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Abstract 

Background:  The Amazon environment has been exposed in the last decades to radical changes that have been 
accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria trans‑
mission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and 
individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simu‑
lated effectively trough agent-based models.

Methods:  This paper presents a validated agent-based model of local-scale malaria transmission. The model repro‑
duces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission 
is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents 
representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a 
spatially explicit representation of the environment around the village. The model environment includes: climate, 
people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused 
by the river flooding is also included in the simulation environment.

Results:  A calibration process was carried out to reproduce the variations of the malaria monthly incidence over 
a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria 
transmission. A “what if” eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated 
through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria 
transmission is eradicated from the village.

Conclusions:  The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria 
transmission in a low endemicity environment dominated by river floodings like in the Amazon.
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falciparum
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Background
The Amazon behaves as a complex system [1, 2], where 
socioeconomic, ecological and biophysical interactions 

occur between the human and the natural environments. 
In the last decades, part of the Amazon environment has 
been exposed to radical changes and severe alterations 
of native ecosystems ecologic equilibrium were gener-
ated [3]. In the northern Peruvian Amazon, the driving 
force of this change has been the influx of new immi-
grants that caused the rural frontier expansion [4]. In this 
context, activities such as the swidden-fallow agriculture 
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have transformed the primary forest cover into a mix of 
cleared areas and secondary forest regrowth spots [5, 6]. 
This land cover modification process produced the varia-
tion of species composition of mosquito malaria vectors. 
The extension of riverine or floodable areas only partially 
covered by secondary regrowth generated new breed-
ing areas for a highly competent malaria vectors, such 
as Anopheles darlingi [7, 8]. The reappearance of A. dar-
lingi, that had been considered eradicated in the decades 
before the 1990, was accompanied, during the period 
from 1990 to 2000, by a remarkable rise of both Plasmo-
dium falciparum and Plasmodium vivax malaria in the 
Northern Peruvian Amazon [9].

Malaria is a vector-borne parasitic disease caused by 
the Plasmodium protozoa that are transmitted to humans 
through the bites of infectious mosquitoes of the genus 
Anopheles. Malaria is widespread around the world with 
nearly one half of the world population at risk, an esti-
mate of 198 million cases and 584,000 deaths in 2013 
[10]. Many elements interacting at several spatial and 
time scales contribute to the malaria infection dynam-
ics. Environmental factors, such as climate, presence 
and characteristics of water bodies, weather, economic 
activities and social conditions, interact with individual-
based characteristics and behaviours of mosquitoes and 
humans to give rise to complex spatial and temporal 
patterns. Barbieri et  al. [11] describe how the complex 
interactions between economic land uses (garimpo, or 
small-scale gold mining, urban activities and agricul-
tural activities) and population characteristics may deter-
mine distinct risk profiles of malaria prevalence in the 
Brazilian Amazon. Furthermore, every individual of the 
involved populations has its own life trajectory, which 
is partly determined by environmental factors, and that 
in turn alters the environment and also contributes to 
determine the life trajectory of other individuals.

The complex network of interactions involved in 
malaria transmission, generates feedbacks, non-linear 
behaviours and heterogeneities that are not easy to han-
dle within ordinary mathematical models based on dif-
ferential equations. Standard mathematical models of 
malaria transmission that evolved from the original for-
mulation of Ross and MacDonald [12, 13] are based on a 
compartmental structure [14]. In such models, individu-
als are categorized in homogeneous groups and differen-
tial equations control the transitions from a compartment 
to another one. Although some compartmental model 
have tried to abstractly handle spatial heterogeneities 
[15], for the sake of simplicity compartmental models are 
usually based on the assumption of homogeneity inside 
the same compartment. Crucial factors in determining 
the malaria transmission, such as relative positions of 
houses and water bodies, environmental heterogeneities 

or individual-based behaviours are really difficult to be 
represented in an epidemiological compartment model. 
The natural approach to handle individual-based prop-
erties and spatial heterogeneities characteristic of the 
vector borne infection transmission is to make use of 
spatially explicit agent-based models (ABM). In ABMs 
the individuals are represented explicitly in a simulation 
code as agents interacting among them and with a repre-
sentation of the natural environment [16]. In the malaria 
transmission study field, spatially explicit ABMs have 
been used to simulate the effect of management scenarios 
of aquatic mosquitoes habitats [17], to study the coupling 
of the hydrologic dynamics with the mosquito density 
[18], to study the spatial heterogeneities of mosquitoes 
distribution around water pools in a Shaelian village [19], 
to assess the risk of malaria re-emergence in the southern 
France [20] and to perform other similar analysis [21, 22].

The ABM presented in this paper integrates geographi-
cal analysis with entomology, demography and epide-
miology in a simulation tool, able to reproduce the local 
scale malaria incidence dynamics in a small riverine vil-
lage of nearly 1400 inhabitants located in the northern 
Peruvian Amazon. This study is a first attempt to repre-
sent through a validated mechanism-based simulation 
the local scale malaria infection dynamics mediated by A. 
darlingi in a region dominated by the flooding of a river 
as typical in the Amazon and in other tropical regions. 
The ABM is data-driven and validated: environmental 
data freely available from Internet are combined with 
field epidemiological observations to design a simula-
tion tool able to reproduce the spreading of malaria that 
is disseminated by mosquito throughout the human 
population.

Purpose of the model
The first objective of the presented ABM is to represent 
the relationships, feedbacks, and behaviours involved 
in malaria transmission, observed in a typical Amazon 
environment. This objective consists in demonstrating 
that the mechanisms and factors that drive the dynam-
ics of the malaria epidemics in the study area, during the 
study period, are included in the model in such a way 
that the main emergent patterns of the real world sys-
tem are reproduced. One of the primary mechanism-
based explanations of the present model consists in 
demonstrating that the observed temporal changes in 
the malaria incidence can be reproduced through a cor-
rect representation of the flooding generated by the river 
level changes. Accordingly, one the most important com-
ponents of the model are the calibration and the valida-
tion processes through which the simulation outputs are 
validated against real world epidemiological data. The 
second objective of the model is to study the dependence 
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of the malaria risk on spatial heterogeneities, which are 
linked to the heterogeneous distribution of water bodies 
around the houses where people live. A third objective 
of the model is to study the effect of possible manage-
ment strategies of the aquatic mosquitoes breeding sites 
around the village. An additional objective of this ABM is 
to build a baseline for further data collection and model 
developments which in the future will better account for 
complexity of the relationship between environmental, 
entomological and epidemiological factors in determin-
ing the malaria transmission dynamics at a local scale.

Methods
Short model description
The ABM presented here is designed to reproduce the 
malaria transmission dynamics in a small, typical Ama-
zon riverine village named Padre Cocha located in the 
Department of Loreto in the northern Peruvian Amazon 
(see Fig.  1). As it is showed in Fig.  2, the Nanay River, 
which flows nearly 500 m far from the village, as usual in 
the Amazon shows remarkable seasonal level variations 
(an average of 10  m yearly change). These changes pro-
duce floods that seasonally cover nearly half of the ter-
ritory around Padre Cocha. The malaria transmission in 
Padre Cocha is strongly influenced by the seasonal river 
floodings because the flooded areas are ideal aquatic 

habitats for mosquitoes. The variations in the flooded 
area’s extension produce changes in the mosquito den-
sity and consequently in the malaria incidence. The 
model includes a number of elements that are considered 
important [17, 18, 21, 23] in determining the malaria 
transmission characteristics such as: environment fea-
tures, biology, ecology and ethology of the mosquito 
vector, human host behaviour, asymptomaticity and Plas-
modium response to anti-malarial treatment. Mosquito 
and human agents interact among themselves and with 
a spatial explicit representation of the area around the 
study village. The agents representation includes features 
describing the malaria infection state and the relevant 
aspects of the life history of every individual mosquito 
and human. The environment representation includes cli-
mate (rain and temperature), changes of the water cover, 
the distribution of households in the village and a digi-
tal elevation model. Due to the nocturnal biting behav-
iour of A. darlingi, humans are represented as agents 
located inside their respective houses. When an infec-
tious mosquito bites a susceptible human, the human 
becomes infected and starts to progress through the dif-
ferent malaria infection stages, passing from a prepat-
ent stage to the infectious, the symptomatic and finally 
to the recovered stage. Furthermore, if the mosquito is 

Fig. 1  Location of the village of Padre Cocha near Iquitos. Iquitos 
is the capital of the Loreto department in the Northern Peruvian 
Amazon. In the small inset the Department of Loreto location (red) is 
showed respect to the rest of Peru (dark grey) and to the rest of the 
Amazon (green)

Fig. 2  The simulation area. Water covers corresponding to low and 
high Nanay river levels around Padre Cocha village are represented in 
different colors. The Nanay River low level water cover corresponds to 
the digitalization of a satellite image taken the 12 of September 2013 
while the high level water cover correspond to an image taken the 
24 of March 2013. The household georeferenced positions of the year 
1998 are from the paper of Bautista et al. [27]. The entire area showed 
in the figure is included in the simulation area
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susceptible and the human is infectious, the mosquito 
starts to develop the Plasmodium infection. A mosquito 
can become infectious if it lives long enough to complete 
the Plasmodium maturation inside its body (sporogonic 
cycle). A mosquito never recovers from the infection. The 
mosquitoes are designed to reproduce the characteristics 
of the A. darlingi that is the main malaria vector in the 
study area. The two species of malaria Plasmodium, P. 
falciparum and P. vivax, observed in the study area dur-
ing the study period are included in the model.

Process overview and scheduling
The time step of the model is 1 h. Every 12 h, the mos-
quito agents emerge from the simulation pixels covered 
by water where other mosquitoes laid eggs and where 
the water cover endured for a period of time longer than 
the mosquito aquatic development time. During their 
life in the simulation, the mosquito agents try to have 
blood meals and subsequently to lay eggs. To achieve 
these goals the mosquitoes, only during night time, move 
through the simulation area changing their position 
passing from one pixel of the mosquito grid cover to an 
adjacent one. To human agents are assigned fixed posi-
tion corresponding to the house they belong. The Plas-
modium agents are represented as living inside the body 
of human and mosquito agents, passing through several 
stages of development that correspond to different stages 
of the infection of both vectors and hosts. The water 
cover of the simulation area changes accordingly to the 
Nanay River level registered in the date corresponding 
to the simulation time: higher river levels inundate more 
extended areas.

Model calibration and validation
The process of validation of a model could be defined as 
the process of verifying that the model produces outputs 
in line with the design objectives and also with empiri-
cal observations [24, 25]. Through the validation against 
empirical data it is possible to verify if the stylized rep-
resentation of the real world implemented in the model 
is accurate enough to generate emergent behaviours that 
are similar to the real world system. The ABM outputs 
have been validated against the observed monthly series 
of malaria incidence in Padre Cocha during the period 
from the beginning of 1996 to the end of 1998. To vali-
date the ABM a simple strategy was followed. The set of 
parameters in the model for which empirical data are not 
known were selected as elements of what is called the 
calibration vector [26]. Then a first reasonable calibration 
vector starting value was selected and 24 versions of the 
model assigning slightly different values to the calibra-
tion vector were built. Then simulated monthly malaria 
incidence resulting from the average over eight runs of 

every model version are compared with the observed his-
torical data of monthly malaria incidence. The simulated 
yearly incidences separately for P. vivax and P. falciparum 
were also compared with the observed corresponding 
yearly incidences. The version of the model producing 
simulated outputs closer to the observed data was used 
as starting point to build 24 additional versions of the 
model. Then 24 more versions were produced starting 
from the model that gave up the best output and so on 
iteratively. To complete the calibration process 680 dif-
ferent values of the calibration vector were tested for a 
total number of 5440 independent simulation runs. The 
simulation outputs presented in the Results section are 
obtained as averages over 48 repeated runs of the cali-
brated model. This number of repetitions was chosen 
high enough to have statistical error on the main observ-
ables below the 5 %. Every production run starts with a 
365 days equilibration period during which all the envi-
ronmental parameters are constant and equal to the val-
ues of the first simulation day.

Spatial analysis
Once the model was validated, the simulations outputs 
are compared with the observed spatial cluster of high 
malaria risk detected in the same study period between 
1996 and 1998 by Bautista et al. in a retrospective surveil-
lance study [27]. The spatial cluster analysis was carried 
out using the purely spatial statistic scan analysis devel-
oped by Kulldorff [28] and implemented in the program 
SaTScan [29]. The Kulldorff’s method uses circular win-
dows of variable size. The circular windows are centered 
in the position of every house in the simulation area and 
the radius of the windows is changed continuously from 0 
up to a maximum size to include the 10 % of the popula-
tion at risk. The SaTScan program compares the malaria 
counts within the scan windows with the expected num-
ber of cases resulting from Monte Carlo simulations. 
Then the window that corresponds to the maximum 
likelihood is selected and the number of cases inside this 
window is compared with the null hypothesis of no sig-
nificant clustering. The analysis is carried out supposing 
that the malaria counts in each household follow a Pois-
son distribution. When the null hypothesis is true, the 
expected number of cases is proportional to the number 
of people living in the house.

Software and hardware environment
The model have been implemented in the MASON [30] 
environment. MASON is a free, Java-based, discrete-
event, multi-agent simulation library core used to reduce 
the repetitive code writing effort necessary to develop 
an ABM. Every simulation run required approximately 5 
CPU hours of one core of an Intel Core i7-800 processor.
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Environmental module
The environment in an ABM is the space where the 
agents live. The kind of interactions between the agents 
and the environment, are crucial in determining the type 
and the characteristics of the ABM emergent properties. 
The detailed list of the environmental module parameters 
are showed in Table 1.

Study area
The study area is limited by a rectangular bound-
ing box of 2370 ×  2520  m, centered over Padre Cocha 
[3°41′54.17″S, 73°16′43.24″W]. Padre Cocha is located 
5.5  km from the city of Iquitos, the capital of the dis-
trict Loreto in Peru. The land cover around Padre Cocha 
is typical of a peri-urban area in the Peruvian Amazon: 
much of the cover is constituted by cleared areas that mix 
with secondary forest growth. Part of the land around 
Padre Cocha is covered all throughout the year by perma-
nent stretches of water that include a big lagoon (cocha 
in quecha language) situated in the south-east area of the 
village. Approximately 500 m from the village, flows the 
Nanay River, an affluent of the Amazon River. Mosqui-
toes find breeding sites in every permanent or seasonal 
stretch of water around the village including the cocha 
[31].

Meteorological data
Padre Cocha shows a typical equatorial climate: the rain-
fall level is high all around the year and there is not a 
sharp distinction between dry and rainy season. The aver-
age annual rainfall is 2616 mm with highest monthly rain-
fall intensity in April (310 mm) and December (282 mm) 
and lowest rainfall intensity in August (165  mm). The 
average annual temperature is 26.7  °C with a limited 
variability range, as usual in the Amazon (21–33 °C). The 
average humidity is 90 % (59–100 %). The average wind 

speed is 1 m/s with peaks of 4 m/s. The Nanay river level 
grows from the month of November to the month of Feb-
ruary, while it decreases from May to July. The period 
from March to May is the high level period of the Nanay 
River, whereas the period from August to October is the 
low level period. The meteorological data included in the 
implementation of the ABM are: the daily rainfall and the 
daily minimum and maximum temperature. All the daily 
meteorological data used in this paper were obtained 
from the records of the meteorological station num-
ber 843770 (SPQT) located close to the Iquitos airport, 
approximately 9500 m far from Padre Cocha.

The simulation grid covers
The study area is covered by two distinct squared grids of 
different cell size. The first grid cover is called the mos-
quito grid cover, which is used to specify the mosquito 
agents positions. When mosquito agents are looking for 
blood meals or aquatic habitats, during night hours, they 
move every simulation time step from one mosquito grid 
pixel to another adjacent one. The mosquito grid cell size 
is calibrated to obtain flight ranges that are consistent 
with the majority of fields observation that report flight 
ranges for A. darlingi around 800 and 1500  m [32–35]. 
Periodic boundary conditions are imposed on the mos-
quito grid cover so that pairs of opposing sides of the 
bounding box area are topological equivalent. The use of 
periodic boundary conditions is equivalent to have peri-
odic copies of the simulation village all around the cen-
tral simulation area. These copies are separated in space 
by the size of the simulation domain (2370 ×  2520  m) 
reproducing with good approximation the characteristics 
of the area around Padre Cocha where several peopled 
areas, including the extreme fringes of the Iquitos city, 
are scattered around the village at distances ranging from 
2200 to 2600  m along all the directions. The remaining 

Table 1  Environmental module parameters

Parameter name Value Notes and references

Simulation time step 1 h

Study area extension 2370 × 2520 m

Centroid of the study area bounding box 3°41′54.17″S, 73°16′43.24″W

Geographical grid cover pixel size 10 m Based on spatial imagery resolution

Mosquito grid cover pixel size 30 m [32–35]

Geographical grid extension 237 × 252 pixels

Mosquito grid extension 79 × 84 pixels Periodic boundary condition applied

Number of mosquito agents generated per oviposition 6.6 mosquitoes agents/oviposition [37]

Maximum number of mosquito agents generated  
per unit of breeding area every 12 simulation hours

0.16 mosquitoes agents/m2/12 h Calibration parameter

Reduction factor of the number of mosquitoes generated  
per unit of breeding area per unit of time in permanent water covers

1.5 Calibration parameter
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elements of the study area are projected over the second 
grid cover that is called the geographical grid cover. The 
spatial resolution of this grid is selected according to the 
spatial resolution of the GIS imagery employed to build 
the river flooding model subcomponent.

Hydrological submodule
The hydrological submodule implements an algorithm 
that reproduces in a simple way the floodings generated 
by the seasonal rise and fall of the Nanay River level in 
the area around Padre Cocha. The algorithm of the 
hydrological module converts a Nanay river level into a 
corresponding water cover. The input data of the hydro-
logical submodule are: the monthly series of the Nanay 
River levels during the study period [27], two high resolu-
tion satellite images of the study area and an elevation 
model of the study area [36]. The two high resolution sat-
ellite images were obtained from Google Earth and cor-
respond respectively to dates where the level of the 
Nanay River was near its maximum and near its mini-
mum.1 Through a GIS analysis of the two high resolution 
spatial images was extracted a digitalized representation 
of the water land cover in the period of the high and the 
low Nanay River level. The two covers are showed in 
Fig. 2.

The mechanism underlying the hydrological sub-
module is simple: every 24 h during the simulation, the 
recorded value of the Nanay River level is read from the 
corresponding time series. Then the pixels that are cov-
ered by water in the high Nanay River water cover image 
and that have an elevation below the recorded Nanay 
River level are marked as covered by water.

Mosquitoes breeding sites
During the simulation, every geographical grid cover 
pixel covered by water is considered as suitable as breed-
ing site with the exception of the central part of rivers 
where the water flow would flush out eggs and larvae. 
Mosquito agents are generated from aquatics breeding 
sites where other mosquito agents have previously laid 
eggs. The number of emergent mosquito per oviposi-
tion is determined by the model parameter: “Number of 
mosquito agents generated per oviposition”. This number 
depends on several factors like the mosquito species and 
the biophysical characteristics of the aquatic habitats. A 
recent study [37] conducted on A. darlingi laboratory 
colonies reported a ratio of 6.6 emergent adults per ovi-
position. Although the laboratory conditions could be 

1  Image of the Nanay River high level in the area around Padre Cocha: 
date of the image: 24 of March 2013 from Google Earth, 3°41′56.48″S, 
73°16′43.04″W1  Image of the Nanay River low level in the area around 
Padre Cocha: date of the image: 12 of September 2013 from Google Earth, 
3°41′56.48″S, 73°16′43.04″W.

really different respect to the natural environment this 
value is adopted for the simulations. To include in the 
model the aquatic habitats carrying capacity [23], a maxi-
mum number of emergent adults per unit of breeding site 
area per half day is set.

Several studies [38–40] reported that the mosquito 
density and the biting rate of A. darlingi during the peri-
ods corresponding to the low Nanay river level fall almost 
to zero. This occurrence may be due, among other things, 
to a minor suitability as aquatic habitats of permanent 
water covers than flooded areas. To reproduce this exper-
imental fact in the model all the permanent water bod-
ies generate a number of adult mosquito agents that is 
decreased respect to the number produced in the flooded 
areas by a factor whose value is specified by the state 
variable: “Reduction factor of the number of mosquitoes 
generated per unit of breeding area per unit of time in 
permanent water covers”.

Entomological module
The A. darlingi shows high anthropophilic and endopha-
gous behaviour [8]. In the Loreto region, A. darlingi has 
been observed to be the almost exclusive malaria diffu-
sion vector [40], especially in rural areas [38] and when 
the natural environment is highly altered by human 
activities [41]. For this reason the entomological ABM 
module of this study has been designed and parameter-
ized using what is actually known about the A. darlingi 
ecology, ethology and biology. Although other species 
of the genus Anopheles observed in Loreto are compe-
tent malaria vectors, the minor relative importance of 
these species during the study period in determining the 
process of malaria diffusion and the similarities with the 
A. darlingi species assure that representing all the mos-
quito agents in the ABM as A. darlingi, is a quite good 
representation of the individual-based malaria vector 
dynamics in the Amazon. The values of all the parame-
ters presented in the entomological module are showed 
in Table 2.

Mating
As noted, only the adult stage of mosquitoes is repre-
sented explicitly in the model and all the mosquito agents 
are females. In Fig.  3 the flow chart of mosquito agents 
life cycle as implemented in the model is showed. The 
first action that a mosquito agent accomplishes is mating. 
Mating behaviours among mosquitoes could be differ-
ent from species to species [42]. Although little is known 
specifically about mating behaviour of A. darlingi, a study 
of releases and recaptures of A. darlingi mosquitoes con-
ducted in Rôndonia, Brazil [43] showed that the mating 
of this species is not preceded by a swarm formation and 
occur possibly in the proximity of the blood seeking sites. 
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Therefore a mosquito agent emerging from the breeding 
aquatic habitat is assigned to the blood seeking movement 
mode (see below).The probability distribution showed in 
Table 3 is used to decide when the agent will mate.

Blood‑seeking and breeding habitat‑seeking movements
After mating, the mosquito agent immediately 
starts to search a human agent to have a blood meal 

(blood-seeking movement mode). If the mosquito agent 
succeeds in having a blood meal, the agent enters in 
the breeding habitat-seeking movement mode to find 
an aquatic habitat to lay eggs. It is known [44] that the 
Culicidae family can shows long range responses to 
nonspecific olfactory substances like the carbon diox-
ide produced by animals respiration. Moreover mosqui-
toes showed to be responsive to long-range stimuli of 

Table 2  Entomological module parameters

Parameter name Value Notes and references

Aquatic stage development time 15 days [51]

Random walk pixels weight host-seeking mode  
and blood-seeking mode

0.85 Calibration parameter

Biting hours From 7 pm to 5 am [38]

Probability to fail the bite 0–1 0 when the human agent is protected against malaria
1 when the human agent is not protected against malaria

Resting time after blood meal 4 h [49]

Time required for eggs maturation after the blood meal 48 h [51]

Daily survival probability function
ps = e

−
1

−4.4+1.3·T−0.03·T2
[53]; T is the temperature

survival probability factor during a rainy day 0.7 Calibration parameter

Minimum rain of a rainy day 100 mm/day Calibration parameter

Fig. 3  Flow chart of the mosquito agent time step
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olfactory host-specific substances. Different compounds 
from human body have been identified as specifically 
attractive for mosquitoes. Furthermore mosquitoes 
show vision of poor resolution but of high sensitivity 
also in night-time that enables them to visually differ-
entiate open spaces from closed dark spaces like forests 
also from distances of 15–20 m. It is still unclear if mos-
quitoes can show cognitive abilities such as learning the 
location of the visited hosts, of resting and breeding site 
[45]. For this reason in this study all the mosquito agent 
memories about specific sites location are ignored. To 
represent the sensorial responses that guide the mosqui-
toes toward their human hosts and toward the breeding 
sites targets, the blood-seeking and the breeding habitat 
seeking movements are implemented in the simulation as 
weighted random walks [46]. In both movement modes 
the flight direction is completely random while the mos-
quito agent is far from the movement targets. On the 
other hand, when the mosquito agent is located in a grid 
cell adjacent to the targets, the movement is weighted 
to pull the mosquito agent toward the targets. A near-
est neighbor grid cell of the mosquito agent location is 
weighted with a probability proportional to a weight w 
if it contains breeding sites or human households, and 
(1 − w) in all the other cases (w є [0.5, 1]).

The influence of the wind over the mosquito host seek-
ing and breeding site seeking movements is not included 
in the model. Despite the fact that for some mosquitoes 
species it was observed that a wind of 0.83  m/s may 
reduce the mosquito host-seeking flights [47], in a study 
of human-baited landing collection of A. darlingi mos-
quitoes conducted in Belize in a human altered rainforest 
environment [48], it was observed that even an average 
wind of 8.9 m/s do not alter significantly the number of 
female mosquitoes collected both outdoor and indoor 
during night hours.

Blood meal
In the northern Peruvian Amazon, A. darlingi shows 
a nocturnal biting behaviour and two not pronounced 

biting peaks around dusk and dawn [38]. Therefore, a 
not blood-engorged mosquito agent that is located in a 
pixel populated by human agents waits until night time 
hours, from 7 pm to 5 am, to try to take a blood meal. If 
the mosquito is not located in pixels populated by human 
agents, it enters in the host-seeking mode and move 
until it finds a pixel populated by human hosts. Once 
the appropriate time for biting has come the mosquito 
agent randomly chooses one household inside its actual 
location pixel. Then the mosquito chooses at random a 
human agent associated to the selected household. The 
host-seeking process is repeated until the mosquito suc-
ceeds in having a blood meal. During the day-time hours, 
the mosquito agent rests and remains in the cell where 
it was actually located at 5 am. After the blood meal the 
mosquito agent always rests [49].

Gonotrophic cycle and oviposition
Once the blood feeding process is complete, the ingested 
blood catalyzes the process of internal eggs development 
in the female mosquito [50]. The gonotrophic cycle is 
defined as the time elapsed from one blood-feeding to 
the next one and is composed by the time that is needed 
to the eggs maturation and the time from the oviposition 
to the next blood meal. The time required for eggs devel-
opment could be considered constant in the temperature 
range of the Amazon and is about 48  h long [51]. The 
times from the oviposition to the blood-feeding and vice 
versa are not constant and depend on environmental 
variables because are determined also by the time taken 
by the host seeking and by the oviposition site seeking 
processes. After the bite, the mosquito agent switches 
to the breeding habitat-seeking movement mode to find 
an aquatic habitat to lay eggs. The agent moves until it 
finds a breeding site. If when the mosquito agent finds 
a breeding site the eggs maturation process is not com-
pleted, the agent waits in the same location until the 
oviposition.

Aquatic development stage
The length of the mosquito aquatic development stage 
is in general a temperature dependent process. Never-
theless here this time is considered as constant within 
a temperatures range typical of the Amazon [52]. This 
development period is composed by the time needed to 
the eggs to hatching in larvae (48 h) plus the time needed 
for the development process from larvae to pupae and 
from pupae to the adult stage (13 days). As consequence, 
if a pixel of the geographical grid cover where a mosquito 
agent have laid eggs, maintains its water cover, at the end 
of the 15th day it will produce 6.6 adult mosquito agents 
per oviposition.

Table 3  Probability distribution of  mating times  after the 
emergence from  the aquatic breeding site of  mosquito 
agents, from: [43]

Time from the emergence from  
aquatic habitat (hours)

Probability of mating

12 0

24 0.1

36 0.5

48 0.3

60 0.1
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Daily survival probability and death
The daily survival probability ps of adult mosquitoes 
depends on many factors including the temperature. The 
classical relationship linking ps with the temperature that 
is reported by Craig [53] is described by the following 
equation:

T is the daily average temperature. As observed by 
Monterio de Barros et  al. [51] the A. darlingi daily sur-
vival probability can decrease during rainy days. For this 
reason in the model it is included a parameter called 
“survival probability factor during a rainy day” that sets 
the reduction of the survival probability during rainy 
days. A day is defined as a “rainy day” if the rainfall reg-
istered in this day is above a threshold specified by the 
model parameter “minimum rain of a rainy day”.

Plasmodium module
Malaria is caused by a parasitic protozoan of the genus 
Plasmodium. The Plasmodium always has two hosts in 
its development cycle: a vector and a vertebrate host. In 
the case of Plasmodium species that cause malaria, the 
vector is a mosquito of the genus Anopheles and the ver-
tebrate host could be a human as well as other mammal 
species like some monkeys. In the study area and in the 
Loreto Department, two different Plasmodium species 
are observed [9]: P. falciparum and P. vivax. Each species 
of Plasmodium give rise to different transmission pattern 

(1)ps = e
−

1

−4.4+1.3·T−0.03·T2

and different infection dynamics [54]. The values of the 
parameters presented in the entomological module are 
showed in Table 4.

Mosquito‑related Plasmodium parameters:  
the sporogonic cycle
The extrinsic incubation period is the only epidemio-
logical feature in the model that originates from the 
interaction between mosquitoes and Plasmodium and 
is determined by the length of the sporogonic cycle. 
The sporogonic cycle or duration of the sporogony (DS) 
is the time required from the moment of the mosquito 
infection, to complete the sporozoite maturation in the 
salivary glands of the vector. This period depends on the 
Plasmodium species and also on the temperature:

Tavg is the daily average temperature, Tmin is the mini-
mum temperature required for the development of the 
sporozoites and DD are the parasite specific number of 
degree days needed to the complete the DS. Tmin and DD 
depend on the Plasmodium type [55].

Human‑related Plasmodium parameters
The human related Plasmodium parameters describe 
the progression of the malaria infection in human indi-
viduals. The human agent infection dynamics is more 
complex than the in case of the mosquito agent because 
human agents receive anti-malarial treatments and can 

(2)DS =
DD

Tavg − Tmin

Table 4  Plasmodium module parameters

Parameter name P. falciparum P. vivax Notes and references

Tmin extrinsic incubation 16 °C 14.5 °C [55]; minimum temperature of incubation inside 
the vector body

DD extrinsic incubation 111 °C DD 105 °C DD [55]; number of degree days to complete the 
sporozoites development inside the vector 
body

Intrinsic incubation time (9–14) days (12–17) days [56, 57]; (min–max) range. The value is extracted 
from an uniform distribution between min and 
max

Transmission efficiency from asymptomatic human to 
mosquito

0.1 0.1 [65]

Transmission efficiency from human to mosquito 0.4 0.4 [64]

Transmission efficiency from mosquito to human 1 1 The value is chosen to maximize the number of 
infectious bites and reduce the simulations 
computational weight

Human infectious period if treated 300 h 24 h [59]; calibration parameter only for P. falciparum

P. vivax recurrence time 203 days [63]

P. falciparum recurrence risk 0.3 [63]

Gametocytemia time (10–14) days (9–13) days [58–60]; (min–max) range. The value is extracted 
from an uniform distribution between min and 
max
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recover from malaria. The Plasmodium agent devel-
opment stages when interacting with human agents is 
showed in Fig. 4.

When a human is infected the Plasmodium agent 
starts its development process. The first development 
step, after the end of the intrinsic incubation period, is 
the transition from asymptomatic to symptomatic. In 
the real world this transition corresponds to the moment 
when the infected individuals go to the village health 
post to receive the treatment against malaria and the new 
malaria case is registered. Therefore, in the model when a 
human agent enters in the symptomatic stage the number 
of simulated malaria cases is upgraded. When the intrin-
sic incubation ends, the human agent is tagged as symp-
tomatic. After the infection, when the “gametocytaemia 
time” is passed, the Plasmodium agent starts the gameto-
cytaemia. Corresponding with the gametocytaemia onset 
the human agent became infectious and can transmit the 
infection to a mosquito agent. The parameter: “human 
infectious period” sets the length of parasitaemia after 
the beginning of treatment.

Values of the human‑related Plasmodium parameters
The World Health Organization reports that the intrin-
sic incubation period could be 7 days or longer [10]. The 
estimation for this parameter was based on previous pub-
lications which found incubation periods between 9 and 
14 days for P. falciparum and 12–17 days for P. vivax [56, 
57]. The infectious period for a human being corresponds 
to the period during which the infecting gametocytes, 

the sexual stage parasite, are present in peripheral blood 
and can access to a mosquito through a bite. Following 
the Plasmodium cycle, the appearance of gametocytes 
depends on the first wave of asexual parasites. The time 
necessary for gametocytaemia onset varies considerably 
among Plasmodium species. In the case of P. falciparum 
the releasing of mature gametocytes takes 8-10 days after 
which the gametocytes become infectious to mosquitoes 
in 2–3 days [58]. For that reason, in this model a value of 
12 ±  2 days is used for the parameter “gametocytaemia 
starting time” in the case of P. falciparum. The produc-
tion of P. vivax gametocytes starts with the first genera-
tion of merozoites and therefore gametocytaemia may 
occur within 1–3 days after the first asexual parasites are 
observed in the blood [59, 60], this is equivalent to the 
prepatent period plus 1–3 days that gives the 11 ± 2 days 
used in this model.

Considering treatment, P. vivax gametocytes are sus-
ceptible to most commonly used anti-malarial treatments 
with an approximate circulation time of 1 day after treat-
ment and they disappear with asexual parasite clearance 
[59, 61]. This is reflected in the model parameter “human 
infectious period if treated” that is equal to 24  h for P. 
vivax. On the other hand, P. falciparum gametocytes 
have been found to circulate for up to 55 days after treat-
ment unless primaquine is used, which reduces this time 
to approximately 6  days [62]. The average value used in 
this model for the P. falciparum parameter “human infec-
tious period if treated” is 300 h which was based on the 
treatment regime used for Padre Cocha during the study 

Fig. 4  Development stages of the Plasmodium agent in the mosquito agent vector and in the human agent host
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period which included primaquine and sulfadoxine/
pyrimethamine that eliminate parasitaemia in 7–14 days 
[31].

It must be considered that due to hypnozoite reser-
voirs in the liver, P. vivax infections present themselves 
in cycles and recurrent infections are common [56]. Both 
risk of recurrence and median survival time to recur-
rence were estimated to be of 0.3 and 203 days, respec-
tively [63]. Even though the reported risk of recurrence 
tends to be higher in recent publications, at the time of 
the Padre Cocha study primaquine was being used and 
treatment resistance was low, therefore, risk of recur-
rence was lower than in current times.

Transmission efficiency from humans to mosquitoes
Transmission efficiency of Plasmodium spp. from 
humans to A. darlingi mosquitoes has been determined 
in few studies, considering different factors such as 
asymptomaticity, parasite density and gametocytaemia. 
Bharti et al. [64] found a value around 35 % for transmis-
sion efficiency from human patients infected by P. vivax 
to A. darlingi. In the study presented by Alves et al. [65], 
although biased by the low number of observed trans-
missions, symptomless patients with very low parasite 
densities, approaching zero parasites per microlitre were 
found still infecting 1.2  % of the A. darlingi mosquito 
population. The same study found 22 % of symptomatic 
patients being able to successfully infect A. darlingi mos-
quitoes. In this model it is used a value of 0.4 for the 
transmission efficiency from symptomatic acute patients 
to mosquitoes for both P. falciparum and P. vivax. Given 
that asymptomatic patients are not as efficient transmit-
ters and that their values for transmission efficiency are 
significantly lower, in this model the transmission effi-
ciency from asymptomatic human agents to mosquitoes 
is set to 0.1 for both P. falciparum and P. vivax.

Human module
Humans are represented in the model as individual 
agents. The A. darlingi mosquito has nocturnal bit-
ing habits therefore the representation of daily human 
activities is not included in the model and the human 
agents are located in their houses and do not move dur-
ing the simulation. In the study period the human popu-
lation of Padre Cocha have oscillated between 1396 and 
1405 inhabitants [31]. The human agents are assigned 
randomly to the houses of the village. The number of 
human agent assigned to every household is determined 
by a Gaussian distribution. The minimum number of 
human agent in a house is set equal to 1. The positions 
of the houses in Padre Cocha during the study period are 
obtained from the study of Bautista et  al. [27]. The val-
ues of the parameters of the human module are showed 
in Table 5.

Human behaviour
The human agent behaviour is designed to reproduce 
the changes in the adherence to methods of protection 
against mosquito bites. In what follows, any element that 
obstacles the mosquitoes in biting humans is considered 
as a protection method against mosquitoes bites (bed 
nets, repellants, protective clothing, burn coils, fumi-
gants). Several studies in Africa and in the Amazon and 
in other malaria endemic areas [66, 67] demonstrated 
that behavioural aspects of human individual are impor-
tant in determining the malaria infection dynamics. The 
adherence to the use of bed nets was found influenced in 
the Brazilian Amazon [68] by seasonal factors including 
the absence or the presence of mosquitoes. These stud-
ies seem to indicate that local populations adopt protec-
tion methods against mosquito bites basically only if the 
perception of the malaria risk or the annoyance caused 
by mosquito bites is high enough to compensate the 

Table 5  Human module parameters

Parameter name Value Notes and references

Average number of human agents 1400 [31]

Parameters of the Gaussian distribution  
of human agents in every house

Mean = 6
σ = 3

[31]

High incidence threshold 8 % Calibration parameter

Low incidence threshold 1 % Calibration parameter

Probability of adoption of protection methods 0.15 Calibration parameter

protection period duration 365 days Calibration parameter

Pprotection period fraction 0.4 Calibration parameter

Fraction of human agents permanently protected against  
mosquito bites

0.3 Calibration parameter

Fraction of asymptomatic human agents 0.07 P. falciparum

Fraction of asymptomatic human agents 0.05 P. vivax
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discomfort and the economic costs associated with the 
use of bed nets and other protection methods. These 
facts are stylized in the ABM associating to the human 
agents a Boolean state variable called “protection against 
malaria” that specifies if the human agent is protecting 
itself from mosquito bites or not. When the malaria inci-
dence in the village is high human agents tend to protect 
themselves from mosquito bites changing their status 
of protection against mosquito bites. When the malaria 
incidence is low the human agents will switch gradually 
to a no protection state. A portion of human agents never 
change the protection state and is always considered as 
protected.

The way human agents change their protection against 
mosquito bites state is represented as a flow chart in 
Fig. 5. If the malaria incidence is above the value speci-
fied by the variable “high incidence threshold”, every 
simulation week, the human agent changes the value of 
its “protection against malaria” state variable to true with 
a probability specified by the parameter “probability of 
adoption of protection methods”. The total adherence to 
the use of the protection methods against malaria is then 
maintained by the human agent for a period that is a frac-
tion the time specified by the variable “protection period 
duration”. This initial fraction is given by the following 
relationship:

Period of total protection = protection period duration·

protection period fraction

After the period of total protection the level of protec-
tion against mosquito bites is linearly decreased and the 
period of partial protection starts. This period of partial 
protection lasts until the end of the protection period. 
At the beginning of the partial protection period when 
Pf is equal to 0 every attempt of bite will fail. At the end 
of the protection period when Pf is 1 every bite attempt 
succeeds. The reduction of the value of the variable Pf 
is introduced in the model to represent the diminution 
of the adherence to protection methods as well as the 
reduction in time of the effectiveness of the prevention 
method itself (holes creation in bed nets, decrease in the 
content of insecticide in impregnated bed nets, etc.). The 
last possible action included in the human agents behav-
iour is the following: when the simulated malaria inci-
dence falls below the value specified by the variable: “low 
incidence threshold” the human agent switches to a state 
of no protection against mosquito bites.

Immunity and asymptomaticity
The model does not consider explicitly the dynamics of 
acquired immunity against malaria. Only a fixed por-
tion of human agents is considered as immune, asymp-
tomatic and constantly infectious. The study of Roper 
et al. in Padre Cocha during 1998 indicated that only 2 % 
of the asymptomatic population was positive for malaria 
[31]; nevertheless only microscopy techniques were used 
to determine this result. There is discrepancy between 
microscopy and PCR diagnosis, with poor performance 

Fig. 5  Flow chart of the human agent time step
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of microscopy at low parasite densities [69]. In general, 
prevalence of asymptomatic infections in the Amazon 
region, including Peru, Brazil and Venezuela, is relatively 
low with values that are found to be less than 10 % [70] 
and around 5–8  % in Zungarococha and Manacamiri 
located in the peri-Iquitos area (Unpublished data pre-
sented in [70]). Since, as showed by Alves et al. [71], the 
PCR technique is 6–7 times more efficient than micros-
copy for detecting plasmodial infections the values of 
the fraction of asymptomatic human agents used in the 
model is six times higher of what found by Roper et  al. 
All the asymptomatic human agents are considered as no 
transmission-blocking.

As mentioned by Roper et  al. [31] no superinfection 
was detected in Padre Cocha during the study period. 
For this reason no superinfection is considered in the 
model: when a human agent is infected by a species of 
Plasmodium, the agent is considered as no susceptible to 
the infection of the other species of Plasmodium of the 
model.

Results
Cyclic peaks of malaria incidence
The model output resulting from the calibration process 
is presented in this section. In Fig. 6 the curve of simu-
lated monthly total malaria incidence is compared with 
the corresponding observed malaria monthly incidence. 
It is possible to note that the model can reproduce the 
observed pattern of temporal variation of the malaria 

incidence to a large extent. The sum of the P. vivax and 
P. falciparum incidences give rise to a simulated curve 
that, like the observed one, is almost zero during the 
months of August and September during the Nanay river 
low level season. The same simulated curve shows pro-
nounced peaks corresponding to the Nanay river high 
level seasons from the month of March to the month of 
June.

Unfortunately, it is not possible to have access to the 
desegregated counts of the observed malaria monthly 
incidence for P. vivax and P. falciparum and the monthly 
incidence curves cannot be validated separately for 
P. vivax and P. falciparum malaria. The only available 
desegregated data [27] are the cumulative yearly malaria 
incidence separated for P. vivax and P. falciparum that 
are showed in Table 6 together with the simulated yearly 
incidences. Also in this case of the yearly malaria inci-
dence the outputs of the model are close to the empirical 
observations.

To show how the model is sensible to the interactions 
between human individuals and the environment where 
they live, a modified version of the model is produced 
where the adherence level to methods of prevention 
against mosquito bites is maintained constant. In this 
new model parametrization the seasonal changes of the 
adherence to mosquito bites preventions methods are 
not included and the fraction of protected human agents 
is maintained equals to 0.46. As it is showed in Fig.  7, 
after the sharp increase in the malaria incidence that take 
place in August and September, the curves of simulated 
malaria incidence calculated without taking into account 
the human behaviour show a delay of nearly 2  months 
with regards to the empirical curve before the descend-
ant phase. The same delay was not showed by the curves 
in Fig. 6 where the human agents behaviour is included. 
Also the simulated curves with no human behaviour 
included show pronounced minima in October and 
November but the absolute value of these minima is far 
from the value that the observed malaria curves take in 
the same months.

Spatial analysis
As can be seen in Fig. 8, the spatial cluster analysis evi-
denced significant clusters of both P. vivax and P. falci-
parum. The relative risk of these clusters is defined as the 
number of cases in a windows centered over a household 
observed during the simulation, divided by the num-
ber of expected cases in the same window. The range 
of variation of the relative risk is quite high, fluctuat-
ing from a maximum of 5.6 to a minimum of 0.01. For 
both P. vivax and P. falciparum clusters of high relative 
risk are observed for the households located closer to 
the permanent and seasonal mosquitoes breeding sites. 

Fig. 6  Monthly malaria incidence as calculated by the ABM (red line: 
total malaria incidence, light blue P. vivax malaria incidence, dark blue P. 
falciparum malaria incidence). The simulated malaria incidence curves 
are compared with the observed monthly malaria incidence (black 
line) and the Nanay river level (blue dotted line) in Padre Cocha, Loreto, 
Peru, during the period from the beginning of the year 1996 to the 
end of the year 1998. The observed incidence curve is obtained from 
the study of Bautista et al. [27]
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In the central part of the village, far from water bodies 
there are clusters of low risk. The ABM simulation evi-
dences also that isolated houses like those located on the 
northeastern and northwestern part of the village could 
be subjected to higher risk of malaria. In the case of P. 
falciparum it is possible to observe the presence of high 
relative risk clusters close to the floodable areas in the 
southeastern side of the village not observed for P. vivax. 
The significant spatial fluctuations caused by the house-
holds and larval habitats heterogeneous spatial distribu-
tion evidenced by the simulation are in good agreement 
with the results obtained from the same spatial analysis 
carried out on experimental data by Bautista et  al. [27] 
whose study also evidenced the center and the bor-
ders of the village as areas of low and high relative risk, 
respectively.

A closer view of relative positions of households, 
malaria cases and breeding sites is showed in Fig. 9. The 
breeding productive sites are located close to inhabited 
places predominantly along the inundated river bank 

Table 6  Observed and simulated yearly malaria incidence separated for Plasmodium vivax and Plasmodium falciparum

The observed yearly incidence data are obtained from the study of Bautista et al. [27]

Year Observed P. falciparum  
yearly incidence (95 % CI)

Simulated P. falciparum  
yearly incidence

Observed P. vivax  
yearly incidence

Simulated P. vivax 
yearly incidence

1996 0.16 (0.14–0.18) 0.28 0.51 (0.48–0.53) 0.50

1997 0.29 (0.27–0.32) 0.30 0.47 (0.44–0.49) 0.46

1998 0.12 (0.10–0.13) 0.35 0.56 (0.53–0.58) 0.53

Fig. 7  Monthly malaria incidence as calculated by the ABM in the 
case when the human agents do not change the adherence to 
protection method against mosquito bites. The simulated curve (red) 
is compared with the observed monthly malaria incidence (black) in 
Padre Cocha, Loreto, Peru, during the period from the beginning of 
the year 1996 to the end of the year 1998

Fig. 8  Clusters of relative risk of households in Padre Cocha. Red circles correspond to high relative risk; blue circles correspond to low relative risk
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close to the village southeastern side. A comparison 
between Figs.  2 and 9 shows that during the river low-
level season only few mosquito agents laid eggs along 
the river bank and the most productive breeding sites 
during this season are the permanent stretches of water 
scattered around the village. The number of ovipositions 
in these permanent pools around the village is higher in 
proximity to the village. Furthermore, in agreement with 
the spatial analysis presented above, a great number of 
malaria cases among human agents are concentrated in 
households located close to the floodable areas in the 
southeastern part of the village and close to the perma-
nent pools far from the river.

Larval source management
The breeding sites management or larval source man-
agement (LSM) is an approach aimed at reducing the 
number of adult mosquito individuals emerging from 
breeding sites. The LSM can be implemented follow-
ing various strategies, for example by manipulating the 
habitats eliminating standing water. A second strategy 
is the habitat alteration adding chemicals to water in 
order to kill or to prevent the development of the lar-
vae [10]. Obviously when the land water cover changes 
remarkably as consequence of massive flooding originat-
ing from the changes of a river level like in the Amazon, 
adding chemical to flooded areas would be ineffective. In 
the other hand, many strategies of habitat manipulation 
are aimed to reduce the extension of aquatic habitats. 
As noted in the introduction to this paper, the malaria 
outbreaks observed in the Iquitos region from the year 
1996 were correlated with anthropogenic activities that 

altered the mosquito habitats leading to a change in the 
mosquito species composition. Certain types of environ-
ment modifications amplify the presence of A. darlingi: 
areas associated with low level of shading resulting from 
deforestation, areas with large water bodies and areas 
close to human population [7, 41]. Moreover Turell 
et al. [38] found that in 1999 the density of A. darlingi in 
Puerto Almendra, a village 18 km far from Padre Cocha, 
located in a riverine environment very similar to Padre 
Cocha, resulted very high if measured inside the village, 
while the same density fell almost to zero if measured 
300  m far from the village in a unaltered forested site. 
These facts may suggest that if the unaltered total cover 
of the original forested habitat is restored in critical areas 
around a village as a kind of LSM habitat manipulation, 
the resulting shading effect would decrease the presence 
of A. darlingi and the malaria transmission. Another 
habitat alteration strategy could be the construction 
of barriers to prevent the water of the river to inundate 
the areas close to the village. In any case the result of the 
LSM would be the elimination of mosquito breeding sites 
around the village.

The calibrated version of the ABM was used to simu-
late the effect of the elimination of mosquito breeding 
sites around the village of Padre Cocha. To carry out this 
test, several version of the model were built creating a 
sequence of “what if ” scenarios. In these test simulations 
a buffer area is created around every house of the simula-
tion. The buffer area is delimited by two radius rb and Rb. 
The first radius is fixed in every scenario simulation and 
is equal to 20 m. The second buffer radius is greater than 
rb and changes in every test scenario. All the geographical 

Fig. 9  Oviposition sites and malaria cases during the simulation period. The households are showed as graduated red circles whose areas are pro‑
portional to the number of simulated malaria cases. The geographical grid cover pixels used as breeding site by the mosquito agents are showed in 
graduated colors to highlight the number of ovipositions
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grid cover pixels that are distant more than rb and less 
than Rb from a house belong to the buffer area and the 
pixels belongings to the buffer area are considered as not 
suitable as breeding sites. Six independent simulations 
were then carried out varying the value of Rb from 50 to 
300  m in order to observe the effects of larval habitats 
elimination on the malaria incidence.

Figure 10 shows a plot resuming the results of the “what 
if ” scenarios simulations. The total annual malaria inci-
dence calculated as an average over the three (1996, 1997, 
1998) simulation years considerably decreases with the 
increasing of Rb. For Rb values above 200 m the malaria 
incidence fall almost to zero while for Rb =  150  m the 
incidence show a decreasing of the 87  %. This sharp 
effect is due to the fact that the mosquito agents have to 
increase the length of the blood-seeking and the breed-
ing site-seeking times because with the increase of Rb 
the breeding sites are moving progressively further from 
the houses. This generates a gonotrophic cycle increase 
leading to a point where the average length of two gono-
trophic cycles is greater than the average length of a mos-
quito agent life and the malaria transmission is blocked.

Conclusions
The ABM presented in this paper reproduces the 
observed patterns of local scale malaria transmission 
dynamics in a small riverine village in the Northern 
Peruvian Amazon. As usual in agent-based modelling, 
a bottom-up strategy was followed: individual scale ele-
ments (human and mosquito agents) were assembled 
together with a macro scale environment description to 
create a model where macroscopic patterns emerge as a 
collective behaviour. On this regard the model offers an 

explicit representation of interactions between two pop-
ulations of humans and mosquitoes in the context of a 
changing environment. The model was calibrated against 
empirical data of malaria incidence and the resulting cali-
brated model generated outputs that are in agreement 
with observed data. Obviously the model is not able to 
reproduce perfectly the malaria incidence time series 
and the observed spatial heterogeneities. Many factors 
not represented explicitly in the model contribute to the 
malaria transmission dynamics in the real world system. 
For example the exact relationships among the mos-
quito biology, ecology and ethology and environmental 
and climatic factors is far from being understood and 
studied in full detail. Consequently those interactions 
are represented only approximately in the model. For 
example the aquatic development stage of the mosquito 
life cycle is not represented in full details as shown in 
other individual-based models of malaria transmission 
[18, 23, 72]. A more detailed representation of A. dar-
lingi subadult development stage would imply the use of 
an extended set of unknown parameters describing the 
aquatic habitat in terms of mosquito eggs, larvae, and 
pupae predation, death rates, biomasses, number of eggs 
per oviposition and habitats carrying capacity. In the pre-
sented model mosquitoes breeding sites are only charac-
terized as areas where the mosquito agents lay eggs and 
from where adult mosquitoes emerge in number propor-
tional to the ovipositions. Other aspects of mosquitoes 
life cycle are not included: mosquito agents are strictly 
anthropophilic and the possibility of blood meals from 
animals is not included. Also some aspects describing the 
malaria transmission process like the transmission effi-
ciency from mosquito to human are no included in the 
model because the value determination for this param-
eter is really problematic. For that reason in the model, 
the malaria transmission efficiency from mosquitoes to 
symptomatic humans is considered equal to 1 although 
in the real world this efficiency could be significantly 
less than 1 [73]. Similarly the immunity acquisition and 
dynamics in humans are not represented in the model. 
With respect to the complex behaviours and features of 
humans as individuals and the socioeconomics features 
of the village under study, only a limited and approxi-
mate representation is included in the model. Patterns of 
human individual movements are not represented in the 
model although human work-related and regional human 
movements are identified as important driving forces 
in determining the malaria transmission process [74]. 
More specifically Roper et  al. [31] showed that some of 
the daily human activities in Padre Cocha after 6:00 pm 
and before 6:00 am are associated with an increased 
malaria risk. The model calibration had possibly included 
implicitly these increased malaria risks tuning the overall 

Fig. 10  Simulated average yearly malaria incidence as function of 
the larval habitats control buffer radius Rb. All the breeding sites 
inside the area delimited by the buffer radius are removed from the 
simulation. Red line: total yearly average malaria incidence, dark blue 
line: P. vivax yearly average malaria incidence, light blue line: P. falcipa-
rum yearly average malaria incidence
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degree of protection against mosquito bites of the human 
agent population.

The validated version of the model was used to build 
several “what if ” scenarios to understand the effect of 
larval sources site management. This result can be con-
sidered as an example of how an ABM of local malaria 
transmission could be used as a tool to study malaria 
transmission and to build a malaria control planning 
system [75]. A number of scenarios were considered to 
calculate the malaria incidence as a function of the exten-
sion of the area around the study village where the mos-
quito aquatic habitats were eliminated. The simulated 
scenarios showed that, eliminating mosquito larva in a 
buffer area extended more than 200  m around the vil-
lage the malaria transmission is completely eliminated. 
A similar “what if ” scenario study was carried out by Gu 
and Novak [17] for A. gambiae in an ABM of a hypotheti-
cal village where human habitations and breeding sites 
were created at random over a squared 40 × 40 grid. In 
this work the elimination of aquatic habitats generated a 
slower malaria incidence decrease, respect to what pre-
sented here, giving a reduction of 94  % in malaria inci-
dence when the breeding sites were eliminated in a range 
of 300 m from the houses. The same model gives a reduc-
tion of 86.8 % with a buffer radius of 200 m. Although the 
flight ranges of mosquitos agent are similar in the model 
presented here respect to the model of Gu and Novak, 
the different behaviour of malaria reduction with the 
increase of the buffer radius can be explained in term of 
the different gonotrophic cycle lengths used in the two 
models and also because in the model presented here the 
aquatic habitats are no uniformly distributed across the 
simulation landscape and are concentrated in the flood-
able areas in southeastern side of the village very close to 
the houses.

Possible future development of this study will be the 
design and the inclusion into the model of more policy-
oriented scenarios in order to create a simulation tool 
that could be integrated into a malaria control scenario 
planning system for low incidence malaria areas. Such 
a simulation tool could be used to explore the effect of 
several local scale strategies to control or eliminate the 
malaria transmission like intra-household prevention, 
environment management prevention and effects of anti-
malaria treatments.

Abbreviations
ABM: agent-based model; DS: duration of Sporogony; LSM: larval source 
management.

Authors’ contributions
FP developed and implemented the model, performed the literature review, 
designed the experiments, conducted the simulations, data analysis, and 
drafted the manuscript. JAV validated the plasmodium module, JM, BF and 

GRG interpreted the results. CFM, WP and AB supervised the study. All authors 
read and approved the final manuscript.

Author details
1 Universidad San Francisco de Quito, Diego de Robles, s/n, Cumbayá, Ecuador. 
2 Duke University, 310 Trent Drive, Room 227, Box 90519, Durham, NC 27708, 
USA. 3 Instituto de Geociências‑IGC Belo Horizonte, Universidade Federal de 
Minas Gerais, Belo Horozonte, Brazil. 4 Oswaldo Cruz Foundation (FIOCRUZ), 
Universidad Peruana Cayetano Heredia, Lima, Peru. 5 Department of Environ‑
mental Health Sciences, School of Public Health, University at Albany, State 
University of New York, 1 University Place GEC, 145 Rensselaer, New York, NY 
12144, USA. 6 College of Economics Departamento de Demografia/FACE/
UFMG, Office 3093, Av. Antônio Carlos, 6627‑Pampulha, Belo Horizonte, Minas 
Gerais 31270‑901, Brazil. 

Acknowledgements
This study is an outcome of the LUCIA project funded by the IAI—The Inter‑
american Institute for Global Change Research, CRNIII 3036. Special thanks to 
Patricia Martinez for geographical information analysis.

Competing interests
The authors declare that they have no competing interests.

Received: 9 May 2015   Accepted: 2 December 2015

References
	1.	 Malanson GP, Zeng Y, Walsh SJ. Landscape frontiers, geography frontiers: 

lessons to be learned. Prof Geogr. 2006;58:383–96.
	2.	 Malanson GP, Zeng Y, Walsh SJ. Complexity at advancing ecotones and 

frontiers. Environ Plan A. 2006;38:619–32.
	3.	 Pan W, Carr D, Barbieri A, Bilsborrow R, Suchindran C. Forest clearing in 

the Ecuadorian Amazon: a study of patterns over space and time. Popul 
Res Policy Rev. 2007;26:635–59.

	4.	 Perz SG, Aramburú C, Bremner J. Population, land use and deforesta‑
tion in the Pan Amazon Basin: a comparison of Brazil, Bolivia, Colombia, 
Ecuador, Perú and Venezuela. Environ Dev Sustain. 2005;7:23–49.

	5.	 Coomes OT, Grimard F, Burt GJ. Tropical forests and shifting cultivation: 
secondary forest fallow dynamics among traditional farmers of the Peru‑
vian Amazon. Ecol Econ. 2000;32:109–24.

	6.	 Arce-Nazario JA. Human landscapes have complex trajectories: recon‑
structing Peruvian Amazon landscape history from 1948 to 2005. Landsc 
Ecol. 2007;22:89–101.

	7.	 Vittor A, Pan W, Gilman RH, Tielsch J, Glass G, Shields T, et al. Linking 
deforestation to malaria in the Amazon: characterization of the breeding 
habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med 
Hyg. 2009;81:5–12.

	8.	 Hiwat H, Bretas G. Ecology of Anopheles darlingi Root with respect to 
vector importance: a review. Parasit Vectors. 2011;4:177.

	9.	 Griffing SM, Gamboa D, Udhayakumar V. The history of 20th century 
malaria control in Peru. Malar J. 2013;12:303.

	10.	 World Health Organization. World malaria report, 2013. Geneva. 2013.
	11.	 Barbieri AF, Sawyer DO, Soares-Filho BS. Population and land use effects 

on malaria prevalence in the southern Brazilian Amazon. Hum Ecol. 
2005;33:847–74.

	12.	 Smith DL, McKenzie FE. Statics and dynamics of malaria infection in 
Anopheles mosquitoes. Malar J. 2004;3:13.

	13.	 Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE. Ross, 
macdonald, and a theory for the dynamics and control of mosquito-
transmitted pathogens. PLoS Pathog. 2012;8:e1002588.

	14.	 Mandal S, Sarkar RR, Sinha S. Mathematical models of malaria-a review. 
Malar J. 2011;10:202.

	15.	 Gao D, Ruan S. A multipatch malaria model with logistic growth popula‑
tions. SIAM J Appl Math. 2012;72:819–41.

	16.	 Brown DG, Riolo R, Robinson DT, North M, Rand W. Spatial process and 
data models: toward integration of agent-based models and GIS. J Geogr 
Syst. 2005;7:25–47.



Page 18 of 19Pizzitutti et al. Malar J  (2015) 14:514 

	17.	 Gu W, Novak RJ. Agent-based modelling of mosquito foraging behaviour 
for malaria control. Trans R Soc Trop Med Hyg. 2009;103:1–14.

	18.	 Bomblies A, Duchemin J-B, Eltahir EAB. Hydrology of malaria: model 
development and application to a Sahelian village. Water Resour Res. 
2008;44:W12445.

	19.	 Bomblies A. Agent-based modeling of malaria vectors: the importance of 
spatial simulation. Parasit Vectors. 2014;7:1–10.

	20.	 Linard C, Ponçon N, Fontenille D, Lambin EF. A multi-agent simulation to 
assess the risk of malaria re-emergence in southern France. Ecol Modell. 
2009;220:160–74.

	21.	 Niaz Arifin SM, Madey GR, Collins FH. Examining the impact of larval 
source management and insecticide-treated nets using a spatial agent-
based model of Anopheles gambiae and a landscape generator tool. 
Malar J. 2013;12:290.

	22.	 Yamana TK, Bomblies A, Laminou IM, Duchemin J-B, Eltahir EAB. Linking 
environmental variability to village-scale malaria transmission using a 
simple immunity model. Parasit Vectors. 2013;6:226.

	23.	 Depinay J-MO, Mbogo CM, Killeen G, Knols B, Beier J, Carlson J, et al. A 
simulation model of African Anopheles ecology and population dynam‑
ics for the analysis of malaria transmission. Malar J. 2004;3:29.

	24.	 Crooks A, Castle C, Batty M. Key challenges in agent-based modelling for 
geo-spatial simulation. Comput Environ Urban Syst. 2008;32:417–30.

	25.	 Ligtenberg A, van Lammeren RJA, Bregt AK, Beulens AJM. Validation of 
an agent-based model for spatial planning: a role-playing approach. 
Comput Environ Urban Syst. 2010;34:424–34.

	26.	 Pizzitutti F, Mena C, Walsh S. Modelling tourism in the Galapagos islands: 
an agent-based model approach. J Artif Soc Soc Simul. 2014; 17.

	27.	 Bautista CT, Chan AST, Ryan JR, Calampa C, Roper MH, Hightower AW, 
et al. Epidemiology and spatial analysis of malaria in the Northern Peru‑
vian Amazon. Am J Trop Med Hyg. 2006;75:1216–22.

	28.	 Kulldorff M. A spatial scan statistic. Commun Stat Theory Methods. 
1997;26:1481–96.

	29.	 Kulldorff M. SaTScan TM. 2014.
	30.	 Luke S, Cioffi-Revilla C, Panait L, Sullivan K, Balan G. MASON: a multiagent 

simulation environment. Simulation. 2005;81:517–27.
	31.	 Roper MH, Carrion Torres RS, Cava Goicochea CG, Andersen EM, Aram‑

burú Guarda JS, Calampa C, et al. The epidemiology of malaria in an epi‑
demic area of the Peruvian Amazon. Am J Trop Med Hyg. 2000;62:247–56.

	32.	 Deane L, Causey O, Deane M. Notas sobre a distribuição e a biologia dos 
anofelinos das regiões nordestina e amazônica do Brasil. Rev Fund SESP. 
1948;1:827–35.

	33.	 de Barros F, Honório N. Man biting rate seasonal variation of malaria vec‑
tors in Roraima, Brazil. Mem Inst Oswaldo Cruz. 2007;102:299–302.

	34.	 Charlwood J, Alecrim W. Capture-recapture studies with the South Ameri‑
can malaria vector Anopheles darlingi, Root. Ann Trop Med Parasitol. 
1989;83:569–76.

	35.	 Achee N, Grieco J, Andre R, Rejmankova E, Roberts D. A mark-release-
recapture study using a novel portable hut design to define the flight 
behavior of Anopheles darlingi in Belize, Central America. J Am Mosq 
Control Assoc. 2005;21:366–79.

	36.	 Hole-filled SRTM for the globe Version 4.
	37.	 Villarreal-treviño C, Vásquez GM, López-sifuentes VM, Escobedo-vargas K, 

Huayanay-repetto A, Linton Y, et al. Establishment of a free-mating, long-
standing and highly productive laboratory colony of Anopheles darlingi 
from the Peruvian Amazon. Malar J. 2015;14:227.

	38.	 Turell MJ, Sardelis MR, Jones JW, Watts DM, Fernandez R, Carbajal F, et al. 
Seasonal distribution, biology, and human attraction patterns of mosqui‑
toes (Diptera: Culicidae) in a rural village and adjacent forested site near 
Iquitos, Peru. J Med Entomol. 2008;45:1165–72.

	39.	 León WC, Valle JT, Naupay RO, Tineo E V, Rosas AA, Palomino MS: Compor‑
tamiento estacional del Anopheles (Nyssorhynchus) darlingi Root 1926 en 
localidades de Loreto Y Madre de Dios, Peru 1999–2000. 2003; 20:22–27.

	40.	 Reinbold-Wasson DD, Sardelis MR, Jones JW, Watts DM, Fernandez R, Car‑
bajal F, et al. Determinants of Anopheles seasonal distribution patterns 
across a forest to periurban gradient near Iquitos, Peru. Am J Trop Med 
Hyg. 2012;86:459–63.

	41.	 Vittor AY, Gilman RH, Tielsch J, Glass G, Shields T, Lozano WS, et al. The 
effect of deforestation on the human-biting rate of Anopheles darlingi, 
the primary vector of Falciparum malaria in the Peruvian Amazon. Am J 
Trop Med Hyg. 2006;74:3–11.

	42.	 Yuval B. Mating systems of blood-feeding flies. Annu Rev Entomol. 
2006;51:413–40.

	43.	 Lounibos LP, Lima DC, Lourenço-de-Oliveira R. Prompt mating of released 
Anopheles darlingi in western Amazonian Brazil. J Am Mosq Control 
Assoc. 1998;14:210–3.

	44.	 Gibson G, Torr SJ. Visual and olfactory responses of haematophagous 
Diptera to host stimuli. Med Vet Entomol. 1999;13:2–23.

	45.	 Alonso WJ, Schuck-Paim C. The “ghosts” that pester studies on learn‑
ing in mosquitoes: guidelines to chase them off. Med Vet Entomol. 
2006;20:157–65.

	46.	 Thomas CJ, Cross DE, Bøgh C. Landscape movements of Anoph‑
eles gambiae malaria vector mosquitoes in rural Gambia. PLoS One. 
2013;8:e68679.

	47.	 Service M. Effects of wind on the behaviour and distribution of mosqui‑
toes and blackflies. Int J Biometeorol. 1980;24:347–53.

	48.	 Achee NL, Grieco JP, Rejmankova E, Andre RG, Vanzie E, Polanco J, et al. 
Biting patterns and seasonal densities of Anopheles mosquitoes in 
the Cayo District, Belize, Central America with emphasis on Anopheles 
darlingi Biting patterns and seasonal densities of Anopheles mosquitoes 
in the Cayo District, Belize, Central Ameri. J Vector Ecol. 2006;31:45–57.

	49.	 Rozendaal J. Biting and resting behavior of Anopheles darlingi in the 
Suriname rainforest. J Am Mosq Control Assoc. 1989;5:351–8.

	50.	 Dantas C, Tadei WP, Abdalla FC, Filemon P, De Oliveira CD, Pimenta P, et al. 
Multiple blood meals in Anopheles darlingi (Diptera: Culicidae). J Vector 
Ecol. 2012;37:351–8.

	51.	 de Barros FSM, Honório NA, Arruda ME. Survivorship of Anopheles dar‑
lingi (Diptera: Culicidae) in relation with malaria incidence in the Brazilian 
Amazon. PLoS One. 2011;6:e22388.

	52.	 Bergo ES, Buralli GM, Santos JLF, Gurgel SM. Avaliação Do Desenvolvi‑
mento Larval De Anopheles Darlingi Criado Em Laboratório Sob Difer‑
entes Dietas. Rev Saude Publica. 1990;24:95–100.

	53.	 Craig MH, Snow RW, le Sueur D. A climate-based distribution model 
of malaria transmission in sub-Saharan Africa. Parasitol Today. 
1999;15:105–11.

	54.	 Ekpenyong E, Eyo J. Plasmodium infection in man: a review. Anim Res Int. 
2006;3:573–80.

	55.	 Detinova TS. Age grouping methods in Diptera of medical importance. 
Geneva. 1962.

	56.	 Price R, Tjitra E, Guerra C, Yeung S, White NJ, Anstey NN. Vivax malaria: 
neglected and not benign. Am J Trop Med Hyg. 2007;77:79–87.

	57.	 Warrell DA, Gilles HM. Essential malariology. CRC Press. 2002.
	58.	 Hayward RE, Tiwari B, Piper KP, Baruch DI, Day KP. Virulence and transmis‑

sion success of the malarial parasite Plasmodium falciparum. Proc Natl 
Acad Sci USA. 1999;96:4563–8.

	59.	 Bousema T, Drakeley C. Epidemiology and infectivity of Plasmodium falci‑
parum and Plasmodium vivax gametocytes in relation to malaria control 
and elimination. Clin Microbiol Rev. 2011;24:377–410.

	60.	 McKenzie FE, Jeffery GM, Collins WE. Gametocytemia and fever in human 
malaria infections. J Parasitol. 2007;93:627–33.

	61.	 Douglas NM, Simpson JA, Phyo AP, Siswantoro H, Hasugian AR, 
Kenangalem E, et al. Gametocyte dynamics and the role of drugs in 
reducing the transmission potential of plasmodium vivax. J Infect Dis. 
2013;208:801–12.

	62.	 Bousema T, Okell L, Shekalaghe S, Griffin JT, Omar S, Sawa P, et al. Revisit‑
ing the circulation time of Plasmodium falciparum gametocytes: molecu‑
lar detection methods to estimate the duration of gametocyte carriage 
and the effect of gametocytocidal drugs. Malar J. 2010;9:136.

	63.	 Van den Eede P, Soto-Calle VE, Delgado C, Gamboa D, Grande T, Rodri‑
guez H, et al. Plasmodium vivax sub-patent infections after radical treat‑
ment are common in Peruvian patients: results of a 1-year prospective 
cohort study. PLoS One. 2011;6:e16257.

	64.	 Bharti A, Chuquiyauri R, Brouwer K. Experimental infection of the 
neotropical malaria vector Anopheles darlingi by human patient-
derived Plasmodium vivax in the Peruvian Amazon. Am J Trop Med Hyg. 
2006;75:610–6.

	65.	 Alves F, Gil L, Marrelli M. Asymptomatic carriers of Plasmodium spp. as 
infection source for malaria vector mosquitoes in the Brazilian Amazon. J 
Med Entomol. 2005;42:777–9.

	66.	 Heggenhougen HK, Hackethal V, Vivek P. The behavioural and social 
aspects of malaria and its control. Geneva. 2003.



Page 19 of 19Pizzitutti et al. Malar J  (2015) 14:514 

	67.	 Kroeger A, Mancheno M, Alarcon J, Pesse K. Insecticide-impregnated bed 
nets for malaria control : concerning acceptability and effectiveness. Am 
Soc Trop Med Hyg. 1995; 53.

	68.	 Santos JB. Baixa aderência e alto custo como fatores de insucesso do 
uso de mosquiteiros impregnados com inseticida no controle da malária 
na Amazônia Brasileira Low adherence and high cost as failure factors 
of impregnated bed nets with insecticide for malaria cont. Rev Soc Bras 
Med Trop. 1999;32:333–41.

	69.	 Coleman R, Sattabongkot J, Promstaporm S, Maneechai N, Tippayachai B, 
Kengluecha A, et al. Comparison of PCR and microscopy for the detection 
of asymptomatic malaria in a Plasmodium falciparum/vivax endemic area 
in Thailand. Malar J. 2006;5:121.

	70.	 Roshanravan B, Kari E, Gilman R, Cabrera L, Lee E, Metcalfe J, et al. 
Endemic malaria in the Peruvian Amazon region of Iquitos. Am J Trop 
Med Hyg. 2003;69:45–52.

	71.	 Alves F, Durlacher R, Menezes M. High prevalence of asymptomatic 
Plasmodium vivax and Plasmodium falciparum infections in native Ama‑
zonian populations. Am J Trop Med Hyg. 2002;66:641–8.

	72.	 Niaz Arifin SM, Arifin R, Pitts D, Rahman M, Nowreen S, Madey G, et al. 
Landscape epidemiology modeling using an agent-based model and a 
geographic information system. Land. 2015;4:378–412.

	73.	 Burkot T, Graves P, Cattan J. The efficiency of sporozoite transmission 
in the human malarias, Plasmodium falciparum and P. vivax. Bull World 
Health Organ. 1987;65:375–80.

	74.	 Cohen JM, Smith DL, Cotter C, Ward A, Yamey G, Sabot OJ, et al. Malaria 
resurgence: a systematic review and assessment of its causes. Malar J. 
2012;11:122.

	75.	 WHO Malaria Policy Advisory Committee and Secretariat. Malaria Policy 
Advisory Committee to the WHO: conclusions and recommendations of 
March 2013 meeting. Malar J. 2013;12:213.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:


	A validated agent-based model to study the spatial and temporal heterogeneities of malaria incidence in the rainforest environment
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Purpose of the model

	Methods
	Short model description
	Process overview and scheduling
	Model calibration and validation
	Spatial analysis
	Software and hardware environment
	Environmental module
	Study area
	Meteorological data
	The simulation grid covers
	Hydrological submodule
	Mosquitoes breeding sites
	Entomological module
	Mating
	Blood-seeking and breeding habitat-seeking movements
	Blood meal
	Gonotrophic cycle and oviposition
	Aquatic development stage
	Daily survival probability and death
	Plasmodium module
	Mosquito-related Plasmodium parameters: the sporogonic cycle
	Human-related Plasmodium parameters
	Values of the human-related Plasmodium parameters
	Transmission efficiency from humans to mosquitoes
	Human module
	Human behaviour
	Immunity and asymptomaticity

	Results
	Cyclic peaks of malaria incidence
	Spatial analysis
	Larval source management

	Conclusions
	Authors’ contributions
	References




