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Abstract 

Background:  The successful control of malaria vectors requires the control of both the larval and adult stages. The 
adult control methods through indoor residual spraying (IRS) and use of long-lasting insecticidal nets (LLINs) continue 
to be widely used with some high measure of success. Larval control methods are also being used by a number of 
National Malaria Control Programmes (NMCPs) with limited understanding of its contribution. Larval control might be 
needed in some areas to move from malaria control to elimination. This experimental study was conducted to assess 
the field effectiveness of winter larviciding on the larval stages of the mosquito in Botswana and Zimbabwe.

Methods:  Two villages were selected in each of the two countries, one as an intervention and the other as the 
control. Water bodies in the intervention villages were treated using the commercial product VectoBac® WG (Valent 
BioSciences Corporation, IL, USA) containing the active ingredient Bacillus thuringiensis var. israelensis (Bti), a WHO 
recommended bio-larvicide, applied at a rate of 300 g per hectare. Random-effects Poisson regression was employed 
during data analysis to compare intervention with control sites with respect to larval counts.

Results:  The average marginal effect of larviciding on the mosquito larvae taking interaction with time (period) into 
account, was −1.94 (95% CI −2.42 to −1.46) with incidence rate ratio of 0.14, thus an 86% larval reduction attribut-
able to the intervention for both countries combined. There was a 92% and 65% effect for Botswana and Zimbabwe 
respectively. The effect on the early larval and late stages was 77% (P < 0.001) and 91% (P < 0.001), respectively. Over-
all, intervention larval sampling points had five more larvae than the control at baseline and 26 less after 16 weeks. 
The effect on the different species also showed similar trends.

Discussion/conclusion:  Larval control using Bti showed a high effect on the population of the mosquito larvae. The 
reduction of the early and late larval stages can lead to reduced adult mosquito emergence and low adult mosquito 
densities. Larviciding can be used to control mosquito vector population by suppressing the larval stages thereby 
reducing adult emergence and malaria risk.
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Background
The World Health Organization (WHO) has tar-
geted malaria for elimination which can be achieved 
through strengthening of country surveillance, diagno-
sis, case management and vector control activities [1, 

2]. Implementation of proven vector control interven-
tions of long-lasting insecticide-treated nets (LLINs) and 
indoor residual spraying (IRS) is currently at the core of 
successful malaria vector control [3–5]. LLINs protect 
their occupants by diverting host-seeking vectors and 
by killing those that attempt to feed [6, 7], but the num-
ber distributed annually since 2005 has remained below 
the required number to reach universal access [8–10]. In 
sub-Saharan Africa early malarial eradication pilot pro-
jects showed that malaria is highly responsive to vector 
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control by IRS [11, 12], with the first trial being carried 
out in 1931 in KwaZulu-Natal, South Africa using pyre-
thrum. In the 1950s, IRS with DDT had become the main 
vector control method in South Africa [11].

Integrated vector management (IVM), targeting both 
larval and adult mosquitoes has lately received a lot of 
attention because of its potential in control and elimi-
nation of malaria [4, 5]. The interest in larval control 
led the WHO to issue an Interim Position Statement on 
Larviciding in sub-Saharan Africa in 2012 [3]; and subse-
quently developed and launched the Larval Source Man-
agement (LSM) guidelines in 2013 [13]. Recent evidence 
of larviciding effectiveness presents an opportunity in 
sub-Saharan Africa, particularly in urban areas because 
of the rapidly growing urban centres [14]. Studies have 
shown effectiveness of larviciding in urban areas [14–17], 
in highlands [18], and when used in combination with 
LLINs [3–5]. Based on available data, larviciding has 
been recommended as a complementary intervention to 
IRS and LLINs [13], and to be utilized in areas with water 
bodies which are few, fixed and findable while additional 
research is being conducted to measure the effectiveness 
of the intervention [19].

Reports received from national programmes indicate 
that 48 malaria-endemic countries worldwide use lar-
val control in certain specific foci of malaria transmis-
sion of which 18 are in sub-Saharan Africa [10]. These 
reports give an indication of the range of larval control 
methods employed, but the scale of efforts is not quan-
tified and the impact on individual country malaria bur-
den is not easily measured. With the increasing trends 
of resistance to pyrethroids used for IRS and for treating 
LLINs [20–24], there is a demand for alternative technol-
ogy and products to help in the control and subsequent 
elimination of malaria. Behavioural adaptation of adult 
mosquito vectors gives them the ability to avoid LLINs 
and walls treated through IRS [25–28], while research 
on other potential malaria control interventions such as 
transmission-blocking vaccines and genetically modified 
mosquitoes have not been successful [29]. There is cur-
rent discussion that relying solely on IRS and LLINs may 
be insufficient to achieve malaria elimination in much of 
sub-Saharan Africa [15], and larviciding would have to be 
part of an integrated vector management (IVM) approach 
[30] that could help hinder malaria transmission.

This study was conducted in selected semi-arid rural 
areas of Botswana and Zimbabwe to establish the effec-
tiveness of winter larviciding as an additional vector con-
trol intervention. The study involved assessment of the 
effectiveness of larviciding on larval density as well as 
adult mosquito density. This paper, presents a compre-
hensive analysis of the effectiveness of winter larviciding 
on larval density in two semi-arid regions.

Methods
Study design and setting
An experimental study was conducted in two neighbour-
ing countries, Botswana and Zimbabwe. In Botswana, 
Mathathane and Molalatau villages in Bobirwa District, 
which are 25  km apart were selected as the interven-
tion and the control villages, respectively. In Zimbabwe, 
Birchenough Bridge which is an irrigation area was used 
as the study village, with the northern part of the village 
being used as the intervention area and the section of the 
village south of the irrigation scheme being used as the 
control. The irrigation fields acted as the buffer between 
the intervention and the control area, and distance 
between the two study arms was 5  km. With north to 
south bound winds, there was minimal expectation that 
mosquitoes will fly from the control areas to the inter-
vention area.

The villages in the two countries were selected with 
the help of the national malaria control programmes 
for the assessment of larviciding in supporting elimina-
tion efforts in similar localities. The whole of Botswana 
is in the pre-elimination phase and experiencing concen-
trated malaria with low transmission. Mathathane and 
Molalatau villages in Botswana have previously reported 
sporadic malaria outbreaks and entomological surveys 
have yielded positively on malaria vectors. In Zimbabwe, 
Birchenough Bridge which is in Buhera District, reports 
the lowest number of malaria cases in Manicaland prov-
ince and has the potential to be considered for malaria 
pre-elimination.

Data collection
Larval habitat surveying and mapping
The location and type of larval breeding habitats was sur-
veyed in May 2015 in both the intervention and the con-
trol villages. All semi-permanent and permanent aquatic 
mosquito habitats in the intervention and control villages 
were mapped using handheld geographic positioning 
system receivers. Mapped habitats were given a unique 
identification name and number to allow quick reference 
during field operations, including global positioning sys-
tem (GPS) coordinates [13].

In both countries, the study arms were characterized 
by few larval habitats as all of the temporary habitats had 
dried up. Breeding was mainly along river beds, with a lot 
of animal activity which was creating thousands of min-
ute breeding points. However, these hoofmarks were not 
mapped as separate breeding points.

In the intervention area of Zimbabwe, larval habitats 
were tributaries draining from Save river and the irriga-
tion area through seepage. The two tributaries referred 
as Bonda Mud and Bonda Sand permanently have water 
throughout the year, each stretching for almost 500  m. 
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At the start of the data collection, the two tributaries 
including their collection ponds had an estimated com-
bined water surface area of 0.5 hectares with bonda sand 
being approximately 0.3 hectares and bonda mud being 
0.2 hectares. In Zimbabwe, the control area was down-
stream and south of the irrigation. Permanent breeding 
was along five irrigation drains feeding into a stream that 
later drains into the Save river a further three kilometres 
from the human settlements. Additional breeding was 
along a drain from a borehole that supplies potable water 
to the local residents.

In Mathathane, the intervention village in Botswana, 
breeding occurred along river beds of Selepye and 
Mathathane that pass through the village. The village 
lies on an aquifer and on the southern part of the village 
water naturally comes out, flows and settles along the 
beds of the two rivers. It flows and covers a distance of 
400 m along Mathathane river with a water surface area 
of approximately 0.5 hectares while along Selepye river 
it covers a surface of approximately 1.5 hectares along 
its 2 km stretch. In the control village of Molalatau, the 
water source to the river where permanent breeding 
occurs is the borehole drilled on the aquifer where water 
flows out under pressure into the river.

Treatment of larval habitats
Treatment of the larval habitats was done in winter of 
2015, from June to October, using the commercial prod-
uct VectoBac® WG (Valent BioSciences Corporation, IL, 
USA) containing the active ingredient Bacillus thuring-
iensis var. israelensis (Bti), a WHO recommended bio-
larvicide [31]. Application of biolarvicide was conducted 
in intervention areas/villages at two  week intervals for 
eight time periods. Though mapped, water bodies in 
the control villages were not treated. In both Botswana 
and Zimbabwe, larviciding was conducted by commu-
nity volunteers who were identified with the help of the 
local community leadership and through the local health 
facilities.

In Zimbabwe, two community volunteers participated 
in the study and worked under the full supervision of an 
entomologist seconded to the study by the Ministry of 
Health. In Botswana, three community volunteers par-
ticipated throughout the study. The main responsibilities 
of the community volunteers was to identify breeding 
habitats, conduct larviciding and assist the entomologist 
in larval sampling. They received training from the study 
coordinator and the entomologist on how to identify 
breeding sites and complete the habitat survey forms and 
on how to apply larvicide. Through their interaction with 
the entomologist and the study coordinator, they also 
learnt how to sample larvae and determine larval den-
sity by type and stage. However these activities were the 

responsibility of the study coordinator and the entomolo-
gists, and the volunteers were conducting these activi-
ties under supervision. Knap sack sprayers were used for 
application of the larvicide at a rate of 300 grams per hec-
tare surface of water.

Intervention timelines
Implementation of the intervention started early June in 
Zimbabwe (Fig.  1) and seven weeks later in Botswana. 
Implementation continued for 16  weeks at each of the 
two countries at two week intervals.

Entomological surveys
Larval inspections and sampling was conducted consist-
ently at two  week intervals before the next treatment 
in intervention areas, and the next day in the control 
villages. VectoBac® WG product has previously dem-
onstrated to have a high effectiveness within the first 
24–48 h on low doses [32]. In this study, larval sampling 
was repeatedly conducted at the same sampling points, 
and 14 days after treatment and just before the next treat-
ment. During larval sampling, data on both habitat occu-
pancy and larval density was collected.

Habitat occupancy  The presence or absence of larvae in 
a breeding site was determined by visual observation. If a 
habitat was positive (i.e. larvae are present), the next step 
was to determine larval density.

Larval density  The presence or absence of larvae was 
scored after a minimum of 10 dips per site [33], taken 
with a standard 250 ml capacity mosquito dipper (Clarke 
Corporation, IL, USA). The following information was 
recorded for every site during the surveys: (i) the presence 
or absence of early larvae stages (stages I and II instars), 
(ii) late stages (stages III and IV instars). The larvae were 
also disaggregated by specie, either Anopheles or Culex. 
The proportion of late instar larvae was calculated as an 
indicator of larval survival, adult mosquito emergence 

June 6 – Sep 12

July 25-Oct 31

Zi
m

ba
bw

e
Bo

ts
w

an
a

 2
01

5

Ju
n 

6 

Ju
n 

13
 

Ju
n 

20
 

Ju
n 

27
 

Ju
l 4

 

Ju
l 1

1 

Ju
l 1

8 

Ju
l 2

5 

Au
g 

1 

Au
g 

8 

Au
g 

15
 

Au
g 

22
 

Au
g 

29
 

Se
p 

5 

Se
p 

12
 

Se
p 

19
 

Se
p 

26
  

O
ct

 3
 

O
ct

 1
0 

 

O
ct

 1
7 

O
ct

 2
4 

O
ct

 3
1 

Fig. 1  Intervention timelines for Botswana and Zimbabwe
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and appropriateness of application by the larvicider. Mor-
phological features used to identify Culex larvae were a 
rounded head, presence of a long siphon tube, and a rest-
ing position which is at an angle to the water surface. 
Anopheles features included a long head, a short and at 
times invisible siphon tube, and a resting position which 
is parallel to the water surface.

Statistical analyses
From each larval sampling site, larval counts at each of 
eight time periods 14  days apart were done. The time 
periods for the two countries did not coincide exactly, 
the Zimbabwe arm ran for periods one through eight 
and the Botswana arm from period four to 11. The anal-
yses assessed larval counts for intervention and control 
sites. Random-effects Poisson regression was employed 
to assess the relationship between larval counts and the 
fixed-effects treatment (larvicided; not larvicided), coun-
try (Botswana; Zimbabwe), time period, the interaction 
between treatment and time period and covariate base-
line count. Sites were specified as the random-effects 
component with an intercept and takes care of the 
repeated measures within sites. The incidence rate ratio 
(IRR) for treatment was of primary importance. Data 
analysis was done using Stata Release 13 and14, (Stata-
Corp, College Station, TX: StataCorp LP).

Ethical considerations
Approval for the study was obtained from the Ethics 
Committee of the Faculty of Health Sciences, University 
of Pretoria (South Africa, Protocol number 289/2014); 
The Human Research Development Committee (HRDC) 
of the Botswana Ministry of Health; and the Medi-
cal Research Council of Zimbabwe (Approval num-
ber MRCZ/A/1898). Support to conduct the study was 
obtained from the National Malaria Control Programmes 

of both Zimbabwe and Botswana. Local chiefs were used 
as the entry point to the study communities and commu-
nity consent for the implementation of mosquito larval 
control was obtained during community meetings initi-
ated through the local area chief and village heads.

Results
Larval density
Table 1 below shows the average larval density per dip at 
visit one through visit eight in both Botswana and Zim-
babwe. Data collection started early in Zimbabwe on 
the 4th of June 2015, ending on 12th of September 2015, 
while in Botswana data collection and the interventions 
started on the 25th of July 2015 and ending on the 30th of 
October 2015.

Botswana started with high larval counts for both inter-
vention and control which were comparable. On average, 
there were 32 and 33 larvae per dip in the intervention and 
control area respectively. Zimbabwe had an average larval 
count of 22 per dip at baseline (visit 1) in the intervention 
area, and 10 larvae in the control. The control areas in Bot-
swana maintained larval density at more than 30 while in 
Zimbabwe, there was a reduction to an average of three 
larvae. These counts are the average for all the sampling 
points in each of the two countries and study arms.

Average change in larval density
Table 2 and Fig. 2 show the predicted difference/change 
in number of larvae in the intervention areas rela-
tive to the control by visit and country attributable to 
larviciding.

From Table 2 above, the average difference in the total 
number of larvae as a result of intervention ranged from 
0.45 at visit one to 21.76 at visit eight, and 13.77 and 22.01 
for Botswana and Zimbabwe, respectively. At baseline or 
visit 1, the intervention and control sites in Botswana 

Table 1  Larval density by visit and country

NB The average number of larvae was rounded to the next whole number

Average number of larvae per dip by country and visit

Botswana Zimbabwe

Calendar date (2015) Intervention Control Calendar date (2015) Intervention Control

Visit 1 July 25 32 33 June 6 22 10

Visit 2 Aug 8 16 32 June 20 16 3

Visit 3 Aug 22 3 36 July 4 7 8

Visit 4 Sept 5 2 35 July 18 5 3

Visit 5 Sept 19 3 32 Aug 1 4 5

Visit 6 Oct 3 3 32 Aug 15 1 14

Visit 7 Oct 17 1 31 Aug 29 3 25

Visit 8 Oct 31 2 32 Sept 12 2 22
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were comparable with an average difference in number of 
larvae of less than one, while in Zimbabwe intervention 
sites had an average of 13.77 more larvae relative to the 
number in the control though not statistically significant. 
From the analysis, the effect of the intervention demon-
strated a reduction in larval density in the intervention 
areas of Botswana relative to the control, while in Zim-
babwe the predicted effect through visits is rather an 
increase in larval population in the control areas, while 
the intervention remained stable and low due to the 
introduction of larviciding.

From Fig. 2 above, there was a steady increase in change 
from baseline in larval density between the intervention 
and the control over time in Zimbabwe. In Botswana, 
there was a sharp increase in change from baseline after 
the introduction of the intervention, which then evened 
out from visit 5 until the end of data collection at visit 8.

Effect of intervention on larvae
Table 3 below shows the marginal effect of larviciding on 
the larvae, its effect on the different larval stages and the 
larval specie, as well as the incidence rate ratio.

The average marginal effect of larviciding on the 
mosquito larvae, taking interaction with time (period) 
into account, was −1.94 (95% CI −2.42 to −1.46) with 
incidence rate ratio of 0.14, thus an 86% larval reduc-
tion attributable to the intervention for both countries 
combined. There was a 92 and 65% effect for Botswana 
and Zimbabwe respectively. The reduction (%) on the 
early and late larval stages was 77% (P < 0.001) and 91% 
(P < 0.001) respectively (Table 3).

The effects of larviciding were also significant for the 
different larval species, with 95% and 47% reduction of 
Anopheles larvae for Botswana (P < 0.001) and Zimbabwe 
(P  =  0.025), respectively. The seemingly low reduction 
in Zimbabwe is due to small denominators and numera-
tors because of low breeding activity during winter. The 
average marginal effects on the Culex larvae were −2.21 

Table 2  Average marginal effects (CI) in  larval counts 
between intervention and control

Marginal effect for factor levels is the discrete change from the base level

Visit Botswana Zimbabwe
Marginal effect (CI) Marginal effect (CI)

Visit 1 0.45 (−6.61; 7.52) 13.77 (9.22; 18.33)

Visit 2 −18.76 (−25.83; 11.69) 9.20 (5.60; 12.81)

Visit 3 −30.53 (−37.10; 23.96) 1.61 (−1.47; 4.70)

Visit 4 −34.29 (−40.30; 28.27) −5.09 (−8.01; −2.18)

Visit 5 −33.25 (−38.98; 27.51) −10.45 (−13.27; 7.63)

Visit 6 −29.93 (−35.60; 24.26) −14.80 (−17.86; 11.75)

Visit 7 −25.82 (−31.44; 20.19) −18.56 (−22.50; 14.62)

Visit 8 −21.76 (−27.31; 16.21) −22.01 (−27.54; 16.48)

Total Zimbabwe Total Botswana
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Fig. 2  Average marginal change from baseline in larval counts between intervention and control for Zimbabwe and Botswana
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(89% reduction) and −0.86 (58% reduction) for Botswana 
and Zimbabwe, and were both statistically significant 
(P < 0.001).

Discussion
The study has demonstrated that larviciding using Bti is 
an effective vector control intervention in low transmis-
sion malaria areas of Botswana and Zimbabwe because 
of the reduction of the larval stages of mosquito. Bti 
functions as a stomach poison in the mosquito larval 
midgut, and its effect on larvae is largely due to protox-
ins in parasporal crystals and the spore coat, rather than 
the actual infection [34, 35], and is usually active for one 
to two weeks generally requiring fairly clean water to be 
effective [35, 36]. All treated water bodies in the inter-
vention areas of both Botswana and Zimbabwe were 
fresh water points, with minimal pollution due to ani-
mal activity, and larviciding happening every two weeks. 
Bacillus thuringiensis var. israelensis and Bacillus spha-
ericus based microbial larvicide products have lately been 
assessed and found to be effective in reducing malaria 
vector mosquito larvae under field conditions, and sub-
sequent reduction in malaria vector population densities 
[32, 37–40]. Efficacy trials have also illustrated that Bti 

can reduce malaria transmission when implemented at a 
large scale [14], and when delivered as a supplementary 
measure alongside LLINs [5].

While most field studies have been conducted in high-
lands and urban areas [5, 14, 41, 42], this is probably the 
first field study in semi-arid malaria transmission areas of 
sub-Saharan Africa, experiencing low transmission and 
in pre-elimination of malaria. The demonstrated effec-
tiveness of Bti in inhibiting the progression from the 
early stages to the late larval stages is an indicator on its 
effect on adult mosquito emergence and risk of malaria 
transmission. In the control areas, larval development 
progressed uninterrupted to the late stages, while larvi-
ciding effect on the more sensitive early instars resulted 
in fewer larvae progressing to the late stages. Studies 
have shown that early instars are more susceptible than 
the late instars to various formulations of Bti [43, 44], 
which reduces the occurrence of the later during habitat 
treatment periods [33].

Implementation of larviciding started at the begin-
ning of winter in Zimbabwe, and later towards the end 
of winter in Botswana. While the study areas in the two 
countries have comparable environmental conditions, 
larval density was lower at baseline in Zimbabwe com-
pared to Botswana. This is understandable considering 
that breeding activity is usually lower when temperatures 
are at their lowest early in winter. However, despite the 
different levels at baseline, the intervention showed high 
effectiveness at first treatment, which was sustained. For 
Botswana, later during the study, the difference in the lar-
val density in the intervention and the control reduced 
due to an increase in larval density in the intervention. 
Since the intervention continued to be implemented at 
14  day intervals despite increasing temperatures, this 
could be due to the effect of rising temperatures on the 
microbial larvicides. At high temperatures, solar inacti-
vation has been found to affect microbial larvicidal prod-
ucts [41]. Elsewhere, Bti has shown a residual effect of up 
to 10  days in standardized field tests implemented dur-
ing the dry season, providing complete protection when 
applied weekly [44]. Low doses of 200 g/ha is required to 
effectively suppress late instars, but can also lead to the 
absence of residual activity [45]. For this study, doses of 
300 g/ha were applied. Despite the start of the interven-
tion at different times of the year in the two countries, Bti 
still demonstrated a significant effect on the larval popu-
lation when comparing the intervention and the control 
areas in both countries.

The effectiveness of Bti in both Botswana and Zim-
babwe was consistent for both the Anopheles and Culex 
larva, and for the different stages of both species. While 
the Culex species are not vectors of human malaria, the 
reduction in its population reduces human exposure to 

Table 3  Marginal effect of  larviciding in  Zimbabwe 
and Botswana

Larvae type Marginal 
effect

IRR (CI) P value % reduction

All larvae

Both countries −1.94 0.14 (0.09; 0.23) <0.001 86

Zimbabwe −1.06 0.35 (0.24; 0.51) <0.001 65

Botswana −2.51 0.08 (0.06; 0.11) <0.001 92

Larval stage
Early instar

Both countries −1.47 0.23 (0.17; 0.32) <0.001 77

Zimbabwe −1.23 0.29 (0.17; 0.50) <0.001 71

Botswana −1.83 0.16 (0.12; 0.22) <0.001 84

Late instar

Both countries −2.40 0.09 (0.04; 0.19) <0.001 91

Zimbabwe −0.56 0.57 (0.31; 1.03) 0.062 43

Botswana −4.04 0.02 (0.01; 0.04) <0.001 98

Larvae species
ALL Anopheles

Both countries −1.63 0.20 (0.05; 0.76) 0.019 80

Zimbabwe −0.64 0.53 (0.30; 0.92) <0.025 47

Botswana −3.01 0.05 (0.02; 0.13) <0.001 95

ALL Culex

Both countries −1.03 0.36 (0.10; 1.23) 0.102 64

Zimbabwe −0.86 0.42 (0.26; 0.68) <0.001 58

Botswana −2.21 0.11 (0.05; 0.27) <0.001 89
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mosquito bites which is also important in the general 
population’s assessment of the effectiveness of a malaria 
vector control intervention. Bti formulations are known 
to have a large activity spectra covering larvae from many 
Culicidae (mosquito) genera: Culex, Aedes, and Anoph-
eles [43, 44, 46], which reduces overall adult mosquito 
emergence and human exposure to bites and transmis-
sion [5, 33].

Conclusion
The use of the microbial larvicide Bti has shown to have 
an impact on larval densities in low malaria transmis-
sion areas of Botswana and Zimbabwe, which can lead 
to a reduction in adult mosquito densities and malaria 
transmission. The results of this study presents an oppor-
tunity for strengthening integrated vector management 
by including larviciding. Mosquito larvae, unlike adults 
are relatively immobile and cannot change their habitat 
to avoid control activities making larviciding an effective 
vector control intervention which can be used in semi-arid 
malaria areas with low transmission such as Botswana and 
parts of Zimbabwe. It can be considered as an additional 
intervention for malaria elimination in such areas.
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