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Abstract 

Background  Identification of malaria vectors is an important exercise that can result in the deployment of targeted 
control measures and monitoring the susceptibility of the vectors to control strategies. Although known to possess 
distinct biting behaviours and habitats, the African malaria vectors Anopheles gambiae and Anopheles arabiensis are 
morphologically indistinguishable and are known to be discriminated by molecular techniques. In this paper, Raman 
spectroscopy is proposed to complement the tedious and time-consuming Polymerase Chain Reaction (PCR) method 
for the rapid screening of mosquito identity.

Methods  A dispersive Raman microscope was used to record spectra from the legs (femurs and tibiae) of fresh 
anaesthetized laboratory-bred mosquitoes. The scattered Raman intensity signal peaks observed were predominantly 
centered at approximately 1400 cm−1, 1590 cm−1, and 2067 cm−1. These peaks, which are characteristic signatures 
of melanin pigment found in the insect cuticle, were important in the discrimination of the two mosquito species. 
Principal Component Analysis (PCA) was used for dimension reduction. Four classification models were built using 
the following techniques: Linear Discriminant Analysis (LDA), Logistic Regression (LR), Quadratic Discriminant Analysis 
(QDA), and Quadratic Support Vector Machine (QSVM).

Results  PCA extracted twenty-one features accounting for 95% of the variation in the data. Using the twenty-one 
principal components, LDA, LR, QDA, and QSVM discriminated and classified the two cryptic species with 86%, 85%, 
89%, and 93% accuracy, respectively on cross-validation and 79%, 82%, 81% and 93% respectively on the test data set.

Conclusion  Raman spectroscopy in combination with machine learning tools is an effective, rapid and non-destruc-
tive method for discriminating and classifying two cryptic mosquito species, Anopheles gambiae and Anopheles arabi-
ensis belonging to the Anopheles gambiae complex.

Keywords  Raman spectroscopy, Machine learning, Discriminant Analysis, Support Vector Machine, Logistic 
Regression, Melanin, Mosquito, Mosquito identification, Anopheles gambiae, Anopheles arabiensis

Background
Malaria remains a serious threat to human life world-
wide. It is a serious cause of morbidity and mortality, 
with the majority of cases and deaths occurring in sub-
Saharan Africa. According to statistics from the World 
Health Organization (WHO), it is estimated that 247 
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million cases and 619,000 deaths occurred worldwide 
due to the disease in the year 2021 [1]. The highest bur-
den of the disease was bone in sub-Saharan Africa, which 
accounted for 95% of cases and 96% of deaths.

Malaria is transmitted from one human to another pri-
marily via the bites of female Anopheles mosquitoes. To 
this end, female mosquitoes of the genus Anopheles must 
contract infection with Plasmodium parasites by feeding 
on blood from an infected person, supporting the sexual 
cycle of Plasmodium parasites, and subsequently deliver-
ing the infective sporozoites to a susceptible human host 
during the next blood-feeding session [2]. Based on this 
knowledge, malaria prevention by reducing human-vec-
tor contact is paramount and has been the main preven-
tive strategy hitherto. This is usually deployed in the form 
of indoor residual spraying (IRS), insecticide-treated bed 
nets (ITNs), larval control, and outdoor residual spraying 
[3].

The Anopheles gambiae complex includes some of the 
most efficient malaria vectors worldwide. It is known 
to be composed of at least seven morphologically indis-
tinguishable species, namely, Anopheles gambiae (i.e. 
the nominal taxon), Anopheles arabiensis, Anopheles 
bwambae, Anopheles melas, Anopheles merus, Anoph-
eles quadriannulatus, Anopheles coluzzii, and Anopheles 
amharicus [4]. The first two species are the most widely 
distributed in Africa [5]. Identifying An. gambiae and 
An. arabiensis is critical in malaria control programmes 
because these two species have distinct behaviours and 
habitats and require different approaches to control. 
Anopheles gambiae is generally the predominant species 
in environments with high humidity and rainfall, whereas 
An. arabiensis is more common in regions with low rain-
fall [5, 6]. Both species often occur in sympatry across a 
wide range of tropical Africa [5, 7].

Identifying the species responsible for malaria trans-
mission in a given area allows the application of targeted 
interventions that are more effective and efficient than 
the use of broad-based control measures. Anopheles gam-
biae is an endophilic mosquito species [8, 9], meaning 
that it rests indoors after blood feeding. It is primarily a 
nighttime feeder and is highly anthropophilic [9], mean-
ing that it feeds almost exclusively on humans. Owing to 
its feeding and resting habits, Anopheles gambiae is pri-
marily controlled using indoor residual spraying (IRS) 
and insecticide-treated bed nets (ITNs). In contrast, 
Anopheles arabiensis is an exophilic mosquito, meaning 
that it rests outside after feeding. It is opportunistic in 
its feeding habits, feeding on both humans and animals 
[10]. Because it rests outdoors, IRS may not be as effec-
tive against An. arabiensis. Instead, other measures such 
as larval source management and outdoor residual spray-
ing may be necessary to control this species.

Distinguishing between the two cryptic species is also 
important for monitoring insecticide resistance [11]. The 
widespread use of insecticides for malaria control has led 
to the development of resistance in mosquito vector pop-
ulations. Monitoring insecticide resistance is critical to 
ensure that control measures remain effective. Addition-
ally, correct identification can aid in tracking changes in 
malaria transmission patterns [12]. Monitoring changes 
in mosquito abundance and species composition can 
provide valuable information regarding malaria transmis-
sion dynamics. This information can be used to adjust 
control strategies and prevent malarial epidemics.

The need to identify these two species is an age-old 
problem. Their cryptic nature has prompted scientists 
to develop identification techniques that extend beyond 
visible morphological features. In most cases, these tech-
niques are molecular techniques. Allozyme electropho-
resis [13] and analysis of polytene chromosomes [14] 
may be considered the oldest techniques for identifying 
mosquitoes in the An. gambiae complex. In the former 
method, starch gel electrophoresis of allozymes was used 
to identify the members of the An. gambiae complex. Gel 
electrophoresis is a method used to separate macromol-
ecules, mainly proteins, based on their size and charge. 
Macromolecules are embedded in a porous gel, such as 
starch, and an electric field is applied across the gel. The 
migration of molecules in the porous gel under the influ-
ence of an electric field separates the molecules by size. 
The process is tedious and time-consuming, as it requires 
manual identification of protein products at particular 
loci. In the latter method, the evolution of the An. gam-
biae complex was interpreted from the polytene chro-
mosome banding sequences. Polytene chromosomes are 
giant chromosomes that are commonly found in dipteran 
flies. Although successful, this method is limited to half-
gravid female mosquitoes [15].

Cuticular hydrocarbon analysis using gas chromatog-
raphy has also been explored for the identification of 
An. gambiae complex species. Gas chromatography can 
be used to separate volatile compounds without causing 
decomposition. This enabled the determination of the 
relative abundances of the present compounds. Carl-
son & Service [15] observed that relative abundances 
between the following compounds could be used to dis-
tinguish the species: n-hexacosane and n-heptacosane, 
13-methyl hentriacontane and n-hentriacontane, and 
dimethyl nanotria-contane and dimethyl hententra-con-
tane. However, the instrumentation of gas chromatogra-
phy limits its use in laboratory environments and not in 
field applications.

Most techniques for identifying the sibling species of 
An. gambiae complex, as observed from recent literature, 
are focused on the analysis of DNA [16–24]. DNA is a 
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biological molecule that encodes the genetic information 
of an organism. Currently, DNA analysis is performed 
using Polymerase Chain reaction (PCR) amplification. 
PCR is used to select specific portions of the genome (a 
sequence of bases) of an organism to be replicated sev-
eral times to a reasonable quantity for analysis. PCR 
techniques have high accuracy, specificity, and sensitiv-
ity. Currently, they are the gold standard for identifying 
species in the An. gambiae complex. However, PCR is a 
time-consuming, labour-intensive, and expensive process 
that requires specialized laboratory conditions and highly 
skilled personnel to obtain good results.

Matrix-assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-TOF-MS) has been 
explored for discriminating sibling species within the An. 
gambiae complex. MALDI-TOF-MS uses laser energy 
and an absorbing matrix to ionize large molecules such 
as proteins while minimizing fragmentation. Using 
MALDI-TOF-MS, mosquito leg protein extracts have 
been found to be adequate for identifying mosquitoes at 
the species level [25–27]. Similarly, optical spectroscopy 
techniques, such as near-infrared (NIR) and mid-Infra-
red (MIR) spectroscopy, have been investigated in insect 
taxonomic and age grading studies. These include the 
identification of species of beetles [28], Drosophila spe-
cies [29], cryptic Tetramorium ant species [30], and the 
An. gambiae complex [30–34]. NIR and MIR absorp-
tion and reflectance spectroscopy probes the vibrational 
states of molecules and provides a spectral fingerprint 
of the chemical compound under investigation. While 
cuticular lipids and hydrocarbons are the main molecules 
that provide essential classification information in insect 
taxonomic studies using NIR spectroscopy [30, 31], MIR 
spectroscopy has consistently revealed proteins, waxes 
and chitin as the overall indicators of spectra intensity 
[32–34]. The three techniques, MALDI-TOF-MS, MIR 
and NIR spectroscopy, have the advantage of being rapid 
compared to previously discussed methods. However, 
in MALDI-TOF-MS, the compound to be investigated 
must be extracted and embedded in a laser-absorbing 
matrix for analysis, which is a time-consuming process. 
MIR spectroscopy, on the other hand, is generally a non-
destructive method. However, the recently reported 
attenuated total reflectance (ATR) method of spectral 
measurement on dried mosquito samples [32–34] can 
potentially be destructive as the sample is pressed against 
a crystal using an anvil. In addition, the process of drying 
the samples for more than a day may also lead to delays.

From the extensively reviewed literature, no studies 
have used Raman spectroscopy as a tool to distinguish 
these two species. Recently, the capability of Raman spec-
troscopy to discriminate and classify mosquito genera 
was demonstrated [35]. Cuticular melanin was found to 

be a potential biomarker for discrimination. In this work, 
the utility of Raman spectroscopy for discriminating and 
classifying two sibling species based on cuticular melanin 
signatures is demonstrated.

Methods
Mosquito rearing and preparation of samples for Raman 
spectroscopy
Anopheles gambiae and An. arabiensis colonies were 
maintained following standard rearing protocols in insec-
taries at the Department of Biology at the University of 
Nairobi. Adult mosquitoes were held in 30 × 30 × 30  cm 
cages in separate temperature-, light-, and humidity-con-
trolled rooms. The rooms were kept at a temperature of 
27–28 °C, humidity of 70–80% and a photoperiod of 12-h 
light and 12-h darkness. In each cage, the mosquitoes laid 
eggs in ovicups containing cones of filter paper placed in 
water. The eggs were transferred to trays filled with water, 
where they hatched into larvae. The larvae were fed 
TetraMin® baby fish food. The adults were fed 6% glucose 
solution soaked in filter paper wicks. Confirmatory PCR 
was performed to maintain colony integrity.

To prepare for measurements, fresh 3-day old adult 
mosquitoes were taken from rearing cages and anaesthe-
tized using chloroform. This was performed by enclos-
ing separate groups of insects in enclosed chambers that 
contained open bottles of chloroform for six hours. This 
step was not necessary for the measurement process but 
was performed to ensure that the mosquito samples were 
kept intact with all body parts.

Raman spectroscopy measurements
A total of 397 mosquitoes (An. gambiae, n = 201; An. 
arabiensis, n = 196) were used in this study. Each mos-
quito was measured by randomly taking five spectra of 
the insect’s femurs and tibiae. Each spectrum was taken 
using 10  s integration time with five accumulations on 
a Technos® dispersive Raman microscopy system. The 
system had the following parameters: 532 nm excitation 
laser, 600 grooves/mm gratings, and × 10 infinity-cor-
rected dry microscope objective with a Numerical Aper-
ture of 0.25. The laser power was continuously adjusted 
via visual inspection of the sample to avoid sample burn-
ing. Figure 1 shows a schematic of the instrument setup, 
with the sample (insect) placed on the X–Y translation 
stage. Photons from the laser (indicated by green arrows 
pointing toward the sample) were delivered through the 
microscope objective to the mosquito legs (femurs and 
tibiae), which were placed on a Raman-grade Calcium 
Fluoride microscope slide (Crystran Ltd, UK, Batch No. 
60373). Femurs and tibiae were chosen for their relative 
ease of being focused under the microscope and because 
they did not contain signals emanating from other 
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conditions such as food consumed by the mosquitoes 
and gonotrophic status. Furthermore, mosquito legs have 
been successfully used to classify mosquitoes [25, 27, 
35]. Rayleigh and Raman scattered photons (indicated as 
green and red arrows respectively pointing away from the 
sample) in Fig. 1 were collected by the same microscope 
objective with an optical low pass filter blocking the for-
mer. The Raman signal was collected via an optical fibre 
and spectrograph for digitization using a charge-coupled 
device (CCD) (Peltier cooled to −  76  °C) connected to 
a computer for display and storage. Wavenumber cali-
bration was done by interpolating the laser line and the 
strong silicon Raman shift positioned at 520.5 ± 4 cm−1.

Data pre‑processing
Data processing was performed according to previ-
ously published protocols by Ryabchykov et al. [36] and 
Morais et al. [37]. Five spectra from each mosquito were 
averaged, and the average was considered as a single 
spectrum from the mosquito. Each averaged spectrum 
was first smoothed with a Savitzky Golay convolution 

digital filter of order 5 and a frame length of 21 pixels. 
The Savitzky Golay mask is a low-pass filter that sup-
presses noise signals that generally have high frequencies. 
This was followed by a baseline correction procedure 
employing the Vancouver algorithm [38] with a 5th-order 
polynomial to subtract the fluorescence signal and leave 
a clean Raman signal. Vector normalization was applied 
to each Raman spectrum to account for the intensity 
variation due to experimental factors such as changes 
in the sample focus. All preprocessing procedures were 
performed using scripts developed in the Matlab® 2018 
software.

Classification modelling
Four machine-learning models were trained and tested 
to discriminate and classify the two mosquito species: 
Linear Discriminant Analysis (LDA), Quadratic Dis-
criminant Analysis (QDA), Logistic Regression (LR), 
and Support Vector Machine (SVM). LDA and QDA 
are algorithms based on Mahalanobis distance calcu-
lations between samples of each class, which can use 

Fig. 1  Schematic representation of the dispersive Raman microscope. The sample is placed on the X–Y stage. Red and green arrows indicate 
photon delivery routes
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Bayesian probability terms to correct classes of differ-
ent sizes. Unlike LDA, which assumes a pooled covari-
ance matrix resulting in a linear boundary, QDA forms 
a separate covariance model for each class thus separat-
ing the classes by a quadratic boundary. Similarly, LR is a 
linear model, used to model binary classes based on one 
or more variables. In this case, the binary classes were 
assumed to closely fit an underlying probability distri-
bution. The goal of the model was to estimate the true 
parameters of the underlying probability density func-
tion for discrimination and classification. Finally, the 
data were modelled using an SVM. An SVM is an inher-
ently binary linear classifier that may allow the nonlinear 
transformation of data by the inclusion of kernel tricks. 
SVM fits a linear decision boundary between classes 
while seeking to maximize the margin between them, 
defined by the closest samples on the border, called sup-
port vectors. In this study, we used a quadratic kernel to 
account for nonlinearity in the classification problem. In 
all the four models, Principal Component Analysis PCA 
was used to extract features for classification. PCA is a 
matrix factorization algorithm that decomposes the orig-
inal data matrix into three matrices as follows:

where T is a matrix containing scores, PT is the transpose 
of the matrix containing loadings, and E is a residual. The 
score matrix T has its columns ordered from the first 
most important latent variable, with each subsequent 
variable’s importance reduced. This implies that the first 
few latent variables can be used to reduce the dimensions 
of the original dataset for robust classification. It also 
aids in the visualization of data points during classifica-
tion. The loadings matrix P provides information about 
the variables that make the largest contribution to the 
components.

Model development was achieved through five-fold 
cross-validation. The data were divided into five equal 
chunks; four chunks were used as the training set, and 
one was used as the validation set. This process was 
repeated by alternating each of the data chunks as a vali-
dation set and the remaining four as the training set. In 
each case, preprocessed data were loaded in the Matlab 
2018 software workspace, and Matlab’s classification 
Learner apps were used to create the models. The pre-
processed data consisted of 297 rows (representing 297 
mosquitoes) and 341 features (wavenumbers). Training 
the classification models with all the features resulted 
into either underfitting for the linear models (LDA and 
LR) or a failed training for QDA. This necessitated fea-
ture extraction process by PCA. The Quadratic SVM 
(QSVM) model’s performance was largely unaffected by 
training with all the features. The PCA function in the 

(1)X = TP
T
+ E

software was used to automatically compress the input 
variables from 341 to 21 principal components, which 
accounted for 95% of the variation in the original data-
sets. The goal of feature extraction by PCA was to ensure 
robustness of the machine learning models. After the 
cross-validation process, the models were presented with 
completely new data from 100 mosquitoes (50 from each 
of the categories).

Quality metrics for performance of the models
Three quality metrics were calculated from the confusion 
matrices of the developed LDA, QDA, LR, and QSVM 
models to evaluate their performance: accuracy, sensitiv-
ity, and specificity. Accuracy is defined as the percentage 
of correct classifications, sensitivity is the percentage of 
true positives that were classified correctly, and specific-
ity is the percentage of true negatives that received the 
correct classification. The metrics were calculated using 
Eqs. 2–4 [37].

where TP, TN, FP, and FN represent the True Positives, 
True Negatives, False Positives, and False Negatives, 
respectively. Figure 2 summarizes the data analysis pro-
tocol used in the development of the models.

Results
The average Raman spectra obtained from the legs of the 
An. gambiae and An. arabiensis mosquitoes are shown in 
Fig. 3. Each spectrum is the average of the mean spectra 
from 20 individual mosquitoes. The main peaks of inter-
est are labelled. These peaks coincide well with previ-
ously reported data on mosquito discrimination and 
classification [35]. Previous studies have shown that per-
forming Raman spectroscopy on cuticles of some insects 
such as bumble bees [39], wasps [40], spiders [41] and 
skins of Lacertids [42] produced spectra dominated by 
peaks attributable to melanin pigment. The main peaks, 
as surveyed from the published work, occur at 1380 cm−1 
and 1580  cm−1 for black or brown colour producing 
eumelanin and 1490 cm−1 and 2050 cm−1 for reddish or 
yellowish colour producing pheomelanin. The peak at 
2067 cm−1 in Fig. 3 occurs in both An. gambiae and An. 
arabiensis spectra, but with clearly visible differences in 
intensity and is attributed to pheomelanin pigment. This 

(2)Accuracy =
TP + TN

TP + FP + TN + FN
× 100%

(3)Sensitivity =
TP

TP + FN
× 100%

(4)Specificity =
TN

TN + FP
× 100%
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corresponds to the 2050 cm−1 peak reported in the cited 
literature. This peak has been observed in Raman spec-
tra of synthetic pheomelanin [43] as well as in spectra 
of pheomelanin from grasshoppers [44]. Previous stud-
ies have assigned it to overtones or combination bands. 
The overtone could be the first harmonic of the C-N 
band of pheomelanin reported by Galván et  al. [45] to 
occur at 1150  cm−1 but spanned a range of wavenum-
bers 1141  cm−1, 1147  cm−1, and 1159  cm−1 [45]. This 
peak, although not well defined, can be observed as a 
hump at approximately 1100 cm−1 in Fig. 3. The peaks at 
1402 cm−1 and 1582 cm−1 in An. gambiae and 1406 cm−1 
and 1598 cm−1 in An. arabiensis spectra can be ascribed 
to eumelanin. These peaks have been associated with the 
stretching vibration of the hexagonal carbon rings in the 
molecular structure, the vibration of the six C–C bonds 
within the rings, and the vibration of C-H of methyl 
and methylene groups in the eumelanin polymers [46]. 
Although there was a clear difference in the peak posi-
tion and intensity in the averaged spectra of the two spe-
cies, there were considerable perceived similarities when 
examining individual mean spectra from each of the 
mosquitoes in the study. Therefore, the aforementioned 
differences cannot be used to predict mosquito spe-
cies; hence, the need for machine learning classification 
models.

Classification Models
All the four machine-learning models performed rela-
tively well in discriminating and classifying the two sib-
ling species during cross-validation. The linear models, 
LDA and LR, performed almost identically, with accura-
cies of 86% and 85%, respectively. The quadratic models 
QDA and QSVM achieved slightly higher accuracies of 
89% and 93%, respectively. Table 1 summarizes the qual-
ity metrics of the four classification models. In all four 
models, An. gambiae and An. arabiensis were assigned 
positive and negative class labels, respectively.

The overall prediction accuracies of the models were 
determined by exposing the models to new spectra from 
100 mosquitoes (An. gambiae, n = 50; An. arabiensis, 
n = 50) that had not been seen by the models. LDA, LR, 
QDA and QSVM predicted correctly the two classes with 
accuracies of 79%, 82%, 81% and 93% respectively as sum-
marized in Table 1. Figure 4 shows the model outputs for 
each of the new unseen samples.

Variables contributions
Each of the four models retained only twenty-one prin-
cipal components (PCs) after training, accounting for 
95.0% of the variation in the original feature space. 
The first three PCs accounted for 62.8%, 9.3%, and 
4.2%, respectively, with each of the remaining 18 PCs 

Fig. 2  Data analysis pipeline. Raw data are fed from the left side of the figure. Pre-processing is performed before the clean data are fed 
into the classification models. Finally, the performances of the models are evaluated
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contributing less than 3.0% of the variation. Examina-
tion of the loadings on these PCs revealed that the first 
PC correlated positively with the ca.1580  cm−1 eumela-
nin peak and negatively with the 2067  cm−1 pheomela-
nin peak. The second PC had strong positive loadings at 
1621  cm−1 and 2063  cm−1. The third PC also showed a 
strong negative loading for pheomelanin characteristic 
bands at 2060  cm−1 and 1916  cm−1, and positive load-
ing at 1709  cm−1, which are generally associated with 

carbonyl C = O bonds. Figure  5 provides a visualization 
of the loading for the first three PCs. Therefore, melanin 
peaks dominated in correlation with the first three PCs.

While the classifiers used twenty-one PCs, it was not 
possible to visualize all PC combinations. Figure 6 shows 
a visualization of the mosquito data points in the princi-
pal component space in three dimensions. In Figs. 6a and 
b, there is a good separation between the positive (An. 
gambiae) and negative (An. arabiensis) classes using PC1, 
PC2, PC3 and PC4, PC5, PC6, respectively. In Fig.  6c, 
the positive class appears to be spread out more than the 
negative class, forming a smaller cluster in PC7, PC8, and 
PC9 space. This may be interpreted as small but impor-
tant contributions by smaller PCs, which are useful for 
defining discrimination hyperplanes in the models.

Discussion
The ability of Raman spectroscopy to effectively dis-
criminate and classify two mosquito member species 
of the An. gambiae complex: An. gambiae sensu stricto 
and An. Arabiensis has been demonstrated. Both mos-
quito species were reared under controlled environ-
mental conditions (humidity, temperature, and dark/
light photoperiod). Raman spectra were obtained by 
scanning the cuticle of tibiae and femurs of unfed indi-
vidual mosquitoes. After pre-processing, the spectra 
clearly showed the dominance of both eumelanin and 
pheomelanin peaks. Melanin molecules are known to 
offer photoprotective properties to organisms because 
of their ability to absorb ultraviolet (UV) and visible 
light and dissipate up to 90% of the absorbed energy. 
The thermal melanism hypothesis states that indi-
viduals tend to be darker in colder environments and 
lighter in warmer ones [47]. Since the measurements 
in this experiment were performed on individuals 
reared under similar environmental conditions, envi-
ronment-induced changes in melanin were ruled out. 
Four machine-learning models, LDA, QDA, LR, and 
QSVM, were developed and successfully discriminated 
and classified the two cryptic species. They achieved 

Fig. 3  Average Raman spectra of Anopheles arabiensis (top) 
and Anopheles gambiae (bottom). The spectra are dominated 
by the eumelanin and pheomelanin peaks

Table 1  Summary of quality metrics used to assess the performance of the four classification models

 Total number of mosquitoes used for cross-validation = 297 (Anopheles gambiae, n = 151; Anopheles arabiensis, n = 146); Total number of mosquitoes used for model 
testing = 100 (Anopheles gambiae, n = 50; Anopheles arabiensis, n = 50)

Model Accuracy(%) Sensitivity (%) Specificity (%)

Cross-validation 
set

Test set Cross-validation 
set

Test set Cross-validation 
set

Test set

Linear Discriminant Analysis (LDA) 86 79 82 68 90 90

Quadratic Discriminant Analysis (QDA) 89 81 84 66 93 96

Logistic Regression (LR) 85 82 84 74 87 90

Quadratic Support Vector Machine (QSVM) 93 93 90 90 95 96
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accuracies of 86, 89, 85, and 93%, respectively on cross-
validation. However, LDA, LR and QDA models showed 
some deterioration in performance when presented 
with completely new data set not used in cross-vali-
dation. This may be attributed to concept drift arising 
from measurements done at different dates with impre-
cise room temperature control. The general increase 
of specificity in the three models’ performances and a 
decrease in their sensitivity (Table 1) may validate this 
speculation. QSVM was largely more robust and unaf-
fected by the drift. LDA and LR are linear models, 
whereas QDA and QSVM employ quadratic bounda-
ries or kernels, respectively, in the discrimination algo-
rithms. This suggests non-linearity in the datasets, and 
hence, better classification performance is exhibited by 
non-linear models. However, such models should be 
deployed with caution, such as cross-validation with 
sufficient data to avoid overfitting. The performance 
of the developed models can be considered sufficient 
for effective screening of large numbers of mosquito 

samples usually collected in mosquito surveillance pro-
grams and field studies.

The binary classification models LDA, QDA, LR, and 
QSVM developed in this work classify any sample pre-
sented to them into any of the two classes: An. gambiae 
and An. arabiensis. This means that before one can effec-
tively use the models, one needs to sort the mosquitoes 
to the species level and then let the model assist in clas-
sifying the members of the An. gambiae complex. This is 
not different from the PCR assay, in which careful selec-
tion of primers and use of positive and negative controls 
are required to guarantee good results. However, unlike 
in the PCR assay where a failed amplification means the 
non-existence of the target species, a machine learning 
model classifies any sample presented to the model even 
if it does not belong to the complex to one of the classes, 
based on the learned decision boundary. This is a major 
weakness of the classification models, but it can be over-
come by proper sorting of the insects and expanding the 
scope of the models to multiclass classifiers by training 

Fig. 4  Model performance showing correct and wrong classification when presented with new unseen spectra: a LDA, b LR, c QDA and d QSVM. 
The data points represent each of the 100 mosquitoes (Anopheles gambiae, n = 50; Anopheles arabiensis, n = 50)



Page 9 of 11Omucheni et al. Malaria Journal          (2023) 22:342 	

using all seven members of the complex. This may also 
include other members outside the complex, such as 
Anopheles funestus, which are occasionally confused with 
An.gambiae [48].

Compared with standard PCR assays, the method 
developed in this work is rapid because it requires mini-
mal sample preparation. A fresh insect is placed under 
a microscope objective lens, as in normal microscopy, 
and scanned using a laser to acquire the Raman spec-
trum. For a case in which the model has been trained, 
the process of acquiring, preprocessing, and classifying 
the acquired spectrum can take less than ten minutes per 
insect. This time can be further reduced if a dedicated 
‘point and shoot’ miniaturized system is developed and 
used. This can be considered faster than PCR, in which a 
sample can take between one and six hours depending on 
the speed of the system. It is also nondestructive, as the 
samples can be reused. After the extraction procedure 
for the PCR assay, an insect sample cannot be used for 
assays other than PCR. In terms of costs, after the initial 
costs of setting up the Raman microscope are considered, 
this method is relatively cost-saving because no chemi-
cal reagents are required. The Raman microscope used 
in this study costs approximately USD 100,000. However, 
it is also a general-purpose system that is used in other 
research projects in materials science, forensics, and bio-
photonics. A point to note with Raman spectroscopy is 
that after the development of the method presented in 
this paper, a custom-made, application-specific, hand-
held system [49, 50] can be designed with preloaded 
libraries and search algorithms that may incorporate 
machine learning for mosquito identification. This will 
drastically decrease the initial cost of setting up a Raman 

Fig. 5  Loading visualization of the first three principal components. 
The loadings correlate with the Raman peaks of melanin. PC1, 
PC2, and PC3 accounted for 62.8%, 9.3%, and 4.2% of the variance, 
respectively

Fig. 6  Visualization of principal component contribution in mosquito discrimination. Blue circles represent the positive group, whereas red 
triangles represent the negative group. The 3-D plots are a PC1,PC2, PC3, b PC4, PC5, PC6, and c PC7,PC8, PC9
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system dedicated to mosquito identification to less than 
USD 30,000, and present a simplified user interface. The 
current cost of setting up a PCR system is approximately 
USD 40,000, with an expected constant requirement for 
reagents that may not be sustainable for laboratories in 
resource-limited settings. Finally, the Raman spectros-
copy method also compares well with other optical spec-
troscopy techniques, MIR [32–34] and NIR [31, 51, 52] in 
mosquito identification studies. However, the use of ATR 
in MIR (ATR-MIR) spectroscopy on mosquitoes may 
potentially be considered destructive since the dried sam-
ples have to be pressed by an anvil onto a crystal during 
measurement. The ATR-MIR method also requires the 
samples to be dried for at least a day before acquisition of 
spectra, which is a source of delay. Raman spectroscopy 
overcomes such ATR-MIR challenges because measure-
ment is done on fresh samples and without any sample 
damage. NIR spectroscopy, on the other hand, offers 
similar benefits to Raman spectroscopy (rapid and non-
destructive) but from a technical perspective, Raman 
measurements are performed using laser light in (or close 
to) the visible range of the electromagnetic spectrum. 
Therefore, Raman spectroscopy is more appealing for 
the miniaturization of spectroscopic devices because vis-
ible light detectors and optics are relatively cheaper than 
those in NIR spectroscopy. Miniaturized Raman sys-
tems such as hand-held can be used to do measurements 
in situ while in field campaigns.

Conclusions
The efficacy of a rapid and non-destructive method for 
discriminating and classifying two cryptic mosquito 
species belonging to the An. gambiae complex has been 
demonstrated. This method uses Raman spectroscopy 
combined with machine learning algorithms to discrimi-
nate between An. gambiae and An. arabiensis.

These results suggest that the cuticular pigment, mela-
nin, is a biomarker for discriminating between the two 
sibling species. Linear binary models, namely Linear 
Discriminant Analysis (LDA) and Logistic Regression 
(LR), performed well with accuracies of 86% and 85%, 
respectively on cross-validation and 79%, 82%, respec-
tively, on the test data set. Quadratic models -Quadratic 
Disciminant Analysis (QDA) and Quadratic Support 
Vector Machine QSVM- performed better than linear 
models, achieving accuracies of 89% and 93% respectively 
on cross-validation. QDA achieved 82% while QSVM 
remained robust achieving 93% accuracy respectively on 
the test data set. This is the first time Raman spectros-
copy has been used to discriminate and classify cryptic 
mosquito species.

The classification results are based on measurements 
performed on mosquitoes reared under controlled 

ecological conditions. Therefore, environment-induced 
changes in the samples were ruled out. However, such 
variations should carefully be considered if the models 
were to be extended to field-caught mosquitoes.

Although the classification models presented in this 
work are binary, they can be upgraded by training using 
multi-class data to enable screening of all seven An. gam-
biae siblings and other species commonly confused with 
An. gambiae.
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