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Abstract 

Background:  Early indication of an emerging malaria epidemic can provide an opportunity for proactive inter-
ventions. Challenges to the identification of nascent malaria epidemics include obtaining recent epidemiological 
surveillance data, spatially and temporally harmonizing this information with timely data on environmental precur-
sors, applying models for early detection and early warning, and communicating results to public health officials. 
Automated web-based informatics systems can provide a solution to these problems, but their implementation in 
real-world settings has been limited.

Methods:  The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment 
(EPIDEMIA) computer system was designed and implemented to integrate disease surveillance with environmental 
monitoring in support of operational malaria forecasting in the Amhara region of Ethiopia. A co-design workshop 
was held with computer scientists, epidemiological modelers, and public health partners to develop an initial list of 
system requirements. Subsequent updates to the system were based on feedback obtained from system evaluation 
workshops and assessments conducted by a steering committee of users in the public health sector.

Results:  The system integrated epidemiological data uploaded weekly by the Amhara Regional Health Bureau with 
remotely-sensed environmental data freely available from online archives. Environmental data were acquired and 
processed automatically by the EASTWeb software program. Additional software was developed to implement a 
public health interface for data upload and download, harmonize the epidemiological and environmental data into 
a unified database, automatically update time series forecasting models, and generate formatted reports. Reporting 
features included district-level control charts and maps summarizing epidemiological indicators of emerging malaria 
outbreaks, environmental risk factors, and forecasts of future malaria risk.

Conclusions:  Successful implementation and use of EPIDEMIA is an important step forward in the use of epide-
miological and environmental informatics systems for malaria surveillance. Developing software to automate the 
workflow steps while remaining robust to continual changes in the input data streams was a key technical challenge. 
Continual stakeholder involvement throughout design, implementation, and operation has created a strong enabling 
environment that will facilitate the ongoing development, application, and testing of the system.
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Background
Despite the significant progress that has been made 
toward reducing the global burden of malaria, this dis-
ease remains one of the most significant public health 
threats in sub-Saharan Africa and many other parts of 
the developing world [1, 2]. Access to timely and accu-
rate information about malaria transmission is critical for 
control and elimination efforts. This need is particularly 
acute in highland and semi-arid regions where marginal 
environments support unstable malaria transmission and 
epidemics are often associated with inter-annual fluc-
tuations in rainfall and temperature. Malaria epidemics 
can cause high levels of severe morbidity and mortality 
because populations in epidemic-prone areas typically 
lack acquired immunity [3]. Early indication of an emerg-
ing epidemic can provide opportunities for proactive 
interventions, including rapid mobilization to increase 
the availability of malaria drugs and other health care 
services in the affected regions, and timely implementa-
tion of vector-control measures such as indoor residual 
spraying, distribution of long-lasting insecticide-treated 
bed nets (LLINs), and source control of vector popula-
tions [3–5]. Conversely, knowing that an epidemic is not 
occurring can limit the investment of scarce resources on 
drugs and vector control when they are not required. In 
malaria elimination campaigns, the potential for resur-
gent epidemics is a major concern, and information about 
the location and timing of residual transmission hotspots 
is needed to facilitate rapid and effective public health 
responses. Given these issues, there is a strong need for 
innovative malaria information systems that facilitate 
data sharing among stakeholders and enable the use of 
this information to direct public health response [6–8]. 
To address this need, the Epidemic Prognosis Incorpo-
rating Disease and Environmental Monitoring for Inte-
grated Assessment (EPIDEMIA) computer system was 
developed to support the detection and forecasting of 
malaria epidemics in the Amhara region of Ethiopia.

Malaria surveillance systems track the temporal trends 
and spatial patterns of malaria cases and deaths, provid-
ing a basis for the early detection of malaria epidemics. 
The standard technique for early detection involves com-
puting a threshold value for a malaria indicator within a 
given geographic region based on the expected distribu-
tion under “normal” conditions as inferred from histori-
cal data [9]. Observations exceeding this threshold are 
interpreted as signs of a rising epidemic curve, and vari-
ous rules for outbreak alerts can be defined based on the 
numbers and magnitudes of these exceedances. When 
specific information about malaria case locations is avail-
able, methods that account for both spatial and temporal 
clustering of cases can highlight the locations of emerg-
ing malaria hotspots [10]. By definition, early detection 

does not provide information about an epidemic until 
it is already underway. Therefore, malaria information 
systems are essential to facilitate rapid acquisition, pro-
cessing, and sharing of data so there is adequate time 
to detect an incipient epidemic and implement a pub-
lic health response. The use of mobile health (mHealth) 
technologies, such as short message service (SMS) based 
data transmission has been explored in various settings 
as a solution for increasing the speed and accuracy of 
malaria surveillance [11, 12]. More generally, the devel-
opment of web-based data management platforms has 
been proposed as a critical strategy for strengthening 
surveillance by automating major data processing steps, 
enabling data access, implementing outbreak alerts, and 
integrating surveillance data with other relevant sources 
of information [6, 7].

In addition to malaria case surveillance, environmen-
tal data can also be used to predict malaria epidemics in 
settings where vector populations are sensitive to mete-
orological conditions and habitat availability. Epidemics 
are often associated with temperature increases in high-
land settings where cool temperatures typically limit the 
development rates of parasites and mosquitoes. In con-
trast, outbreaks are more affected by rainfall in warmer 
and more arid regions where the lack of temporary water 
bodies for breeding constrains the size of mosquito pop-
ulations [13, 14]. Because malaria cases exhibit a lagged 
response of weeks or months to these climatic factors, 
meteorological information can provide early warning 
about malaria risk prior to the actual start of the epi-
demic [13, 15]. One significant barrier to the use of envi-
ronmental data for malaria surveillance is the scarcity of 
in situ monitoring networks, such as meteorological sta-
tions, in many parts of the developing world [16]. Earth 
observations from space-borne sensors can provide rel-
evant data on rainfall, temperature, and other climatic 
variables [17, 18] along with geographic information 
about water bodies, irrigated agriculture, wetlands, and 
other land cover and land use characteristics that can 
affect mosquito habitats and the exposure of human pop-
ulations [19, 20]. Satellite-based remote sensing provides 
consistent and recurring measurements from nearly eve-
rywhere on the earth’s surface, and these data are used 
widely in research on malaria and other mosquito-borne 
diseases [21]. Thus, the integration of remotely-sensed 
environmental data with malaria surveillance provides an 
opportunity to expand the scope and enhance the effec-
tiveness of malaria information systems.

There are several significant challenges that must be 
met to achieve the goal of integrating malaria surveillance 
with environmental monitoring data in a malaria infor-
mation system. Whereas human case surveillance is usu-
ally conducted using a tabular database, remotely-sensed 
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environmental data are typically obtained as gridded geo-
spatial datasets, which must go through multiple levels 
of processing to harmonize the geospatial information. 
Two key steps in this process include spatial harmoni-
zation, in which the environmental grids are linked to 
the geographic regions for which surveillance data are 
tracked, and temporal harmonization, in which the vari-
ous time steps used to collect data are reconciled. These 
procedures are complicated by the fact that various envi-
ronmental datasets have different file formats, grid cell 
resolutions, and update frequencies. Efficient harmoniza-
tion of these disparate data can be facilitated by (1) the 
development of a comprehensive workflow to achieve the 
major data processing steps, (2) the implementation of 
this workflow as a computer software system to facilitate 
automated data acquisition and processing, and (3) the 
creation of a web-based portal to facilitate stakeholder 
access to the data and to the results of outbreak detec-
tion algorithms, malaria forecasts, and other derived 
products.

The main objective of our project was to develop a 
malaria information system to support malaria early 
detection and forecasting in the Amhara region of Ethio-
pia. This paper documents the design and implementa-
tion of EPIDEMIA, a prototype system for integration 
of malaria surveillance with environmental monitoring 
data to generate operational forecasts of malaria out-
break risk. The problem is first outlined by documenting 
the specific datasets used in the system and describing 
the major workflow steps necessary to generate a unified 
database suitable for modelling and prediction. Although 
the emphasis of this paper is on system design and infor-
mation processing rather than the predictive models, a 
general discussion of the modelling and reporting steps 
is provided in the context of the broader data processing 
workflow for completeness. Next, technical information 
about the workflow implementation is presented, includ-
ing details about the hardware and software. Examples of 
the data generated by the harmonization process, along 
with the forecasts and reports generated by EPIDEMIA, 
are provided. Finally, the lessons learned in the devel-
opment of this prototype are summarized and areas for 
future expansion and improvement of malaria informa-
tion systems in general are discussed.

Methods
System design
A co-design workshop for the primary stakeholder 
groups was conducted in July 2014. The participants 
included public health partners from the Amhara 
National Regional State Health Bureau (ARHB), the 
Health Development and Anti- Malaria Association 
(HDAMA), the GAMBY College of Medical Sciences, 

and Bahir Dar University, as well researchers and soft-
ware engineers from South Dakota State University. This 
workshop included a formal requirements analysis focus-
ing on the design of the user interface, the epidemiologi-
cal data upload process, automation of report generation, 
accessibility of the unified dataset, and system security. 
The following broad requirements for the EPIDEMIA 
system (hereafter, the system) were identified:

• • User access must be provided through a password-
protected web-based interface;

• • The system must provide a simple and efficient inter-
face for uploading epidemiological data, and then 
screening these data for errors and inconsistencies;

• • The system must automatically acquire and process 
the most recent remotely-sensed environmental data 
and harmonize them with the epidemiological data 
to generate an integrated dataset suitable for analysis 
and modelling;

• • Users must have access to the integrated dataset via a 
simple, menu-driven interface;

• • The system must automatically generate early detec-
tion alerts and epidemic forecasts when new epide-
miological data are uploaded; and

• • The system must automatically summarize this infor-
mation into standardized reports for the users.

Based on these requirements, a conceptual design was 
created to describe the flow of information into, within, 
and out of the system (Fig. 1). The overarching goal was 
to create an informatics framework that would allow all 
project partners, including research scientists and pub-
lic health professionals in the USA and Ethiopia, to have 
shared access to harmonized epidemiological and envi-
ronmental data. A concurrent goal was to automate data 
acquisition and processing steps as much as possible, so 
that data could be updated in near-real time to support 
the implementation of early detection and early warning 
systems for malaria.

Study area
The Amhara region is located in northwestern and north 
central Ethiopia between 9°00 and 13°45 N and 36°00 and 
40°30 E (Fig. 2). Much of the terrain is mountainous, with 
elevations ranging from 506 to 4517  m above sea level. 
Mean annual rainfall varies from 770 to 2000  mm, is 
highest in the southwestern part of the region, and gener-
ally decreases to the east. Rainfall is highly seasonal, with 
the heaviest rains occurring from June through Septem-
ber, and dry conditions prevailing from October through 
February. Average annual air temperature ranges from 
16 °C in the summer to 27 °C in the dry season and gen-
erally decreases with increasing elevation.



Page 4 of 15Merkord et al. Malar J  (2017) 16:89 

The main malaria transmission season occurs from Sep-
tember-December following the end of the rainy season, 
with a smaller peak often occuring in May–June [14, 22]. 
Outbreaks of malaria are often associated with climatic 
fluctuations and can cause high morbidity and mortality 
because the human population lacks immunity to the path-
ogen [23, 24]. The most recent regional malaria epidemic 
was in 2003–2005 [24, 25], and since that time malaria 
outbreaks have generally been smaller and more localized 
[22]. Anopheles arabiensis is the principal malaria vector 
[26], and Plasmodium falciparum and Plasmodium vivax 
are both important malaria parasites throughout the region 
[27]. Ethiopia, including the Amhara region, has a national 
malaria control programme which includes the distribution 
of free LLINs, targeted indoor residual spraying (IRS), rapid 
diagnostic tests (RDTs), and treatment with artemisinin-
based combination therapy [27]. Because of unstable trans-
mission and declining malaria incidence, low-transmission 
areas within the region have been targeted for malaria 
elimination, and elimination strategies are being evaluated 
through an ongoing demonstration project [28].

The region has a population of >20 M, most of whom 
live in rural areas and practice subsistence agriculture. 
Administratively, Amhara is divided into 10 zones and 
3 administered towns. Each zone is divided into 7 to 27 
woredas, or districts, which range in size from 3.7 to 
7700 sq km and in estimated 2016 population from ~20 
to  ~384  K. Each woreda is further divided into villages 
called kebeles. There are 167 woredas and 3463 kebe-
les in the region, and the EPIDEMIA project currently 
encompasses 47 pilot woredas that were selected to 
encompass the most malaria-prone parts of the region 
(Fig. 2). Health care facilities are organized hierarchically 
into primary health care units (PHCUs). Each PHCU is 
comprised of five health posts, a health center, and, in 
some areas, a hospital. Health posts, the satellite facili-
ties in the PHCU, are located in kebeles and each serves 
approximately 5000 people. Each health center serves 
approximately 25,000 people; whereas, hospitals can 
serve anywhere from 100,000 to 5 million people. Cur-
rently, there are 54 hospitals, 836 health centres, and 
3354 health posts in Amhara.
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Datasets
Epidemiological data
Surveillance data is collected by the ARHB on all patients 
who seek treatment at health posts and health centers. 
These data are summarized by World Health Organiza-
tion (WHO) epidemiological week and reported to the 
woreda health office. The data are then aggregated for the 
entire woreda and sent to the zonal health offices, where 
the data for all woredas within a zone are compiled and 
sent to the regional office of the ARHB. The resulting 
weekly data table contains one record for each woreda, 
with multiple data fields that hold information about the 
numbers and characteristics of malaria cases reported for 
that week.

Weekly counts of total patient visits are provided along 
with counts of total malaria cases (including clinically 
diagnosed as well as confirmed malaria) broken down by 
age and pregnancy status. Numbers of tests performed by 
rapid diagnostic tests (RDT) and blood film screening are 
also reported, along with the numbers of cases confirmed 
using each method. Confirmed cases are grouped into 
two categories: P. falciparum plus mixed P. falciparum/P. 
vivax infections (hereafter, P. falciparum malaria), or P. 
vivax-only infections (hereafter, P. vivax malaria).

Estimates of the total population living within the 
malarious portion of each woreda were provided by the 
ARHB. These estimates were derived from kebele-level 
population data obtained in the 2007 national census. 
These population numbers were updated for subsequent 
years by applying an estimated regional growth rate of 
1.8%. Despite the assumptions that were required, these 
values represent the best small-area population estimates 
currently available for Amhara and are currently used by 
the ARHB for their malaria assessments. The morbidity 
and population data were used to calculate malaria indi-
cator variables including malaria incidence, proportion 
of patients diagnosed with malaria, proportion of total 
cases confirmed by diagnostic tests, and proportion of 
positive diagnostic tests (Table 1).

Environmental data
Environmental variables were obtained from remotely-
sensed earth observation data products produced by 
the US National Aeronautics and Space Administration 
(NASA, Table  2). To support our goals of conducting 
malaria early detection and early warning, we selected 
products that had global coverage, free access, high data 
quality, and low latency (the delay between the times 
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when raw data are collected and when processed data 
products are made available for use). Data on rainfall, 
temperature, and various spectral indices of vegetation 
greenness and surface moisture were used, based on pre-
vious studies that demonstrated their potential for pre-
dicting malaria outbreaks in the Amhara region [14, 22].

The NASA tropical rainfall measuring mission 
(TRMM) multi-satellite precipitation analysis (TMPA) 
provides gridded precipitation data for tropical and sub-
tropical areas beginning in 1998 using data from multi-
ple satellites and meteorological stations [29–31]. A near 
real-time dataset is released with a latency of less than 
a day and incorporates only the satellite data, while a 
higher quality estimate incorporating the meteorological 

station data is released with a latency of several months. 
Both real-time and research-quality products have a 
spatial resolution of 0.25 degrees and consist of 3-h esti-
mates of rainfall rate. The NASA Goddard Earth Sciences 
Data and Information Services Center (GES DISC) sum-
marizes these data as daily rainfall totals and releases 
them as separate products [32, 33].

Two datasets derived from NASA’s moderate resolu-
tion imaging spectroradiometer (MODIS) on board the 
Terra and Aqua satellites were also used. The LST and 
Emissivity 8-day 1 km dataset (MOD11A2) [34] provided 
daytime and nighttime land surface temperature (LST), 
and these values were also summarized to compute mean 
daily LST. The Nadir BRDF-adjusted reflectance (NBAR) 
16-day 1  km dataset provided modeled reflectance val-
ues for the MODIS visible to shortwave infrared bands 
(MCD43B4) [35]. These products were used to calculate 
a variety of spectral indices related to the greenness and 
wetness of the Earth’s surface, including the normalized 
difference vegetation index (NDVI) [36], enhanced veg-
etation index (EVI) [37], soil-adjusted vegetation index 
(SAVI) [38], and two forms of the normalized difference 
water index (NDWI) [39, 40] (Table 2).

Results
Subsystems
Public health interface
The public health interface, implemented on the EPI-
DEMIA project website [41], serves as the primary web 
interface between public health users and the EPIDEMIA 
system (Fig.  1). The user interface provides information 
about the EPIDEMIA project, allows users to log in and 
out, upload, query, and download data, download reports, 
and view activity logs. Different levels of permission can 
be assigned by individual user accounts to allow users 

Table 1  Malaria indicator variables calculated by  the EPI-
DEMIA system

Summarized for each woreda in each epidemiological week

C confirmed malaria cases, U unconfirmed malaria cases, P total population 
living in malarious areas, Cf confirmed P. falciparum and mixed P. falciparum/P. 
vivax cases, Cv confirmed P. vivax cases, T total number of cases for all causes, 
including malaria, D total number of diagnostic tests performed

Variable name Equation

Incidence of malaria (C + U)/P

Incidence of confirmed malaria C/P

Incidence of P. falciparum malaria Cf/P

Incidence of P. vivax malaria Cv /P

Proportion of patients with malaria (C + U)/T

Proportion of patients with confirmed malaria C/T

Proportion of patients with P. falciparum malaria Cf /T

Proportion of patients with P. vivax malaria Cv/T

Confirmed malaria positivity rate C/D

P. falciparum malaria positivity rate Cf /D

P. vivax malaria positivity rate Cv /D

Table 2  Environmental indices calculated by the EASTWeb software

Indices were calculated from various remote sensing data products as described in the text

Pd daily precipitation, Td daytime land surface temperature, Tn nighttime land surface temperature, B1 MODIS band 1 (red, 620–270 nm), B2 MODIS band 2 (near 
infrared, 841–876 nm), B3 MODIS band 3 (blue, 459–479 nm), B5 MODIS band 5 (middle-infrared, 1230–1250 nm), B6 MODIS band 6 (middle infrared, 1628–1652 nm)

Name Description Source

Precipitation Total amount of water falling from the atmosphere to the land surface (mm/week) 7∑

d=1

Pd

Land surface temperature Radiative skin temperature of the earth’s surface (°C) (Td+Tn)

2

Normalized difference vegetation index Indicator of the amount of green vegetation. Can serve as a proxy for available soil mois-
ture in water-limited environments

B2−B1
B2+B1

Soil-adjusted vegetation index Similar to NDVI, but minimizes soil brightness influences 1.5×(B2−B1)
B2+B1+0.5

Enhanced vegetation index Similar to NDVI, but corrects for atmospheric distortion and ground cover below canopy 2.5×(B2−B1)
B2+6×B1−7.5×B3+1

Normalized difference water index Indicator of water content in vegetation and at the soil surface B2−B5
B2+B5

B2−B6
B2+B6
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to upload data, download data, download the weekly 
reports, and access logs of upload and download requests.

To upload data, users fill in a web form to specify an 
epidemiological dataset and select a local Excel® work-
book file containing the data in the appropriate format. 
After the user submits the form, the system ensures that 
uploaded data files contain the correct column headers 
and that the data values fall within acceptable ranges. If 
no errors are detected, the system inserts the data into 
the appropriate EPIDEMIA database table. If any errors 
are detected, the user is presented with a detailed report 
and asked to upload a corrected file.

To download data, users fill in another web form by 
selecting the desired woredas, a range of dates, and the 
specific epidemiological and environmental variables that 
they wish to download. Results are provided as a harmo-
nized data table in which each row represents a particu-
lar woreda during a particular year and epidemiological 
week, and contains both epidemiological and environ-
mental variables summarized for that location and time 
period.

Remote sensing data acquisition and processing
Remote sensing data acquisition and initial data pro-
cessing and harmonization steps (Fig.  1) are performed 
by EASTWeb, an open-source client-based applica-
tion that automatically connects to earth observation 
data archives and acquires, processes, and summarizes 
selected remote sensing datasets [42]. EASTWeb was 
specifically designed to facilitate the automated retrieval 
of remote sensing data in near real time for disease fore-
casting applications. A menu driven interface is used to 
define projects that specify the data sources to be used 
and the workflow steps that will be applied. EASTWeb 
then automates the data processing tasks by continually 
searching for new data online, and triggering the appro-
priate workflows when data become available.

The main workflow steps were similar for all remote 
sensing products, including the TRMM 3B42 and 
3B42RT rainfall data, MODIS LST data, and MODIS 

NBAR data. After downloading data, EASTWeb converts 
files to GeoTiff raster format, mosaics adjacent tiles into a 
single dataset (MODIS data only), applies quality control 
screening to individual pixels (MODIS data only), repro-
jects the data into a local Universal Transverse Mercator 
(UTM) projection, interpolates the data to a standard 
1 km grid size, crops the rasters by the boundary of the 
study area, and calculates a new raster for each environ-
mental index. Next, EASTWeb summarizes the values for 
each index by overlaying a GIS dataset of woreda bound-
aries and calculating the mean value of pixels within each 
woreda. At this stage, the environmental data have been 
spatially harmonized with the epidemiological data, and 
the summaries are saved as tables in a PostgreSQL data-
base. Finally, EASTWeb performs temporal harmoniza-
tion on the daily rainfall indices by calculating rainfall 
accumulations for each WHO epidemiological week. At 
this point, the rainfall indices have been temporally har-
monized with the epidemiological data, whereas tempo-
ral harmonization of the 8-day MODIS data is left for the 
data integration subsystem.

Data integration
Integration of the epidemiological and environmental 
datasets is handled by three components on the EPI-
DEMIA server (Fig.  1). The epidemiological data pro-
cessing component consists of stored procedures in the 
MySQL database, which join the uploaded malaria data 
with population data by woreda and year and then cal-
culate the derived epidemiological variables (Table  1). 
The environmental data transfer component consists 
of a shell script which imports any new environmental 
data from the EASTWeb PostgreSQL database located 
on the Windows sever and moves it to the MySQL data-
base on the Linux server. This shell script is run hourly so 
that these databases remain synchronized, and also runs 
automatically whenever new epidemiological data are 
uploaded.

The data unification component uses R scripts to tem-
porally harmonize the MODIS-derived indices and join 
the epidemiological and environmental datasets into a 
single unified dataset. The data processing steps com-
pleted by the data unification component include resa-
mpling the 8- and 16-day MODIS composites to 7-day 
WHO epidemiological weeks and estimating any miss-
ing environmental data values via linear interpolation 
between adjacent weeks. Additional derived environ-
mental variables are also computed at this stage from 
the woreda-level summaries. These include summaries 
of accumulated degree-days or accumulated moisture 
throughout the malaria season, deviations from the long-
term expectation for a particular location and time of the 
season, and deviations from an assumed optimal value 

Table 3  Classification of malaria risk levels

Levels were assigned based on observed malaria incidence within the early 
detection window, and based on predicted future malaria incidence within the 
early warning window

Trend in incidence

Increasing Stable Decreasing

Mean incidence

 Above outbreak detection 
threshold

High Medium Medium

 In between Medium Low Low

 Below expected incidence Medium Low Low
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for malaria transmission. Finally, the epidemiological and 
environmental datasets are joined by woreda, year, and 
epidemiological week to form a table containing a single 
unified dataset.

Modelling
The modelling subsystem applies statistical time series 
models to the unified dataset to detect outbreaks as they 
occur and forecast future levels of malaria transmission 
(Fig.  1). The subsystem runs automatically each time 
the data integration subsystem completes running, i.e. 
weekly when the system is in operational use. All model-
ling is performed in R and model outputs are saved as R 
data files. The main emphasis in this paper is on system 
design and information processing, so only a brief over-
view of the modelling techniques is provided here. The 
system implements early detection of outbreaks by fitting 
the epidemiological data for each woreda to statistical 
time series models to estimate (1) the expected value of 
each malaria indicator at each time step given the time 
of year and any long-term trend and (2) a threshold level 
indicating an unusually high value of the malaria indica-
tor possibly consistent with an outbreak situation. This 
method is analogous to other widely used algorithms 
for outbreak detection [43]. The subsystem also models 
malaria incidence in each woreda as a function of sea-
son, trend, and lagged environmental variables and fore-
casts malaria incidence for the next 4 weeks [for similar 
approaches, see 13, 15, 44, 45]. To date, total malaria inci-
dence (including P. falciparum, P. vivax, and mixed infec-
tions) has been used as the response variable in these 
models. However, the system can use any malaria indica-
tor variable for modelling and forecasting.

Reporting
The reporting subsystem runs automatically each time 
the modelling subsystem completes running, i.e. weekly 
when the system is in operational use (Fig. 1). Each report 
consists of a one-page map summary of early detection 
and forecasting results, a set of one-page summaries for 
every woreda, and several pages of maps summarizing 
the early detection and early warning model outputs. 
Reports are generated as a PDF document using knitr, an 
engine for dynamic report generation in R [46].

The woreda pages each contain a paragraph of auto-
matically generated summary text and a set of four time 
series charts visualizing epidemiological and environ-
mental data and model outputs over the past 21  weeks 
(Fig.  3). A control chart depicts observed malaria inci-
dence, the model-derived expected incidence, the alert 
threshold, the 4-week forecast with 50% prediction inter-
vals, and the historical 1-week-ahead forecasts for each of 
the past weeks (Fig. 3a). A second chart shows incidence 

of P. falciparum malaria and P. vivax malaria (Fig.  3b), 
while the third and fourth charts depict the observed 
rainfall and daytime LST along with the expected values 
and interquartile ranges from the reference environmen-
tal dataset (Fig. 3c, d).

The woreda control charts highlight an early detection 
window (the past 6 weeks) and an early warning forecast 
window (the upcoming 4 weeks) over which data and 
model outputs were summarized (Fig.  3a). Within each 
of these summary windows, the mean observed or fore-
casted incidence was classified as being above the mean 
outbreak threshold, between the mean threshold and the 
mean expected incidence, or below the mean expected 
incidence. The overall trend in malaria incidence was 
also classified as increasing, decreasing, or stable for each 
summary window. To do this, the differences between the 
observed or forecasted malaria incidence and the out-
break detection threshold were calculated for each week. 
Linear models were then fitted to these deviations and 
the slope parameters were classified as positive (β ≥ 0.15), 
negative (β < −0.15), or in between. These classifications 
were useful for summarizing the weekly malaria con-
ditions in each woreda and were mapped (Fig. 4a, b), as 
were the mean values of environmental indices (Fig. 4c, d) 
and malaria incidence (Fig. 4e) over the past 4 weeks.

Finally, composite indices of outbreak detection and 
outbreak forecasts were calculated for each woreda as 
low, medium, or high based on the classified mean inci-
dences and the classified trends (Table 3). Maps of these 
indices (Fig. 4f ) appeared on the first page of each report 
to provide a quick summary-at-a-glance of recent and 
upcoming outbreak risk for all woredas.

System implementation
The EPIDEMIA system [41] was implemented on a Linux 
web server with 16 cores @ 3.50 GHz and 128 GB RAM. 
The website was written in PHP programming language 
for the back end; HTML, Cascading Style Sheets, JavaS-
cript, and JQuery for the front end; and AJAX to handle 
asynchronous message calls. We installed Apache HTTP 
Server to serve the website, the database management 
system MySQL to store the epidemiological and envi-
ronmental datasets, and the R environment for statistical 
computing [47] to carry out data processing and model-
ling tasks. These software packages are all freely available, 
community-driven, and open source. In addition to the 
primary server, the EASTWeb software was installed on 
a Windows server with 12 cores @ 2.50 GHz and 256 GB 
RAM. EASTWeb is implemented in Java programming 
language and uses the open source geospatial library 
Geospatial Data Abstraction Library (GDAL) for spatial 
analyses and PostgreSQL to store and manipulate the 
resulting data summaries.
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Operational use
The initial EPIDEMIA system co-design workshop was 
conducted at South Dakota State University during July 
2014 and the public health interface and remote sensing 
data acquisition subsystem  were subsequently imple-
mented. In March 2015, a workshop was held to test the 
public health interface, develop a protocol for uploading 
the epidemiological data, and solicit feedback on a proto-
type weekly report. The data integration subsystem was 
implemented in May 2015, at which time we uploaded 
historical data going back to July 2012 (epidemiologi-
cal data) and January 2000 (environmental data) and 
began regular weekly uploading of new data. In Septem-
ber 2015, the modelling and reporting subsystems were 
implemented and operational use of EPIDEMIA to pro-
duce weekly forecasts was initiated. In February and July 
2016, follow-up workshops were conducted to assess sys-
tem performance and solicit feedback on the next steps 
for improvements to the system. In addition, a steering 
committee of Ethiopian public health partners from 
ARHB, HDAMA, Bahir Dar University, and GAMBY 
College of Medical Sciences has met regularly to review 
the forecasts and provide written feedback on the accu-
racy of predictions, along with updates on the current 
malaria situation throughout the region.

As of December 2016, a total of 16,621 records have 
been uploaded into the EPIDEMIA system, each repre-
senting the malaria surveillance data collected from one 
woreda during one epidemiological week and covering 
the time period from July 2012-present. Malaria data 
were reported for 99.8% of all woreda/week combina-
tions Also, 98.8% of reported cases in the database were 
confirmed by either RDT or blood film screening, a num-
ber which has increased over time from 95.1% in 2012 to 
over 99.9% in 2016. This situation represents a significant 
improvement over historical malaria surveillance in the 
region, where the majority of reported malaria cases were 
clinically diagnosed and there were considerable miss-
ing data [22]. The downloaded remote sensing data from 
2000-present used 63  GB of hard drive space and the 
intermediary files occupied 214 GB of hard drive space. 
These data were distilled into a modest  ~1.2  M records 
in tabular format, with each row containing metrics for a 
given environmental index, woreda, and time step. Envi-
ronmental data were available for 98.3% of woreda/week 
combinations for LST, 99.2% for EVI, 99.3% for NDVI, 
SAVI, NDWI5, and NDWI6, and 100% for rainfall.

Discussion
The EPIDEMIA system has a number of similarities 
to online information systems that have previously 
been developed for malaria and other mosquito-borne 
diseases, but also has several unique characteristics. 

Although the value of integrating climatic information 
and other types of remotely-sensed data into online shar-
ing portals has been widely acknowledged [6–8], most 
efforts at near-real-time data sharing have focused pri-
marily on epidemiological surveillance. For example, 
Eisen et al. [48] developed an online, multi-disease data 
management platform that handles disease case surveil-
lance as well as entomological surveillance, but does not 
incorporate environmental data. Yan et  al. [49] devel-
oped another online data management platform focused 
on syndromic surveillance in resource-constrained set-
tings. A variety of spatial decision support systems are 
also being developed to rapidly collect and analyse sur-
veillance data in support of malaria elimination efforts 
[e.g., 50, 51]. There have been several data management 
systems that support the integration of geospatial envi-
ronmental datasets with mosquito-borne disease sur-
veillance [e.g., 52–54]. However, these systems have 
emphasized the archiving of historical datasets rather 
than providing rapid access to new data. EPIDEMIA is 
thus distinctive in that it facilitates the rapid acquisition 
and processing of malaria surveillance and environmen-
tal monitoring data to produce harmonized datasets for 
modelling. This novel system has enabled near-real-time 
malaria forecasting in the Amhara region.

One of the important lessons learned through co-
designing and co-implementing EPIDEMIA was that 
the availability of timely, high-quality data is a key lim-
iting factor in the development of malaria early warn-
ing systems. Many previous studies have focused on the 
specification and testing of forecasting models, but have 
not explicitly considered the informatics infrastruc-
ture necessary to actually apply and test these models 
on a regular basis [55]. In contrast, the implementation 
of EPIDEMIA was based on the premise that a reliable 
system for providing timely, harmonized data on malaria 
surveillance is the critical first step in disease forecast-
ing efforts. The review by Zinszer et  al. [55] found that 
most evaluations of malaria forecasting models were 
made using historical data that, in many cases, were the 
same data used to fit the model parameters. In contrast, 
model development and evaluation is conducted as a 
dynamic, iterative process using the EPIDEMIA system. 
Because new data are acquired every week, predictions 
can be continuously evaluated using new, independent 
observations. Accuracy is also more transparent to the 
end users, who can carry out their own qualitative eval-
uations of model performance by studying patterns of 
model predictions in relation to the weekly observations 
(Fig. 3a). Thus, the development of malaria early warning 
systems should not be conditional upon the identification 
of a single “validated” model based on historical data, but 
should instead first focus on the development of dynamic 
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malaria information systems as an enabling technology 
to support data access, model-based prediction, and con-
tinuous model evaluation and improvement. These sys-
tems must encompass not only computer software, but 
also networks of individuals and institutions that create a 
broader enabling environment to support the application 
of these tools.

In the EPIDEMIA project, regular face-to-face work-
shops facilitated communication between scientists and 
public health stakeholders. The steering committee with 
representatives of government agencies, non-govern-
mental organizations, and universities from the study 
area has disseminated information about the project 
and gathered feedback from a wider range of stakehold-
ers. Information obtained through these channels has 
been critical for co-designing and updating the system. 
In particular, the formal requirements analysis allowed 
us to identify and prioritize the system components and 
tailor them to end user needs. For example, the upload-
ing interface was customized to accommodate the stand-
ard data formats used by the ARHB, allowing them to 
provide data at minimal burden to their staff. Concerns 
about internet bandwidth and accessibility resulted in an 
initial collaborative decision to use automatically gen-
erated PDF reports that could be disseminated as rela-
tively small files rather than interactive, web-based data 
visualizations. In response to subsequent feedback, these 
reports were updated to incorporate a new “dashboard” 
format that facilitates interpretation of model forecasts in 
light of historical malaria trends and environmental con-
ditions (Fig. 3), historical one-step-ahead forecasts on the 
control chart to facilitate model evaluation (Fig. 3a), and 
mapped summaries of the model predictions to provide a 
rapid evaluation of outbreak potential across the region 
(Fig. 4). Ongoing co-development efforts include testing 
an interactive, web-based version of the reports and eval-
uating the reasons for variability in model performance 
across woredas. These continual engagements, combined 
with the technical capacity to quickly modify the system 
in response to new feedback and suggestions, have been 
essential for surmounting the barriers imposed by time 
zone, language, and culture to achieve the successful 
implementation of EPIDEMIA.

Another important lesson is that projects relying on 
continuous retrieval of earth observation data should 
expect changes to the data products and have a plan for 
dealing with those changes. Data providers may update 
the algorithms for creating specific products, change the 
file specifications or access protocols for existing prod-
ucts, or cease support for some products altogether. In 
addition, data availability varies over time as sensors are 
decommissioned and replaced with new sensors that 

have different characteristics. Several of these issues have 
affected EPIDEMIA in just the first 2 years since initial 
design. In June 2015, the TRMM satellite was decommis-
sioned and NASA began transitioning from the TMPA 
products to the newer, higher-resolution Integrated 
Multi-satellite Retrievals for GPM (IMERG) products. 
In October 2016, the TRMM archive of binary data files 
was decommissioned, necessitating a switch to NetCDF 
files. All NASA data providers including the LP DAAC 
and GES DISC began requiring users to register with 
the Earthdata Login system in August 2016 and shifted 
from an FTP to HTML data access protocol. To be able 
to respond more quickly and efficiently to these changes, 
the original EASTWeb software was reprogrammed as 
a framework with a separate plugin for each data source 
[56]. This design choice facilitated the modification of 
existing plugins and development of plugins for new data 
sources without having to make extensive modifications 
to the larger software. Upcoming changes will involve 
updating all MODIS plugins to handle newer versions of 
the data products (Collection 6) and developing a strat-
egy for transitioning to data products from the opera-
tional VIIRS satellites once the MODIS satellites reach 
the end of their lifespan in the next several years.

There is potential for implementing the EPIDEMIA 
system in other geographic areas and applying the sys-
tem to other diseases, particularly where there are strong 
relationships between disease transmission and envi-
ronmental conditions that can serve as a basis for early 
warning forecasts. However, because the system also 
incorporates outbreak detection based on recent obser-
vations of disease cases, it still has utility in  situations 
where the environment is not a strong predictor of epi-
demics such as when outbreaks are triggered by importa-
tion of a pathogen or changes in the susceptibility of the 
human population. The most obvious candidates for use 
with the EPIDEMIA system include other vector borne 
diseases, such as dengue, Zika, chikungunya, and West 
Nile, whose transmission rates are known to vary with 
environmental conditions affecting vector populations 
[57, 58]. Other types of data, particularly entomological 
surveillance data, could also be incorporated into the sys-
tem and harmonized with the epidemiological and envi-
ronmental data. For example, mosquito infection rate has 
been shown to be a strong predictive indicator of West 
Nile virus cases in the USA [57]. Entomological indica-
tors could be used as independent predictors of malaria 
indices in our current modelling framework or incor-
porated into alternative frameworks such as dynamical 
models [58] or structural equation models [59]. Where 
available, data on malaria interventions can also be incor-
porated both to improve model predictions and to assess 
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their effectiveness. There is a wide array of methods avail-
able within R to support predictive times series models 
[60], and this flexibility was one of the primary reasons 
we chose to implement the modelling subsystem entirely 
in that computing environment.

Conclusions
The EPIDEMIA system has facilitated the integration of 
malaria surveillance data and environmental monitor-
ing data to enable near-real-time malaria forecasts in the 
Amhara region of Ethiopia. As a result, it has been pos-
sible to disseminate malaria forecasts to public health 
partners for an extended period and engage end users in 
a continuous process of feedback and improvement. The 
development and implementation of EPIDEMIA have 
highlighted several considerations for anyone wishing to 
build such a system. Critical points include the need to 
develop software tools and an enabling environment to 
provide timely harmonized epidemiological and envi-
ronmental data, the importance of continual stakeholder 
input throughout design, implementation, and operation 
of the system, and the need to be adaptable to changes 
in the input data. Ongoing challenges include evaluating 
and improving the forecasting models as new data are 
ingested into the system, developing more sophisticated 
reporting functionality such as interactive web-based 
visualizations, better incorporating the early detection 
and early warning results into public health and emer-
gency management decision making, and ultimately 
transferring the tools and knowledge required to operate 
the system to the public health sector in Ethiopia. Once 
these longer-term goals have been achieved, then the 
system should be robust to changes in the broader social 
and environmental contexts of malaria and extensible to 
other diseases and locations.
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