeque, and Ferrenafe.

Incidence in coastal areas was more closely correlated
with precipitation than in jungle areas. P. falciparum inci-
dence was significantly correlated with precipitation in
the provinces of Chiclayo (Spearman p = 0.54, P <
0.0001), Ayabaca (p = 0.42, P < 0.0001) and Contralmi-
rante Villar (p = 0.34, P < 0.0001). P. vivax incidence was
correlated with precipitation with similar correlation coef-
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Figure 4

The wavelet power spectrum of the weekly series of P. falciparum (1994-2006) stratified by geographic region.
In jungle regions, annual and biennial cycles dominate the beginning of the time series until about 2000 when a triennial pattern
starts to show the highest power. An annual pattern in coastal regions shows almost continuously the highest power. In addi-
tion, a strong triennial pattern shows high power during 1998-2002. In mountain regions, the annual pattern shows high power
during 1995—-1997 and then again during 1999-2002. In addition, between 1997 and 2002 a strong triennial pattern shows high

power.
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Figure 5
The wavelet power spectrum of the time series of P. vivax (1999-2006) stratified by geographic region. Annual
cycles show a strong pattern for the three geographic regions. In addition, there is a strong biennial pattern between 2002 and

2005 in mountain regions.
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ficients (p = 0.32-0.48 (P < 0.0001). Furthermore, both
species time series were slightly correlated with tempera-
ture variables. For example, the association with mini-
mum temperature was highest in the province of Ascope
with a correlation coefficient of 0.35 (P < 0.0001).

Mountain regions

The malaria burden in mountain regions has become
dominated by P. vivax as can be seen in Figure 3. Interest-
ingly, while P. falciparum is most concentrated in the
northern mountain region, P. vivax is more concentrated
in the central mountain region (Additional file 4). More-
over, P. vivax incidence in mountain regions has reached
endemic levels with high degree of seasonality. Wavelet
time series analysis on the weekly malaria time series of
the 10 provinces with the highest malaria burden in
mountain regions confirms the strong annual pattern
observed in the analysis using aggregated time series of
mountain regions, but biennial cycles, which were identi-
fied in the wavelet power spectrum using the aggregated
data for mountain regions, are strong only in a few of the
provinces during 2002-2004 (Additional file 8). This
highlights one of the effects associated with data aggrega-
tion. This issue is described in detail in the Discussion.

There is a scarcity of climate data in the mountain regions.
Moreover, the incidence of P. falciparum in mountain
regions has been in decline in the last few years. By con-
trast, the dominating P. vivax malaria species in mountain
regions was correlated with precipitation in the provinces
of Cangallo (Spearman p = 0.25, P < 0.0001), Acomayo (p
=0.47,P <0.0001) and Lauricocha (p = 0.46, P <0.0001).
P. vivax malaria incidence was moderately correlated with
temperature variables (p = 0.29-0.47, P < 0.0001).

Phase lag in periodic patterns

The role played by climatological variables in contribut-
ing to the phase lag in the pattern of P. vivax malaria in
mountain regions with respect to P. vivax malaria in jun-
gle and coastal regions was assessed (Figure 3). Figure 6
shows the time series of P. vivax cases in three Peruvian
provinces that are representative of jungle, coast and
mountain regions along with their corresponding wavelet
power spectrum that highlights the strong annual pattern
in all three provinces.

The dynamics of P. vivax in the province of La Convencion
(mountain) follows a reciprocal seasonality pattern to
that observed in Alto Amazonas (jungle) and (Ayabaca)
coastal regions. A comparison of temperature and precip-
itation temporal trends and malaria cases due to P. vivax
is shown in Figure 7. A lagged cross-correlation analysis
indicates that climatological variables are associated with
the out-phase pattern observed in mountain regions. The
clearest picture was obtained from the province of Aya-
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baca (coast) where the climate seasonal cycle is clearly
ahead of that in the mountain regions (Figure 8). Addi-
tional file 9 shows the highest correlation between precip-
itation and minimum temperature in the province of
Acomayo (mountain) followed by Ayabaca (coast) and
Alto Amazonas (jungle).

Critical community size

While reports of P. falciparum were found in all the weeks
during 1999-2006 in jungle regions, only 86.5% and
39.4% of the weekly time series showed P. falciparum
reports in coastal and mountain regions, respectively. P.
vivax is more persistent than P. falciparum reported in
100% of the weeks with malaria reports during 1999-
2006 in jungle, mountain and coastal regions.

Similar persistence patterns for both P. falciparum and P.
vivax malaria in jungle regions were found at the province
level as measured by negative correlations between popu-
lation size and the proportions of weeks in the time series
with no reported malaria during the period 1999-2006
(for P. falciparum: Spearman p = -0.57, P = 0.002; for P.
vivax: Spearman p = -0.48, P = 0.01, Figure 9). In addition,
findings also indicated a weak but significant pattern of
persistence as a function of population size for P. vivax in
mountain regions (Spearman p = -0.34, P = 0.003), but
this pattern was not significant for P. falciparum. There was
no significant correlation in coastal regions between pop-
ulation size and the proportion of weeks with no reported
malaria due to P. falciparum or P. vivax.

Spatial heterogeneity

During the period 1994-1998, the spatial heterogeneity
of malaria at the province level (as measured by the Gini
index) due to P. falciparum was highest in coastal regions
(0.88) followed by mountain (0.73) and jungle regions
(0.57). During 1999-2006, spatial heterogeneity for P.
falciparum was similar across geographic regions with the
corresponding Gini indices being 0.68, 0.73, and 0.69 in
jungle, coastal and mountain areas, respectively. That is,
the Gini index "converged" from 0.88/0.73/0.57 to 0.73/
0.69/0.68 in coastal, mountain and jungle areas. Spatial
heterogeneity for P. vivax in jungle regions was similar to
that of P. falciparum during the same period (0.6) and
slightly higher in mountain and coastal areas (0.89 and
0.87, respectively). Figure 10 shows the corresponding
Lorenz curves by geographic region for the common
period 1999-2006.

Discussion

Although a few studies have explored spatio-temporal
patterns of malaria in regions such as Thailand [27], and
global maps of malaria risk have started to be generated
[28] to the best of knowledge this is the first study to
assess the spatial and temporal dynamics of malaria using
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Figure 6

The weekly numbers of malaria cases due to P. vivax in three Peruvian provinces that are representative of
jungle, coast and mountain regions along with their corresponding wavelet power spectrum. The annual pattern
shows the highest power across geographic regions. While the time series of P. vivax in the jungle and coastal provinces follow
a similar seasonality pattern, there is a phase lag in the seasonality P. vivax incidence in the province of La Convencion, which is
representative of mountain regions.
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Figure 7

Comparison of temperature and precipitation temporal trends and malaria cases due to P. vivax in three Peru-
vian provinces that are representative of jungle (red dotted line), coast (blue dashed line) and mountain (black
solid line) regions. The phase lag in the seasonality pattern in the Province of La Convencion, which is representative of
mountain regions, with respect to the seasonality of the coastal and jungle provinces can be explained by climatological varia-
bles.
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Lagged cross-correlation plots of the climatological
variables and P. vivax malaria incidence in the prov-
ince of Ayabaca (coast) and the province of La Con-
vencion (mountain) using the climatological data
from the neighboring province of Acomayo as a
proxy for the climate data for the province of La Pro-
vincia. The dashed line indicates the temporal lag associated
to the maximum correlation coefficient.

high-resolution spatio-temporal data of P. falciparum and
P. vivax malaria infections in South America.

Despite the declining trend of P. falciparum, both P. falci-
parum and P. vivax weekly counts were found to be
strongly correlated in jungle and coastal areas and weakly
correlated in mountain regions where P. falciparum infec-
tions have become rare in the last few years. However, in
those regions sharp and brief spikes of P. falciparum infec-
tions concur with troughs of P. vivax malaria. In contrast,
the time series of P. falciparum and P. vivax malaria at the
national level were only moderately correlated. This high-
lights the importance of high-resolution spatio-temporal
data to detect heterogeneity in malaria incidence and peri-
odicity patterns.

http://www.malariajournal.com/content/8/1/142

While analysis of temporal malaria trends of P. vivax
malaria at the aggregated national level are quite consist-
ent with the corresponding analyses by geographic region
or province level (strong annual pattern followed by bien-
nial cycles), results indicate more irregular periodicity pat-
terns for P. falciparum where biennial and triennial cycles
have emerged in the more recent years of the study period,
probably due to its significant decline, particularly in
mountain and coastal regions. This highlights the role of
spatial scales in the periodicity of malaria incidence [29].
Two types of problems derived from using aggregated data
were identified. First, dominant periodic patterns could
differ across spatial units (e.g., provinces). For example, in
this study, wavelet time series analysis identified a single
dominant triennial pattern due to P. falciparum in the jun-
gle provinces of Alto Amazonas, Jaen, Mariscal de Caceres,
and San Ignacio, but this is not the characteristic pattern
observed from the jungle-region-level wavelet time series
analysis. Thus, apparent changes could be detected in
periodicity over time in jungle regions while ignoring true
local differences in periodicity at the province level (Fig-
ure 4). These differences in periodicity at different spatial
scales could be associated with variations in the environ-
mental landscape such as floods in the highly heterogene-
ous network of rivers and lakes [3,30,31]. Furthermore,
the aggregated data for P. vivax in coastal regions indicate
a continuously strong annual pattern, whereas wavelet
spectral analysis at the province level reveals a few prov-
inces with concurrent annual and biennial cycles includ-
ing Zarumilla, Lambayeque, and Ferrefiafe. Another
complication in understanding of the spatio-temporal
processes involved in malaria transmission arises when
incidence in two or more localities are phase lagged with
respect to each other. In Perd, the time series of malaria
due to P. vivax in mountain regions were found to be sig-
nificantly phase lagged (about 180 degrees) with respect
to coast and jungle areas. Importantly, this pattern could
not have been deciphered from the time series aggregated
at the national level alone. In regards to phase lags in the
incidence of malaria, a similar pattern has been reported
for the archipelago of Vanuatu where P. falciparum malaria
was found to be predominant in the long wet season and
P. vivax malaria was predominant in the dry season
[32,33]. Although the best climatological data at the prov-
ince level available for Perti were used, these results need
to be interpreted with caution. Climatological data from
meteorological stations may not be necessarily represent-
ative for the larger provinces and the station coverage in
the mountain regions was limited. The use of interpolated
data with better meteorological station coverage at
smaller spatial scales (e.g., district level) is recommended.

Understanding variability in the temporal dynamic of
malaria epidemics has public health implications. For
example, a number of studies have explored the roles of
exogenous (e.g., climate) and endogenous (e.g., intrinsic
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The proportion of weeks with no malaria reports as a function of population size of the Peruvian provinces
classified in coastal, mountain, and jungle areas. The proportion of weeks with no malaria reports was negatively corre-
lated with population size in jungle areas for both P. falciparum (Spearman p = -0.59, P = 0.001) and P. vivax (Spearman p = -
0.59, P = 0.001) and in mountain regions for P. vivax only (Spearman p = -0.34, P = 0.003) during 1999-2006.

to the transmission dynamics) factors in this variability
using monthly data from East Africa [34-36]. The current
understanding is that rainfall and temperature play an
important role in cycles of low periodicity, while endog-
enous dynamics of malaria may explain cycles of longer
periodicity [23]. The findings of this study indicate mod-
erate levels of correlation between malaria incidence and
precipitation in coastal areas; however, this correlation
was weak in jungle areas. The lower correlation in jungle
areas could be explained by significant heterogeneity in

the dynamics of breeding sites due to the presence of
flooding of the surroundings of the highly heterogeneous
river networks and lakes [3,30,31] and population mobil-
ity patterns. For example, anecdotal evidence by one of
the team members (CM) suggests that outbreaks of
malaria infections in northern jungle regions of Pert are
associated with movement patterns of timber merchants
who enter the jungle at low river levels and exit when river
levels rise. In fact, a study has found that the daily Nanay
river level in Iquitos, Pert to explain 28% of the variability
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Cumulative proportion of P. vivax cases

http://www.malariajournal.com/content/8/1/142

Jungle
1
ll
’
I
0.5 i
'
’
0 _— s 3 - -
0 0.5 1
Coast
1
|
y
I
0.5 '
I
I
!
’l
0 _ il
0 0.5 1
Mountain
1 1
1
]
]
]
0.5 Is
:
]
1
% 05 1

Cumulative proportion of the population

The Lorenz curves of the distribution of the total number of malaria case notifications for P. falciparum and P.
vivax as a function of population size at the province level during 1999-2006. The red solid line (first diagonal) rep-
resents a constant distribution of malaria case notifications (no heterogeneity). During 1999-2006, spatial heterogeneity for P.
falciparum was similar across geographic regions with the corresponding Gini indices being 0.68, 0.73, and 0.69 in jungle, coastal
and mountain areas, respectively. Spatial heterogeneity for P. vivax in jungle regions was similar to that of P. falciparum during
the same period (0.6) and slightly higher in mountain and coastal areas (0.89 and 0.87, respectively).
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in total malaria risk [30,3]. Similarly, other activities asso-
ciated with malaria infection risk are the gold mining
industry in the Southern jungle areas confined mainly to
the beaches of the Inambari and Madre de Dios rivers, and
rice production in the northern coastal areas of Perti due
to inappropriate cleaning of the irrigation systems [37].

The decline in the incidence of P. falciparum is encourag-
ing, but it needs to be interpreted with caution as it could
be associated with multiple factors including methodo-
logical (e.g., associated with microscopy-based identifica-
tion of malaria species [38-40]), treatment interventions
[41,42] and cross-protective immunity [43]. Traditional
microscopy-based detection techniques have significant
limitations by failing to detect the presence of low-level
and mixed infections [38,39,44]. In fact, literature reviews
have concluded that in general fewer mixed species P. fal-
ciparum/P. vivax infections are observed than would be
expected from the prevalence of constituent malaria spe-
cies, which is in agreement with this study [45,46,43].
Longitudinal field studies [47-50] and clinical studies
(e.g., [50]) suggest that in mixed-species malaria infec-
tions in humans one of the constituent Plasmodium spe-
cies tends to dominate. Nevertheless, the consistent and
gradual decline of the incidence of P. falciparum across
geographic regions puts more weight into the role of their
biological differences leading to different treatment inter-
ventions and cross-protective immunity.

Unlike P. falciparum infections, a significant fraction of P.
vivax cases relapse following treatment due to the diffi-
culty in completely eradicating dormant liver stages of the
parasite (the hypnozoites), those stages are targeted by
Primaquine. Hence, P. vivax incidence could be affected
by relapses of previously infected individuals [51]. While
the P. vivax treatment guidelines have not had significant
changes for almost 50 years (with first-line therapies,
Chloroquine+Primaquine, unchanged for 50 years) [52],
there have been changes in malaria treatment policies for
P. falciparum driven primarily by the appearance of drug
resistance [53], such changes may have affected the
observed incidence of P. falciparum. Indeed, the spike of
falciparum malaria in the 90's has been explained in part
by the use of ineffective drugs.

In addition, the role of cross-protective immunity
whereby prior exposure to P. vivax infection ameliorates
the course of a subsequent P. falciparum infection could
also contribute to the substantial reduction of P. falci-
parum infections [31,54]. Hence, further work that
includes longitudinal studies that make use of accurate
detection methods [55,56] across geographic regions of
Perd are needed to quantify the impact of pharmaceutical
interventions and cross-protection immunity against

http://www.malariajournal.com/content/8/1/142

malaria. Further insights into the dynamics and impact of
interventions can be gained through the use of mathemat-
ical models [57].

Important differences in the dynamic of P. falciparum and
P. vivax were found in Perti beyond the fact that P. vivax is
more widespread in Perd than P. falciparum. Of note, com-
munity size was also found to be significantly associated
with malaria persistence due to both malaria species in
jungle regions but not in coast and mountain regions,
which is in agreement with dengue persistence in Pert
[58]. Hence, this highlights the need to evaluate the
impact of malaria control programmes in jungle areas and
the potential benefits from the use of bed nets as a means
of reducing the "effective community size" in areas where
malaria persistence is highest. It is worth pointing out that
the authors have made use of the best, most complete data
available, and while of course it is not ideal, it is reassur-
ing that the patterns of persistence as a function of com-
munity size are quite clear in jungle areas which are the
most remote and difficult to access in Perti.

Findings indicated significant spatial heterogeneity due to
P. falciparum (1999-2006) with similar levels across geo-
graphic regions (Gini ~ 0.7), which could suggest impor-
tant differences in levels of control of P. falciparum in all
geographic regions. Similarly, spatial heterogeneity asso-
ciated to P. vivax was higher in coastal (0.87) and moun-
tain (0.89) regions while heterogeneity in jungle regions
(0.6) was similar to that of P. falciparum infections, indi-
cating less variability in the activity of P. vivax in jungle
than in coastal or mountain regions. For comparison, spa-
tial heterogeneity of dengue fever (1994-2006) in Pert
has been reported to be higher in coastal areas (Gini ~
0.59), followed by mountain (0.36) and jungle areas
(0.27) [58].

Conclusion

Overall, this study highlights the importance of highly
refined spatial and temporal data of malaria incidence
together with demographic and geographic information
in improving the understanding of malaria persistence
due to multiple malaria species in human populations,
the impact of pharmaceutical interventions, detection of
heterogeneity, and generation of hypotheses.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

GC conceived the study, analysed the data and wrote the
first draft of the manuscript. CM, AE and FEM participated
in the interpretation of results and in the writing and edit-
ing of the manuscript.

Page 16 of 19

(page number not for citation purposes)



Malaria Journal 2009, 8:142

Additional material

http://www.malariajournal.com/content/8/1/142

Additional file 1

Distribution of population density across coastal, mountain and jun-
gle areas in Perii. Boxplot of the distribution of population density in
coastal, mountain, and jungle areas. The population density ranged from
a median of 22.3 people/km? in the mountain range, 12.38 in the jungle
areas, and 172 in the coastal areas.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2875-8-142-S1.jpeg]

Additional file 2

The weekly malaria counts for the provinces with the highest P. falci-
parum malaria burden in jungle regions. The weekly malaria counts
for the provinces with the highest P. vivax malaria burden in jungle
regions. P. falciparum and P. vivax incidence is significantly correlated
in Alto Amazonas (Spearman rtho = 0.65, P < 0.0001), Datem del
Maraiion (rho = 0.71, P < 0.0001), Mariscal de Caceres (tho = 0.80, P
< 0.0001) and San Martin (tho = 0.70, P < 0.0001). Case notification
of P. vivax did not start until 1999.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2875-8-142-S2 jpeg|

Additional file 3

The weekly malaria counts for the provinces with the highest P. vivax
malaria burden in jungle regions. The weekly malaria counts for the
provinces with the highest P. vivax malaria burden in jungle regions. P.
falciparum and P. vivax incidence is significantly correlated in Alto
Amazonas (Spearman tho = 0.65, P < 0.0001), Datem del Marafion
(tho=0.71, P <0.0001), Mariscal de Caceres (rho = 0.80, P < 0.0001)
and San Martin (tho = 0.70, P < 0.0001). Case notification of P. vivax
did not start until 1999.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2875-8-142-S3.jpeg]

Additional file 4

Distribution of P. falciparum and P. vivax across geographic regions
in Perii. The ten provinces with the highest malaria burden due to P. fal-
ciparum and P. vivax are highlighted with red squares (jungle), triangles
(mountain) and circles (coast). Black dots indicate the centroides (lati-
tude, longitude coordinates) of each of the 195 provinces comprising jun-
gle, coastal and mountain regions.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2875-8-142-S4 jpeg|

Additional file 5

Wavelet power spectrum of P. falciparum time series in jungle
regions. The wavelet power spectrum of the time series of P. falciparum
(1994-2006) for the provinces with the highest P. falciparum malaria
burden in jungle regions.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2875-8-142-S5.jpeg]|

Additional file 6

Weekly time series of P. falciparum malaria and climatological var-
iables in the province of Alto Amazonas. The weekly time series of four
climatological variables: mean temperature (°F), minimum temperature
(°F), maximum temperature ( °F), precipitation (in) and P. falciparum
malaria incidence in the province of Alto Amazonas, which is located in
the jungle, during 1994-2006.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1475-
2875-8-142-S6.jpeg]

Additional file 7

Weekly time series of P. vivax malaria and climatological variables in
the province of Alto Amazonas. The weekly time series of four climato-
logical variables: mean temperature (°F), minimum temperature (°F),
maximum temperature (°F), precipitation (in) and P. vivax malaria
incidence in the province of Alto Amazonas, which is located in the jungle,
during 1999-2006.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
2875-8-142-S7 jpeg]

Additional file 8

Wavelet power spectrum of P. falciparum time series in mountain
regions. The wavelet power spectrum of the time series of P. vivax (1999-
20006) for the provinces with the highest P. vivax malaria burden in
mountain regions. Whereas annual cycles are the dominant pattern,
strong biennial cycles can only be observed in a few of the provinces in
mountain regions.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
2875-8-142-S8.jpeg]

Additional file 9

Correlation between precipitation and minimum temperature in three
provinces representative of jungle, coastal and mountain regions. The
correlation between precipitation and minimum temperature in three
provinces that representative of jungle (Alto Amazonas), coastal (Aya-
baca) and mountain (Acomayo) regions in Perii. The blue dashed line is
a spline curve to highlight a significant correlation trend.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
2875-8-142-59.jpeg]
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