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Abstract

Background: Identification of high-risk malaria foci can help enhance surveillance or control activities in regions
where they are most needed. Associations between malaria risk and land-use/land-cover are well-recognized, but
these environmental characteristics are closely interrelated with the land's topography (e.g., hills, valleys, elevation),
which also influences malaria risk strongly. Parsing the individual contributions of land-cover/land-use variables to
malaria risk requires examining these associations in the context of their topographic landscape. This study examined
whether environmental factors like land-cover, land-use, and urban density improved malaria risk prediction based
solely on the topographically-determined context, as measured by the topographic wetness index.

Methods: The topographic wetness index, an estimate of predicted water accumulation in a defined area, was
generated from a digital terrain model of the landscape surrounding households in two neighbouring western
Kenyan highland communities. Variables determined to best encompass the variance in this topographic wetness
surface were calculated at a household level. Land-cover/land-use information was extracted from a high-resolution
satellite image using an object-based classification method. Topographic and land-cover variables were used
individually and in combination to predict household-level malaria in the communities through an iterative split-
sample model fitting and testing procedure. Models with only topographic variables were compared to those with
additional predictive factors related to land-cover/land-use to investigate whether these environmental factors
improved prediction of malaria based on the shape of the land alone.

Results: Variables related to topographic wetness proved most useful in predicting the households of individuals
contracting malaria in this region of rugged terrain. Other variables related to human modification of the
environment also demonstrated clear associations with household malaria. However, these land-cover/land-use
variables failed to produce unambiguous improvements in statistical predictive models controlling for important
topographic factors, with none improving prediction of household-level malaria more than 75% of the time.

Conclusions: Topographic wetness values in this region of highly varied terrain more accurately predicted houses
at greater risk of malaria than did consideration of land-cover/land-use characteristics. As such, those planning
control or local elimination strategies in similar highland regions may use topographic and geographic
characteristics to effectively identify high-receptivity regions that may require enhanced vigilance.

Introduction
Local elimination of malaria requires identification of resi-

results of heterogeneous Plasmodium transmission caused
by unevenly distributed factors related to mosquito vec-

dual transmission foci [1], while optimal targeting of inter-
ventions by control programs necessitates identifying areas
of particularly high risk [2]. In either case, such foci are the
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tors, humans, and their interaction [3]. Anopheles vectors
for malaria have species-specific environmental require-
ments for reproduction and development [4], as do the
Plasmodium parasites that they transmit [5]. For these rea-
sons, the environmental context in which people live is an
important determinant of their degree of exposure to
potentially infectious malaria vectors [2].
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Patterns of disease are generally determined by vector
and parasite ecologies [6] and, at finer spatial scales,
topographic variations [7]. In addition, however, human
interaction with local environmental contexts will mod-
ulate this baseline risk. Environmental modifications
such as deforestation [8] or swamp reclamation [9] may
alter malaria transmission dynamics through enhanced
breeding site availability or increased temperature. In
this way, agricultural changes may be responsible for
increasing malaria transmission [10], whether by directly
increasing standing water or indirectly via deforestation,
both of which can increase ambient temperature and
produce sunlit pools suitable for larval development. At
the same time, such environmental change may produce
increased community wealth, a more regular food sup-
ply, and thus decreased risk of disease [11]. Because of
these complexities, considerable confounding may cloud
the relationships between malaria risk and environmen-
tal factors, making it challenging to assess which of
these determinants are most useful for predicting areas
of high risk.

It was previously demonstrated that local incidence in
an epidemic-prone region of the western Kenyan high-
lands manifested strong associations with topographi-
cally-determined wetness indices [7]. The topographic
wetness index (TWI), an estimate of predicted water
accumulation, succinctly describes the shape of the land
at any given point on the landscape as the ratio of the
uphill area from which water would flow into that point
to the local slope at that point. In regions with varied
terrain, these measures of topography, which can be
easily calculated from freely-available digital elevation
models and open-source geographic information system
software packages, are highly interrelated with land-
cover/land-use. For example, swampland in valley bot-
toms will have a high TWI, while high-altitude fields on
hills used for tea cultivation typically will have a lower
TWI. TWI may also at least partially determine the suit-
ability of land for agriculture and pasture, both land-use
types that have been found to be associated with larval
habitat in the region [12-14], and thus by extension,
malaria risk.

Because of these dependencies, the associations
demonstrated between land-cover/land-use, TWI, and
malaria risk may be distorted by unmeasured confound-
ing. The utility of these measures for prediction of
small-scale areas at high risk of malaria transmission,
therefore, requires assessing these factors jointly. If wet-
ness indices encompass the same information as land-
cover/land-use, they may provide an easier alternative to
costly and time-intensive satellite image classification for
prediction of high-risk areas. The present investigation
was designed to compare the accuracy of predictions
based upon topography-related variables, including TW1I
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and elevation, versus those based upon satellite-derived
information on land-cover and land-use. In addition, it
aimed to determine whether consideration of those vari-
ables related to land-cover, land-use, and urban density
improved malaria risk prediction based solely on the
topographic context in which they occurred.

Methods

Demographic, geographic, and epidemiologic data

As detailed in previous investigations of malaria at this
study site [7,15], demographic and residence data were
collected during 2003 and 2004 from all people living in
the villages of Kapsisiywa and Kipsamoite in the western
Kenyan highlands (> 1900 m), where the predominant
vector found during entomologic evaluations was
An. gambiae s.. (97.5%) [15]. Latitude and longitude for
each house was determined with a differential Trimble
Pathfinder GPS (Trimble Navigation Ltd., Sunnyvale,
CA) (resolution + 1 m). Total person-years of occupancy
for each household were calculated from residency infor-
mation obtained through quarterly demographic cen-
suses, providing a case-rate denominator for each
household. Malaria events per household were calculated
by summing the number of individuals from each house-
hold presenting with slide-confirmed Plasmodium falci-
parum malaria at the sole government clinics in
Kipsamoite and Kapsisiywa. Individuals presenting with
malaria more than once during the same year were
counted as multiple cases if these events occurred >30
days apart. Ethical approval for the study was obtained
from the Kenya Medical Research Institute National Ethi-
cal Review Committee and the Institutional Review
Boards for Human Studies at the University of Michigan.

Topographic variable data and sources

The topographic wetness index (TWI), an estimate of pre-
dicted water accumulation in a defined area, was calcu-
lated as the ratio of the area upslope (i.e., from where
water would flow into that point) from any given point on
the landscape to the local slope at that point, thus corre-
sponding to the amount of water that should enter a given
spatial unit divided by the rate at which the water should
flow out of that unit. The TWT is an appealing measure
because it represents a simple, biologically meaningful
description of how topographic characteristics, like slope
and surface curvature, may affect malaria risk via suitabil-
ity for mosquito breeding. A 10 m resolution Digital
Terrain Model (DTM) derived from topographic maps
was obtained courtesy of BIOTA Subproject E02 [16]. In
this DTM, elevation across the landscape was recorded in
10 m-by-10 m grid-cells. The DTM was georeferenced
and verified for internal consistency against both a 90 m
resolution digital elevation model created from Shuttle
Radar Topography Mission (SRTM) satellite imagery and
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GPS ground readings obtained using a Trimble Pathfinder
unit with 1 m accuracy. This georeferenced DTM was
then inputted into the open-source GIS program SAGA
[17] to produce the TWT layer for the 604,595 1-m? grid
cells of the study area.

Characterizing the topography surrounding each
house required finding discrete TWI variables that
could encompass the continuous landscape of valleys,
peaks, and slopes. Many candidate predictive variables
derived from the TWTI layer, including the local value;
the minimum, maximum, average, and sum of wetnesses
within various radii of houses; and the distance from
houses to the nearest location in each of several wetness
categories, were entered into a factor analysis. The indi-
vidual wetness variables most correlated with each of
the identified principal components were then identified.

In addition, three elevation variables also were calcu-
lated. First, the elevation of each household in the com-
munity was obtained from the 10-m resolution DTM.
The same DTM then was used to calculate stream chan-
nels throughout the study site in SAGA using Tarbo-
ton’s Deterministic Infinity flow algorithm [18]. The
elevation of the stream channel closest to each house
was computed as a second elevation variable. Finally,
the vertical elevation of each household above the near-
est stream channel was calculated as a relative measure
of elevation above valley bottoms.

Land-cover/land-use variables

An IKONOS satellite image of the study area (4-by-4 m
color pixel, 1 m pan-sharpened), taken on 26 November,
2002 (the date closest to the study period of any image
available for purchase), was orthorectified with PCI Geo-
matica 9 (PCI Geomatics, Inc., Richmond Hills, Ontario,
Canada), using Toutin’s model for satellite orbital mod-
eling. Eleven ground control points (GCPs) of easily
identified landscape characteristics (e.g. road intersec-
tions) were obtained with a differential GPS to orthorec-
tify the image. The orthorectification process indicated a
root-mean-square error of 1.34 m, comprised of 0.75 m
in the x-direction and 1.12 m in the y-direction.

The object-based classification program eCognition Pro-
fessional 4 (Definiens AG, Miinchen, Germany) was
applied to the orthorectified image to derive variables
related to human interaction with and modification of the
local environment. The computer classification was
checked by hand and misclassified features were corrected
whenever errors were identified. Clouds and shadow cov-
ered 7% of the image, preventing complete classification of
the land-cover surrounding certain houses. When >80% of
land within 250 m of a house could not be classified, that
house was excluded from analysis.

Proximity of households to environmental characteris-
tics, such as natural and reclaimed swamp or roads, was

Page 3 of 10

calculated in ArcGIS 9.1 (ESRI, Redlands CA). The
amount of farmland (tea and non-tea separately), pas-
ture, and tree cover around houses was quantified. Mea-
sures were calculated separately for areas <50 m
surrounding each house (representing the immediate
environment in which people resided), and <500 m
(more general context). Additionally, the number of
neighbouring households within 50 m was calculated as
a measure of local density. To encompass potential
community-level differences not captured by the envir-
onmental and topographic variables, the community in
which each household was located was considered as a
binary variable.

Data analysis

A negative binomial distribution was found to fit the
number of cases per household better than a Poisson
distribution, so negative binomial regression was used to
examine associations between topographic and land-
cover/land-use factors and household malaria. T-tests
were used to compare houses with and without malaria
according to the same variables. Additionally, this inves-
tigation aimed to identify factors that were not merely
associated with household malaria, but also proved use-
ful in predicting it (statistical association does not neces-
sarily indicate useful predictive value [19] since
relationships may be confounded by unmeasured vari-
ables). Thus, to ensure that those variables included in
models demonstrated predictive ability whether or not
they were statistically significant [20,21], the relationship
between environmental variables and household malaria
was assessed via a repeated split-sample procedure [22]
whereby houses were randomly assigned to either train-
ing or validation datasets. Households located >1 km
from the swampy lowlands bordering each community
were excluded from analysis to limit the potentially con-
founding effects of socioeconomic variation, tempera-
ture, and other factors that might influence malaria risk
on broader spatial scales.

For each of 300 repetitions, a random selection pro-
cess was used to group ~75% of houses into the training
set and the other 25% into the validation set. Only the
houses in the training set were used to derive models to
predict the number of malaria cases occurring in each
household throughout 2003 and 2004. To do so, combi-
nations of candidate predictive variables were entered
into a series of regression models with a negative bino-
mial outcome of the number of cases occurring in each
household. The log of the number of person-years each
house was occupied by residents during the study period
was entered as an offset variable in every model to
account for the fact that households with more residents
(i.e. contributed person-time) were expected generally to
have more malaria cases. Regression models accounting
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for potential spatial autocorrelation using spherical and
exponential structures were also fit for comparison.

In each repetition, the accuracy of all of the fitted
models was then tested in the validation set. Each fit
model was used to predict the number of expected
cases in each house. Predicted case-counts in the valida-
tion set were normalized in each repetition so that their
sum was equal to the sum of all actual case-counts. The
normalized predicted case-counts were compared
against the actual case-counts by calculating mean-
squared-error (MSE). The MSEs from a given repetition
were compared to see which combination of variables
produced the smallest MSE for that repetition. A ran-
dom variable was used as a comparative benchmark: for
each house, this variable’s value was drawn at random
from a normal distribution, and it was entered into each
model to assess model performance with an explanatory
factor known to be unrelated to either malaria or
topography.

To examine whether human-modified environmental
factors would improve prediction of models with only
topographic variables, each of the land-cover/land-use
factors was added in turn as an additional explanatory
variable to the best-predicting topographic model from
each repetition. In The best-predicting topographic
model was selected for that repetition from among
those models using only a combination of TWI or eleva-
tion variables. The models with and without the land-
cover/land-use variables were compared to see whether
any of these factors increased the predictive ability of
the topographic variables alone. The percentage of the
300 repetitions in which the addition of each environ-
mental variable improved model prediction was tallied.

Results
Overall, 1,378 houses were occupied by about 7,700 resi-
dents during the two-year period. In Kipsamoite, 77 dif-
ferent individuals presented at the clinic with malaria
from April through December 2003, while 120 were
diagnosed during 2004. In Kapsisiywa, 246 different
individuals had clinically-diagnosed malaria from April
to December 2003, with 270 during 2004. A total of 144
of 710 (20.3%) Kipsamoite houses ever occupied during
the study had at least one case, while 281 of 668 (42.1%)
Kapsisiywa houses had at least one case. Of these
houses, 1,318 (95.6%) were successfully georeferenced.
Four principal components associated with household
malaria were extracted from the many candidate wet-
ness variables. To limit the number of TWI variables
used and maximize their interpretability, representative
TWI variables that encompassed most of the variation
from each component were selected. These included:
1) distance from each household to the very wettest
points around the community and the maximum
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wetness within 1 km of each house, 2) the sum of all 10
m? wetness grid-cells between 500 m and 1 km of each
house, 3) the proximity of houses to regions of very low
predicted wetness, and 4) minimum wetness within
150 m. At the household level, these topographic vari-
ables were highly correlated with land-cover/land-use
variables (Table 1).

Associations with household malaria

As the number of neighbouring houses increased, the
risk of disease in a given house declined. Over the entire
study area, each additional neighbour within 25 m of a
house was associated with an Incident Rate Ratio [IRR]
= 0.73 (95% CI: 0.57-0.93), controlling for year, person-
time, and community. The community of residence was
strongly associated with malaria in the complete dataset,
with Kapsisiywa houses having 2.63 (2.09-3.32) times
the odds of malaria than Kipsamoite houses.

Houses with any malaria cases tended to be closer to
the swamp (t = 7.17, 830 d.f., p < 0.001) and farther
from roads (t = -2.81, 641 d.f,, p = 0.005). Houses with
malaria were surrounded by more trees (t = -2.76, 741
d.f, p = 0.006) and less farmland (t = 2.92, 765 d.f,, p =
0.004). Distances to both natural swamp (for each 100
m increase in distance, IRR = 0.92 [0.91-0.94]) and
reclaimed swamp (IRR = 0.86 [0.82-0.91]) were nega-
tively associated with household malaria in the complete
dataset. The amount of farmland within 500 m was sig-
nificantly and negatively associated with malaria in the
complete dataset (for a 10,000 m? increase, IRR = 0.94
[0.92-0.95]), while the amount of tea growing <500 m
was positively associated with household malaria (IRR =
1.17 [1.11-1.24] for a 10,000 m? increase).

Each of the selected TWI variables was associated
with household malaria. Houses located farther from the
region’s wettest points (IRR = 0.89 [0.87-0.91] per 100
m increase) or nearer to the driest points (IRR = 0.63
[0.51-0.76]) had lower average malaria case-counts.
Houses with greater maximum wetness within 1 km
(IRR = 1.42 [1.32-1.53] per 1-unit increase) or larger
summed wetness indices within 500 m to 1 km (IRR =
1.02 [1.02-1.03] per 1000-unit increase) were also at
higher risk. Finally, minimum wetness within 150 m
also was positively associated with malaria (IRR = 1.43
[1.25-1.64]). Higher elevation was associated with
reduced malaria risk (IRR = 0.86 [0.83-0.89] per 10 m
increase). Accounting for spatial autocorrelation did not
affect model results in any qualitative way.

Predicting household malaria

Models with only a person-time offset variable produced
average MSE = 1.23. Variables related to both land-cover/
land-use and TW1/elevation were found to improve pre-
dictive accuracy. Figure 1 depicts the distribution of
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Table 1 Correlation coefficients and their p-values for the associations between topographic and human-modified

variables in Kipsamoite and Kapsisiywa.

Distance to  Distance to  Min. wetness  Sum of wetness within Max. wetness Elevation
very wet very dry within 150 m 500 m to 1 km within 1 km
Distance to reclaimed swamp 035 -0.19 -040 -040 -040 0.69
< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Distance to natural swamp 0.79 0.26 -0.39 -0.58 -0.79 049
< 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Trees (500 m) -0.02 -0.13 -0.16 -0.16 -0.05 0.09
0.5053 < 0.0001 < 0.0001 < 0.0001 0.1090 0.0042
Farmland (500 m) 0.64 0.01 -0.53 -0.67 -0.68 0.66
< 0.0001 0.6967 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Tea (50 m) -0.13 -0.01 0.12 0.14 0.15 -0.16
< 0.0001 0.6446 < 0.0001 < 0.0001 < 0.0001 < 0.0001
Pasture (500 m) 0.09 0.13 0.09 0.15 -0.02 -0.03
0.0028 < 0.0001 0.0022 < 0.0001 0.4692 02781
Houses (50 m) 0.00 0.07 0.11 0.09 0.05 -0.15
0.9997 0.0238 0.0002 0.0033 0.1215 < 0.0001
Distance to road -0m 0.07 021 0.14 0.10 -0.36
0.0004 0.0198 < 0.0001 < 0.0001 0.0006 < 0.0001

changes in MSE for each variable from the 300 random
samples of houses; the more negative the change in MSE,
the greater the improvement in prediction caused by con-
sideration of that variable. Of the land-cover/land-use vari-
ables, distance to swamplands, the community in which
the household was located, and amount of farmland or
pasture within 500 m each independently on average pre-
dicted malaria better than the random variable. The
amount of farmland within 500 m improved 87% of per-
son-time models, while the amount of tea <500 m, despite
being positively associated with household malaria,
improved the prediction of only 132 of 300 models (44%).
In every model repetition, adding distance between houses
and natural swampland improved prediction of malaria
using person-time alone. However, distance to reclaimed
swamp predicted malaria better than person-time alone in
only half of the repetitions. Addition of the community
variable (Kipsamoite or Kapsisiywa) variable to the models
with person-time alone resulted in improved prediction
99% of the time.

Land-cover/land-use or elevation variables like maxi-
mum wetness <1 km, stream channel elevation, distance
to wettest locations in the community, and household ele-
vation improved prediction in nearly every case (Figure 1).
The exact combination of these variables that comprised
the best-fitting topographic model varied across the 300
repetitions, but the best-fitting model always improved
prediction. The most common topographic variables
included in the best-fitting model included distance to
wettest locations, distance to driest locations, and eleva-
tion of the nearest stream channel.

None of the land-cover/land-use variables improved
the prediction of these best-fitting topographic models

more than 75% of the time (Figure 2). The amount of
pasture within 500 m performed best, improving 225 of
300 repetitions (75%). Distances to natural swamp; the
amount of pasture, farmland, and trees within 500 m;
and the number of other houses within 50 m were the
only variables that improved average prediction more
than the random variable.

Discussion

Accurate prediction of Plasmodium transmission risk is
essential in heterogeneous environments to permit focal
control measures and heightened surveillance in the
regions that require them the most [23]. Such prediction
requires simultaneous consideration of factors related to
vector distribution, human-vector contact, human prac-
tices, and the environmental context in which they occur
[3]. Results of this investigation corroborate previous stu-
dies demonstrating associations between malaria risk and
both topographic characteristics, specifically TWI and
elevation, and human-influenced environmental variables
including land-cover and land-use. Importantly, however,
they demonstrate that factors associated with malaria are
not necessarily predictive of it, most likely because strong
correlations between environmental factors can lead to
confounded relationships.

The predictive models tested here indicate that land-
cover/land-use variables failed to unambiguously
improve prediction of household malaria risk based
solely on topographic factors like the distance between a
house and the highest TWI locations in the community,
despite the fact that these variables were statistically
associated with malaria risk. Given the cost and time
required to classify land-cover/land-use data at high



Cohen et al. Malaria Journal 2010, 9:328 Page 6 of 10
http://www.malariajournal.com/content/9/1/328

Change in Mean Squared Error
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Figure 1 Change in mean-squared-error resulting from the addition of topographic (white boxes) and land-cover/land-use (gray
boxes) variables to predictive models with only a person-time offset. The results of 300 split-sample repetitions are pictured (the box
represents the 25" to 75" percentile, while whiskers show range). Negative values indicate that addition of the variable improved the accuracy
of the model in predicting malaria risk; boxes crossing the zero line indicate prediction was improved in some random subsets of houses but
not in others.
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Change in Mean Squared Error
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Figure 2 Change in mean-squared-error resulting from the addition of land-cover/land-use variables to the best-fitting topographic
predictive model for each random subset of houses. The results of 300 split-sample repetitions are pictured (the box represents the 25 to
75" percentile, while whiskers show range). Negative values indicate that addition of the variable improved the accuracy of the model in
predicting malaria risk.
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resolution, the superior accuracy of TWI in predicting
high-risk foci suggests that it may be both a simpler and
more useful remotely-sensed tool for risk prediction.
These findings indicate that control programs operating
in such rugged terrain may consider application of the
TWI to derive risk maps in such settings. While the
most predictive combination of topographic variables
changed as different houses were randomly selected for
model fitting, a subset of variables - including distance
to the wettest and driest locations around the commu-
nity and the distance to the nearest stream channel -
were reliably included in a majority of these combina-
tions, implying important commonalities.

Individual environmental variables, including distance
to natural swamps, community of residence, and nearby
farmland, each improved predictions of malaria risk over
models considering person-time alone. However, none of
the examined land-cover/land-use variables improved
more than 75% upon the best-fitting topographic models
(Figure 2), nor did combinations of variables perform
better. In other words, little effect of land-cover/land-use
was evident after accounting for general topographic pat-
terns. Given that these human-modified environmental
variables are strongly correlated with topographic vari-
ables (Table 1), they may be too highly interrelated to
observe individual effects. Alternatively, the strong, over-
arching patterns of malaria risk in this specific region
may be largely determined by the uneven topography and
varied elevation, making it difficult to identify localized,
nuancing effects of small-scale environmental modifica-
tions such as those examined here. It seems probable
that repeating this analysis in a geographic setting with
less topographic variation would produce different
results. Thus, analyses similar to these in lowland regions
with less extreme topographies are needed to evaluate
whether these results are applicable elsewhere.

The community in which a house was located was,
unsurprisingly, a good predictor of malaria risk since
overall incidence was three times higher in Kapsisiywa
than in Kipsamoite. However, after adding the best-pre-
dicting topographic variables (Figure 2), consideration of
community rarely improved the models. This finding
suggests that a great deal of the difference in malaria
rates between these two neighbouring communities can
be attributed to differences in their topographies.

Distance from households to swamp edges was a bet-
ter predictor than distance to the stream channels that
generally run through the center of swamps, corroborat-
ing studies of larval habitat that indicate swampy mar-
gins are more suitable than deeper waters for vector
breeding [24]. However, distance to any swamp gener-
ally did not enhance prediction of malaria case-counts
when added to models with the best-fitting topographic
variables. This result indicates that the presence of
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“swampy” land-cover, marked by papyrus and other
characteristic “natural” plants, as well as channeled
cropland in its reclaimed form, was a less specific mea-
sure than the topographic variables describing the shape
of the land.

More extensive agriculture surrounding houses, which
primarily included cultivation of maize, beans, and other
crops, was associated with reduced malaria risk. It is
possible that crops decreased the suitability of land for
mosquito breeding, either by channeling away standing
water or by preventing direct sunlight from reaching
water pooling under tall crops, but such an effect would
run counter to the conclusions of other investigations
[25]. Alternatively, large amounts of farmland may be
indicative of greater SES, and the observed association
accordingly may reflect such unmeasured variables [26].
These and other possibilities including specific crop
types and cultivation methods should be more carefully
evaluated.

Misclassification of environmental variables may have
affected these results. Land-cover measures were derived
from a single IKONOS image taken in 2002, and any
changes in land-use or land-cover occurring after that
time could have introduced error. Transects conducted
at the study site in 2005 that georeferenced the location
and type of fields, pastures, trees, and other land-cover/
land-use matched closely with the classified satellite-
image (data not shown), indicating that features had not
changed greatly over the time period between the image
and the study. Although farmers reported that crop
types can change from month-to-month or from year-
to-year, the location of fields remained stable over the
study period. However, if human modification of the
local environment causes only subtle changes in malaria
risk from general topographic trends, even a small
amount of error could compound the difficulty of obser-
ving such effects. Additionally, the TWI data described
here was based on a single algorithm [27]; consideration
of other methods for deriving TWI may yield different
results.

Classification of satellite imagery is challenging, and
methods for doing so have not improved greatly in recent
years [28]. Elevation data, however, is easily processed into
useful metrics like the topographic wetness indices com-
puted here with the use of freely available GIS programs.
The June 2009 release by NASA and Japan’s Ministry of
Economy, Trade, and Industry of a global 30 m digital ele-
vation model derived from Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) imagery
http://asterweb.jpl.nasa.gov/gdem.asp permits free access
to global elevation data. These findings suggest that such
data resources may be used in identifying other foci at
high risk for malaria, at least in highly topographically
variable regions. Although the IKONOS image used here
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was selected for its fine spatial resolution of 1 m? replica-
tion of this analysis using other types of remotely-acquired
imagery, such as Landsat or ASTER, would allow consid-
eration of land-cover and land-use variables derived from
alternative sources; the greater temporal resolution and
use of different sensors would allow examination of other
types of data that have previously been demonstrated to
be important for malaria risk prediction [4,29].

The results of this study indicate that elevation and
predicted accumulation of water are highly predictive of
malaria patterns in this small region. People living in
areas with a high TWI appeared to be at significantly
greater risk of malaria than those living in areas of
lower TWI. Other variables related to land-cover/land-
use and human modification of the environment
demonstrated associations with household malaria and
improved prediction of models over that of person-time
alone. However, these variables generally failed to pro-
duce unambiguous improvements in models controlling
for important topographic factors, suggesting that their
importance for determining patterns of malaria in this
region was slight when accounting for the varied shape
of the land around these communities. Future studies
should assess the utility of TWI for malaria risk predic-
tion across larger and more geographically diverse areas,
especially at scales useful for Ministries of Health to tar-
get interventions; replication of this work in regions of
both similarly rugged terrain and flatter, more arid areas
will be required before conclusions can be drawn about
the utility of these methods elsewhere. However, these
results suggest that malaria control programs in similar
highland regions might use topographic and geographic
variance rather than land-cover/land-use to efficiently
identify locations that are highly suitable for transmis-
sion and which may benefit from enhanced vigilance.
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