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METHODOLOGY

A novel model fitted to multiple 
life stages of malaria for assessing efficacy 
of transmission‑blocking interventions
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Hannah C. Slater1, Andrew M. Blagborough2 and Michael Betancourt3

Abstract 

Background:  Transmission-blocking interventions (TBIs) aim to eliminate malaria by reducing transmission of the 
parasite between the host and the invertebrate vector. TBIs include transmission-blocking drugs and vaccines that, 
when given to humans, are taken up by mosquitoes and inhibit parasitic development within the vector. Accurate 
methodologies are key to assess TBI efficacy to ensure that only the most potent candidates progress to expensive 
and time-consuming clinical trials. Measuring intervention efficacy can be problematic because there is substantial 
variation in the number of parasites in both the host and vector populations, which can impact transmission even in 
laboratory settings.

Methods:  A statistically robust empirical method is introduced for estimating intervention efficacy from standard‑
ised population assay experiments. This method will be more reliable than simple summary statistics as it captures 
changes in parasite density in different life-stages. It also allows efficacy estimates at a finer resolution than previous 
methods enabling the impact of the intervention over successive generations to be tracked. A major advantage of 
the new methodology is that it makes no assumptions on the population dynamics of infection. This enables both 
host-to-vector and vector-to-host transmission to be density-dependent (or other) processes and generates easy-to-
understand estimates of intervention efficacy.

Results:  This method increases the precision of intervention efficacy estimates and demonstrates that relying on 
changes in infection prevalence (the proportion of infected hosts) alone may be insufficient to capture the impact of 
TBIs, which also suppress parasite density in secondarily infected hosts.

Conclusions:  The method indicates that potentially useful, partially effective TBIs may require multiple infection 
cycles before substantial reductions in prevalence are observed, despite more rapidly suppressing parasite density. 
Accurate models to quantify efficacy will have important implications for understanding how TBI candidates might 
perform in field situations and how they should be evaluated in clinical trials.
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Background
Malaria remains a serious public health concern; in 2015, 
an estimated 214 million (range 149–303 million) new 
cases and 438,000 (236,000–635,000) deaths resulted 

from the infection [1]. Malaria is transmitted between 
vertebrate hosts by anopheline mosquitoes. Circulating 
male and female gametocytes are ingested by mosquitoes 
during blood feeding where they undergo sexual repro-
duction before developing into oocysts on the wall of 
the midgut. On rupturing, an average 1250 (interquartile 
range 313–2400) salivary gland sporozoites are released 
from a single Plasmodium falciparum oocyst [2]. Sporo-
zoites are then injected onward to the vertebrate host 
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during a subsequent feed. Within the host, sporozoites 
travel to the liver and invade cells, divide and prolifer-
ate to produce tens of thousands of haploid forms, mer-
ozoites, per liver cell. Merozoites go on to reproduce 
asexually, resulting in blood-stage parasites. These can 
differentiate into gametocytes that complete the life cycle 
when transmitted back to the insect vector.

There are multiple transmission-blocking interventions 
(TBIs) currently under development that aim to reduce 
transmission by inhibiting the development of oocysts in 
the mosquito midgut or by targeting sexual, sporogonic 
and/or mosquito antigens (SSM-VIMT) [3]. Different 
assays have been developed to capture the data required 
to evaluate the efficacy of different TBIs and triage the 
most promising candidates [4]. The current gold stand-
ard is the standard membrane feeding assay (SMFA) [5, 
6]. Here, mosquitoes are fed on cultured, infected blood 
through a membrane and oocysts can develop. Addition-
ally, multiple derivative assays such as the direct mem-
brane feeding assay (DMFA) and the direct (skin) feeding 
assay (DFA) are used [5]. The efficacy of drugs and vac-
cines against malaria have been assessed using data from 
these assays by measuring the relative reduction in the 
mean number or prevalence of oocysts in the vector, or 
prevalence for treated host populations in comparison 
to control groups [7, 8]. The highly aggregated (overd-
ispersed) distribution of oocysts means that analysis of 
the reduction in the mean count of oocysts is inherently 
uncertain [9] and large sample sizes are needed to accu-
rately capture infections [5]. One approach to overcome 
this is the use of the zero-inflated negative binomial dis-
tribution [10] of parasitic life stages that has been used to 
assess vaccines [11], and suggested as an improvement to 
capture the influence of aggregated infections on efficacy 
estimates [9].

A second concern for TBI assessment has been that 
although SMFA (or its derivatives) capture reductions 
in infections to mosquitoes, they fail to capture the sub-
sequent onward infectivity to the human host or the 
onward transmission over multiple cycles. To do this in 
laboratory studies, multi-generational experiments have 
been developed that simulate the passage of Plasmodium 
berghei between populations of mice and Anopheles ste-
phensi mosquitoes [12, 13]. Using this approach, the 
transmission-blocking drug atovaquone (ATV), titrated 
to give a 32% reduction in oocyst intensity (ATV-32%) 
in a DFA, was found to have an estimated effect size of 
20.4% [12]. The effect size measures the ability of a treat-
ment to reduce the basic reproduction number of the 
parasite (the average number of secondary infections 
caused by an infected host). These estimates were made 
using a chain-binomial model [14, 15], but the assump-
tions inherent in the model affect estimation and need 

further validation. Firstly, it assumes that all infectious 
mosquitoes and mice are equally infectious [15]. (In fact, 
the probability of infection from vertebrates-to-vectors 
or vice versa increases when hosts have higher infection 
intensities [16].) Secondly, the number of parasites in 
successive life stages is highly variable; for example, mos-
quitoes biting on the same blood source are likely to have 
widely differing oocyst or sporozoite counts [17]. The 
importance of parasite intensity on transmission means 
that it is necessary to account for stochastic variability. 
Thirdly, the chain binomial model assumes that the prob-
abilities of infection from multiple infectious bites are 
independent. Finally, although the reproduction num-
ber and effect size calculations are widely understood 
by mathematical modellers, these terms are not gener-
ally used by those working in TBI development who tend 
to measure efficacy as either the transmission-blocking 
activity ((TBA), the reduction in the number of infected 
hosts or vectors) or transmission-reduction activity 
[(TRA), the reduction in mean parasite intensity of the 
host or vector population]. To overcome these issues, a 
probabilistic Bayesian model is developed that captures 
the generative structure of the complex data. This makes 
it possible to capture the relationship between successive 
stages of malaria across multiple vertebrate-to-vertebrate 
transmission cycles and generate TBA and TRA esti-
mates. The zero-inflated negatively binomially distrib-
uted data for each parasitic life stage is used to inform 
the transmission probabilities between vector and host or 
host and vector. In this way, the transmission probabil-
ity of a more heavily infected vector or host population 
(where each individual, on average, harbours a relatively 
high number of parasitic stages) could be higher than 
one with lower density infections even where preva-
lence (the proportion of individuals in the population 
with any infection) is matched. The Bayesian approach 
incorporates the variability between transmission events, 
which is much harder to incorporate into frequentist 
approaches without relying on approximations. This 
allows the uncertainty in the system to be captured in the 
model and enables relatively precise estimates of efficacy 
(the percentage reduction in parasite prevalence or infec-
tion intensity achieved by the TBI) to be broken down 
by transmission cycle and biting group (the number of 
potentially infectious mosquitoes biting each mouse dur-
ing a transmission cycle) to provide a more detailed anal-
ysis of data.

Methods
Experimental design
Briefly, a population assay multigenerational experiment 
was used to cycle P. berghei malaria through mice and 
mosquitoes (Fig.  1; [12]). A statistical model was fitted 
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to the observed data and experimental structure using a 
Bayesian posterior distribution in Stan [18]. The model 
predictions (posterior draws) for the parasite densities of 
respective life stages were then used to calculate the effi-
cacy of ATV.

For each treatment regime (ATV-32% and control), 
mouse-to-mouse transmission operated as described 
previously [12, 13], the experiment is graphically demon-
strated in Fig. 1 and described in the figure’s legend. All 

care and handling of animals strictly followed the Guide-
lines for Animal Care and Use prepared by Imperial Col-
lege London, and was performed under the UK Home 
Office Licences 70/7185 and 70/8788.

Initial parasite density was measured by counting 
the number of infected red blood cells in the mice (N 
infected erythrocytes out of a total subsample of 1200 
cells). Mosquitoes were dissected to assess the number 
of oocysts in the mosquito population. The sporozoite 

a b

Injected
mice

if t = 0 : no TBI
if t = 1 : TBI

if t = 0 : no TBI
if t = 1 : TBI

Mosquitoes

Oocysts

Sporozoites
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N0 ~ NB (µt, φt)

O ~ NB (oit, τit) πV

S ~ Multinomial (simt, σimt)

N ~ NB (µimt, φimt) πP

Cycle i = 0

Cycle i > 0
inform µimt, φimt & πV

m mosquito bites per mouse

Fig. 1  A graphical outline of the multi-generational transmission experiment (a) and its mathematical representation (b). Ten days prior to treat‑
ment, 5 female TO mice (6–8 weeks old) were injected with 107–108 Plasmodium berghei clone ANKA 2.34. One day prior to the trial, mosquitoes 
were starved. Infected mice were either treated with the transmission-blocking intervention, atovaquone ATV (0.5 µg kg−1 in 100 µl dimethyl 
sulfoxide DMSO), or given a negative control (DSMO alone). After 2 h, mice were anaesthetized and 500 naïve An. stephensi (line sd 500) mosquitoes 
were allowed to feed on all 5 mice simultaneously and at random so any mosquito could feed on any mouse. This cohort of 500 mosquitoes was 
sub-sampled (n = up to 50 mosquitoes) and dissected 10 days after feeding to measure the prevalence and intensity of oocysts (O’). The mosqui‑
toes were at their most infectious 21 days after feeding on the infected mice [8]. At this point, a group of 5 naïve mice (N) were anaesthetized and 
fed to a specified number of mosquitoes (m = 1–5 mosquito bites per mouse). Immediately after successful feeding (determined by an engorged 
abdomen), the sporozoites (S) remaining within the mosquito post-feeding were then scored on a binned scale (representing either 0, 1–10,11–100, 
101–1000, or 1000 + sporozoites per mosquito). Over 10 days, the bite-exposed mice were sampled for parasitaemia and gametocytaemia. These 
mice were then treated with the control or ATV and a new cohort of 500 naïve mosquitoes were allowed to feed on any mouse simultaneously at 
the start of the second transmission cycle (i = 2 cycles). The transmission cycles were repeated four times. This experiment was reported previously 
in [12]. b The probabilistic Bayesian model mirrored the experimental set up. The initial parasite density generated by injecting mice N0, the oocyst 
intensity O’ and the parasite density in mice transmitted by mosquito bites N, are modelled assuming zero-inflated negative binomial distributions. 
The sporozoite count S data for the biting mosquitoes were censored which means that the data are modelled as a multinomial distribution. These 
distributions are defined by the mean (µ, o, s for parasite density in mice, oocyst counts and sporozoite counts in mosquitoes) and dispersion (φ, τ, 
σ for parasite density in mice, oocyst counts and sporozoite counts in mosquitoes) and zero-inflation (πP, πV) parameters. Parameters from the previ‑
ous life stage are used to inform the next (the respective parameter informing the subsequent life-stage is indicated by the arrows). The biting effect 
m is modelled when sporozoites in mosquitoes propagate parasite infections in mice for each transmission cycle i and treatment arm t. All care and 
handling of animals strictly followed the Guidelines for Animal Care and Use prepared by Imperial College London, and was performed under the 
UK Home Office Licence 70/7185
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measurement was additionally binned into specified 
ranges (scores of 0–4 representing 0, 1–10, 11–100, 101–
1000, 1000  +  sporozoites, respectively). The structure 
of the data (from [12] and listed in Additional file  2) 
resulted in four complete scenarios whereby malaria was 
transmitted mouse-to-mouse via mosquitoes (Fig. 2).

Statistical methods
In this experiment, it was not possible to measure the 
number of sporozoites reaching salivary glands from 
each oocyst or the number of blood-stage infections 
in mice resulting from injected sporozoites. These 
relationships are uncertain and are incorporated as 
nuisance parameters in the model (Additional file  1). 
Each of these stages is modelled sequentially, similarly 
to a hidden Markov model. The number of parasites 
in each stage is represented by a zero-inflated nega-
tive binomial distribution (NBD) to account for both 
infected and uninfected individuals. A bi-modal struc-
ture is fitted using a zero-inflation parameter, π, which 
determines the proportion of mice or mosquitoes that 
are uninfected and therefore cannot transmit. The 
shape of the relationships between different parasite 
life stages is unknown. This is accounted for by includ-
ing a random effects component that allows the mean 

number of parasites in each group to vary according to 
the observed data. A comprehensive description of the 
model is provided in Additional file 1.

Model fitting
All parameters were fitted jointly using a Bayesian pos-
terior distribution in RStan (version 2.11, [18]). A non-
centred parameterization method was employed [19, 20]. 
The model parameter fitting used a Hamiltonian Monte 
Carlo method [18], burn-in was 500 and the subsequent 
500 samples from each chain (n = 4) were used for pos-
terior predictive checks. The model R code is provided 
in Additional file 2), with the accompanying data (Addi-
tional file  2). The parameter estimates are supplied in 
Additional file 3.

Model output
Two measures of efficacy are presented: (1) the TBA, 
the percentage difference in the proportion of infected 
hosts between the control (t = 0) and treatment (t = 1) 
arms of the experiment; and, (2) the TRA, the percent-
age difference in parasite density between the control 
and treatment arms of the experiment. Efficacy estimates 
(denoted TBAi,m for prevalence, TRAi,m for intensity), 
were generated for each biting rate (m) and transmission 
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Fig. 2  Summary of the observed experimental data and efficacy estimates against prevalence and parasite intensity. Prevalence (the percentage of 
infected individuals) and percentage parasite densities (the mean percentage of infected erythrocytes out of 1200 cells per host) in control (column 
1) and treatment (column 2) mice for transmission cycles 1–4 (x-axis) and for biting rates 1–5 (1–5 mosquito bites per mouse, y-axis). Correspond‑
ing  % prevalence efficacy (top right) and % intensity efficacy (bottom right) estimated for each biting rate and transmission cycle using the probabil‑
istic Bayesian model
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cycle (i) from the simulated posterior predictive model 
outputs (n iterations  =  2000) using the equations: 

TBAi,m =

P0,i,m − P1,i,m

P0,i,m
× 100

TRAi,m =

I0,i,m − I1,i,m

I0,i,m
× 100

.

The 95% credible intervals were calculated directly 
from the posterior predictive outputs (Table 1).

To justify model assumptions, it was important to 
investigate the difference between the overall distribution 
of sporozoite scores in control and treatment groups, 
parasitaemia (%) and gametocytaemia (%). Data explora-
tion was conducted in R, version 3.2.2 [21].

Results
Evaluating efficacy
With a full probabilistic model of the mouse-to-mouse 
measurements there is potential to define many possible 
measures of efficacy depending on exactly what elements 
of the model impact future interventions. Here two are 
presented: TBA and TRA (Table 1).

The prevalence efficacy TBA
The overall TBA of ATV-32% between the two arms of 
the experiment was 28.42% (28.0–28.9%: ±1.96 × stand-
ard error). There was a small increase in the impact 
against prevalence across transmission cycles (Table  1; 

Table 1  Efficacy estimates

The mean and standard errors (±1.96 × SE) and median for prevalence, TBA and intensity efficacy, TRA estimates for biting rates 1–5 (the number of mosquito bites 
per mouse), transmission cycles 1–4, calculated from the posterior distributions of the probabilistic Bayesian model

TBA transmission-blocking activity, TRA transmission-reducing activity

Group Arithmetic mean (±1.96 × SE) Median

TBA TRA TBA TRA

Overall N bites (m) N cycles (i) 28.42 (28.0–28.9) 22.63 (21.7–23.6) 29.1 25.5

Per bite 1 28.42 (28.0–28.9) 22.63 (21.7–23.6) 29.1 25.5

2 70.77 (69.8–71.7) 91.18 (90.7–91.6) 75.0 93.9

3 58.60 (57.5–59.7) 88.58 (88.1–89.1) 62.5 91.2

4 28.37 (27.2–29.5) 34.53 (32.9–36.1) 30.8 40.9

5 5.87 (5.0–6.8) −4.72 (−6.5 to −3.0) 6.3 −4.0

Per cycle 1 4.80 (3.9–5.7) −8.78 (−10.6 to −7.0) 6.3 −12.2

2 21.15 (20.3–22.0) 44.88 (43.8–45.9) 22.7 49.4

3 30.20 (29.4–31.1) 28.63 (27.1–30.1) 31.3 35.0

4 32.60 (31.7–33.5) 13.51 (11.7–15.3) 33.3 16.6

Per bite and cycle 1 1 28.42 (27.4–29.5) 4.16 (2.2–6.1) 28.6 1.3

1 2 34.5 (32.0–37.0) 67.30 (65.7–68.9) 50.0 78.0

1 3 75.53 (73.7–77.4) 94.33 (93.7–95.0) 100 100

1 4 97.60 (97.0–98.2) 99.56 (99.3–99.8) 100 100

2 1 99.70 (99.5–99.9) 99.9 (99.8–100) 100 100

2 2 16.14 (13.4–18.9) 60.97 (59.3–62.6) 33.3 71.8

2 3 55.14 (52.6–57.7) 90.18 (89.3–91.0) 66.7 96.9

2 4 88.9 (87.6–90.2) 98.07 (97.7–98.5) 100 100

3 1 97.93 (97.2–98.6) 99.74 (99.6–99.8) 100 100

3 2 25.95 (23.8–28.1) 41.85 (39.8–43.9) 33.3 53.1

3 3 31.60 (29.2–34.0) 44.80 (42.5–47.1) 33.3 57.5

3 4 34.4 (31.7–37.2) 47.7 (45.3–50.2) 50.0 61.6

4 1 38.60 (35.7–41.5) 49.7 (57.0–52.4) 50.0 66.3

4 2 10.65 (8.9–12.4) 33.6 (31.6–35.6) 20.0 44.0

4 3 8.88 (7.0–10.8) 15.18 (12.8–17.5) 0.0 22.1

4 4 8.29 (6.2–10.4) 7.87 (5.3–10.4) 0.0 14.2

5 1 3.23 (0.6–9.5) 4.00 (1.2–6.8) 0.0 9.5

5 2 10.15 (8.6–77.4) 34.9 (33.0–36.9) 20.0 44.1

5 3 8.65 (6.7–10.6) 14.98 (12.5–17.4) 0.0 21.8

5 4 4.12 (1.59–6.7) 5.99 (3.3–8.7) 0.0 11.2
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Fig.  3) indicating multiple cycles were required to fully 
benefit from the ATV treatment.

The impact of ATV was greatest at low mosquito biting 
rates (where each mouse received a single mosquito bite, 
the TBA was 70.8% (69.8–71.7%); for two mosquito bites 
per mouse: 58.6% (57.5–59.7%); and, for three bites per 
mouse: 28.4% (27.2–29.5%)) whilst the impact was much 
reduced at higher mosquito biting rates [for four bites: 
5.9% (5.0–6.8%); for five bites: 4.8% (3.9–5.7%)].

Per bite TBAs were consistent after the second com-
pleted transmission cycle (Fig.  3) suggesting that three 
cycles would be sufficient to capture the impact of ATV 
at a concentration expected to reduce transmission by 
32% from vertebrate-to-vector [12].

The intensity efficacy TRA
The overall TRA was 22.63% (21.7–23.6%). The biggest 
impact against intensity was achieved after the first trans-
mission cycle (Table 1; Fig. 3).

Like parasite prevalence efficacies, the impact of ATV 
on parasite density was greatest at low mosquito biting 
rates; 91.2% (90.7–91.6%), 88.6% (88.1–89.1%) and 34.5% 
(32.9–36.1%) for one to three mosquito bites per mouse, 
respectively. There was no positive impact on parasite 

intensity at higher mosquito biting rates; −4.7% (−6.1–
3.0%) and −8.8% (−10.6–7.0%) for four and five mos-
quito bites per mouse (Fig. 2).

An illustration of the posterior outputs of the model is 
shown in Fig. 4.

Parasite intensity, transmission and heavy infections
There is a non-linear relationship between each of the 
different parasite life stages in the model confirming that 
transmission between hosts and vectors (and vice versa) 
are saturating (negative) density-dependent processes 
(Fig. 5). Capturing these relationships enables more accu-
rate estimation of efficacy by considering the natural 
population dynamics of infection that are also observed 
in the field for human infections [22].

Assessing efficacy estimates by transmission cycle and 
biting rate allows more detailed examination of the inter-
vention’s impact. For example, in the treatment arm of 
the experiment, two of five mice in the transmission cycle 
3 cohort, which received four mosquito bites each, had 
exceptionally high parasitaemia (≥12% of 1200 red blood 
cells were infected). Both mice had, by chance, been fed 
on by mosquitoes with very high post-feeding sporozo-
ite counts (indicated by high mean sporozoite scores, >2). 
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Fig. 3  Impact of atovaquone 32% (ATV-32%) across transmission cycles and mosquito biting rates. The transmission-blocking (prevalence) (a and 
c) and transmission-reducing (intensity) (b and d) efficacy (%) and critical binomial 95% credible intervals (shaded regions around lines) generated 
from the model simulated treatment and control posterior distributions of the parasite density per individual for each biting rate (the number of 
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Once exposed, these mice can be fed upon by any of the 
500 naïve mosquitoes in the next cohort. Consequently, 
higher than expected parasite densities are propagated 
throughout the system (Fig. 2).

Although the infectiousness of mice depends on the 
mature gametocytes present in the blood, rather than the 
asexual parasites (that are used in the model), there is less 
confidence in microscopic measurements of gametocyte 
counts. A linear relationship between mean gametocytae-
mia (the percentage of erythrocytes infected with sexual 
stage parasites) and mean parasitaemia (the percentage of 
erythrocytes infected with asexual stage parasites) was con-
sistent with the data (mean gametocytaemia ~0.11 × mean 
parasitaemia +  0.03, σ =  0.12: F40,38 =  197.1, p  <  0.001, 
adjR2 = 0.83), justifying the use of parasitaemia as a depend-
ent variable in addition to infection status.

Discussion
Accurate methods to assess potential TBIs are impor-
tant to ensure that the best candidates go forward to 
expensive clinical trials. Here, TBI efficacy from mouse 
population assays is estimated by fitting a probabilis-
tic Bayesian model to multiple parasitic life stages with 
a structure that reflects the experiment structure used 
to collect the data. Whilst it may be more computation-
ally expensive to fit a multistage Bayesian model such as 
the one presented here, the method: (i) is able to identify 
chance events that can occur at any point in the experi-
ment; (ii) is statistically robust to natural fluctuations in 
the starting parasite density, which impacts the capac-
ity of the treatment to reduce secondary infections; and 
(iii) has the flexibility to capture the density dependent 
(or other) relationships between parasite life stages. The 
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Fig. 4  Comprehensive plots of the model output to determine efficacy. Each column presents successive transmission cycles 1, 2, 3 and 4 using 
the 2 mosquito bites per host group as an example. The generated posterior distributions from the model are the most probable values for parasite 
density for each of 2000 iterations. a–d Histograms of the estimated effect size for atovaquone 32% (ATV-32%) against prevalence (TBA) in the 
mice generated from the model posterior distributions. e–h The posterior predictive outputs for control (red) and treatment (black) data on the 
log scale + 1 for each transmission cycle (i). Where points fall below the blue line there has been a reduction in the parasitaemia from the initial 
(i) to the subsequent (i + 1) cohort of hosts. The controls become both more numerous and dispersed in comparison to the treatment estimates 
as transmission progresses from transmission cycle 1–4; the drug has a positive impact both by reducing cases and by reducing the amount of 
infection through successive transmission cycles. i–l Histograms of the estimated effect size for ATV-32% against parasite density (TRA) in the mice 
generated from the model posterior distributions. For a–d and i–l, the red solid vertical line marks the mean estimate and the dashed blue lines 
indicate the median estimate
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chain binomial model produced a relatively similar esti-
mate for ATV-32% (20.4% reduction in secondary cases) 
when compared to the Bayesian approach (28.4% efficacy 
against prevalence).

Although the two metrics are not directly comparable, 
they provide complementary understanding of the inter-
vention impact. Firstly, the chain binomial model pre-
sents an overall effect size that measures the reduction in 
secondary cases in hosts, the R0, that can be achieved by 
using vaccine. This can be used directly in mathematical 
models to understand the epidemiology of diseases. Con-
versely the Bayesian method directly calculates the reduc-
tion in the prevalence and density of infection between 
the different arms of the experiment. This generates more 
intuitive efficacy estimates which are more comparable to 
the results of clinical trials and are easier to understand 
by non-mathematical modellers. Secondly, the chain 
binomial model assumes that all infected mice and mos-
quitoes have the same infectivity irrespective of the den-
sity of infection. This can bias estimates depending on 
the quantity of parasite in the system. The new method 
allows the infectivity to vary according to the density of 
the parasite at the particular life-stages which provides 
additional information for the actions of an intervention. 
Finally, the chain binomial model generates a single effect 
size estimate whilst the Bayesian model enables interven-
tion efficacy to be broken down by treatment round and 
biting rate. This finer scale of resolution allows a more 
detailed understanding of the dynamics of the disease, 
for example by showing that parasite density efficacy is 
higher in earlier transmission cycles compared to the 
efficacy against parasite prevalence. This finer resolution 

also enables chance fluctuations in parasite intensity to 
be identified, which could bias overall estimates in popu-
lations with small sample sizes and generate misleading 
results. One of the advantages of the new method is that 
it makes no assumptions about the likelihood of infection 
of multiply bitten hosts unlike the chain binomial model 
which assumes that mice are more likely to have detecta-
ble parasites the more infected bites they receive (follow-
ing a binomial distribution). This makes results from the 
low biting groups relatively uncertain (due to stochastic 
fluctuations) so these groups should be interpreted in the 
context of other results.

Measuring impact at different mosquito biting rates 
and transmission cycles shows that ATV works first to 
reduce parasite density and later to reduce secondary 
infections. Single mouse-to-mouse transmission cycle 
population experiments have been performed previ-
ously [13]. Although this would generate accurate predic-
tions of efficacy for highly effective interventions (which 
eliminate all onward transmission), using a single cycle of 
mouse-to-mouse transmission could potentially underes-
timate the impact of partially effective TBIs. The model 
also indicates that, for the intervention investigated here, 
efficacy estimates remain relatively stable after three 
cycles of transmission. This may allow the length of the 
experiment to be shortened, lowering costs and reducing 
the number of mice required.

The mouse population assay outlined in [12] is a stand-
ardized experiment and will be used to address future 
hypotheses including proof of concept questions such 
as the impact of combining interventions (for example 
a transmission-blocking vaccines with pre-erythrocytic 

Fig. 5  Relationships between malaria life stages. The mean estimates of the model (grey, control and green, treatment dots) and observed data (red, 
control and blue, treatment dots) describing relationships between successive life stages of malaria, demonstrating the broad agreement of data 
and model estimates
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vaccines) or changing levels of vaccine coverage. These 
types of experiments allow the consequences of different 
epidemiological characteristics or control interventions 
to be triaged in a controlled environment that would be 
infeasible to do in a human system or would require mul-
tiple, very expensive randomised control trials.

Given the relatively sparse data for each trial this analysis 
can be sensitive to systematic variation caused by fluctua-
tions in the amount of malaria per individual in any given 
transmission cycle. The hierarchical structure used, how-
ever, does prevent a fluctuation in any one distribution 
(caused by unusually heavily infected individuals) from 
strongly biasing the inferences of other life-stages. More-
over, the weakly-informative priors used in the analysis 
limit the potential for overfitting and the predictive checks 
showed no indication of such pathologies. The analysis 
could be improved by incorporating greater biological 
realism into the model by increasing the number of inter-
mediate life-stages (for example including a gametocyte 
life-stage or better capturing host immune responses). 
However, the benefit of this enhanced realism in the model 
depends on the applicability of the rodent system to human 
malaria. There is much debate about the capacity for mouse 
models to inform on aspects of human malaria [23–25] so 
extrapolating to P. falciparum must be done with caution.

Conclusions
Here, a standardised statistical methodology is out-
lined which uses the Hamiltonian Monte Carlo method 
(RStan, version 2.11 [18]) to fit to population assay exper-
imental data. To the author’s knowledge, this is the first 
time these methods have been used to examine parasi-
tological data and their flexibility and precision makes 
them ideally suited for this purpose. In many parasitic 
infections the population dynamics of transmission and 
host morbidity and mortality depends on the number 
of parasites in a host and/or vector and not their pres-
ence/absence [26]. The distribution of parasites between 
hosts is typically highly aggregated [16, 27, 28]. This is 
particularly the case for many human parasitic infections, 
which are the target of elimination programmes [29, 30, 
31]. As the parasite becomes increasingly rare, mean-
based estimates of parasite intensity become increasingly 
uncertain. The range of statistical distributions available 
in Stan enables a more precise population estimate of 
parasite intensity. Many of the processes governing para-
site transmission are density-dependent [27, 32]. Using a 
probabilistic approach enables these non-linear processes 
to be captured at the individual level whilst considering 
parasite distributions without the need for overly simpli-
fying the experimental structure in the statistical model 
or running computationally expensive individual-based 
transmission models [33].
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