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Abstract 

Background  Malaria risk factors at household level are known to be complex, uncertain, stochastic, nonlinear, 
and multidimensional. The interplay among these factors, makes targeted interventions, and resource allocation 
for malaria control challenging. However, few studies have demonstrated malaria’s transmission complexity, control, 
and integrated modelling, with no available evidence on Uganda’s refugee settlements. Using the 2018–2019 Ugan-
da’s Malaria Indicator Survey (UMIS) data, an alternative Bayesian belief network (BBN) modelling approach was used 
to analyse, predict, rank and illustrate the conceptual reasoning, and complex causal relationships among the risk 
factors for malaria infections among children under-five in refugee settlements of Uganda.

Methods  In the UMIS, household level information was obtained using standardized questionnaires, and a total 
of 675 children under 5 years were tested for malaria. From the dataset, a casefile containing malaria test results, 
demographic, social-economic and environmental information was created. The casefile was divided into a training 
(80%, n = 540) and testing (20%, n = 135) datasets. The training dataset was used to develop the BBN model follow-
ing well established guidelines. The testing dataset was used to evaluate model performance.

Results  Model accuracy was 91.11% with an area under the receiver-operating characteristic curve of 0.95. The 
model’s spherical payoff was 0.91, with the logarithmic, and quadratic losses of 0.36, and 0.16 respectively, indicat-
ing a strong predictive, and classification ability of the model. The probability of refugee children testing positive, 
and negative for malaria was 48.1% and 51.9% respectively. The top ranked malaria risk factors based on the sensitivity 
analysis included: (1) age of child; (2) roof materials (i.e., thatch roofs); (3) wall materials (i.e., poles with mud and thatch 
walls); (4) whether children sleep under insecticide-treated nets; 5) type of toilet facility used (i.e., no toilet facility, 
and pit latrines with slabs); (6) walk time distance to water sources (between 0 and 10 min); (7) drinking water sources 
(i.e., open water sources, and piped water on premises).

Conclusion  Ranking, rather than the statistical significance of the malaria risk factors, is crucial as an approach 
to applied research, as it helps stakeholders determine how to allocate resources for targeted malaria interventions 
within the constraints of limited funding in the refugee settlements.
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Background
Malaria, a mosquito-borne disease continues to be a 
major public health concern in Africa with longstand-
ing infections leading to significant morbidity, and 
mortality especially among children under 5 years [1]. 
By 2021, approximately 234  million malaria cases, and 
593,000 deaths occurred in Africa [2], imposing a heavy 
burden on human societies, negatively impacting com-
munity welfare, and constraining socio-economic devel-
opment [3]. Some malaria related deaths in Africa have 
also been attributed to the COVID-19 disruptions, which 
significantly affected health care delivery systems, while 
constraining malaria control funding, including the dis-
tribution of insecticide-treated bed nets (ITNs), indoor-
residual spraying (IRS), and treatment [4, 5].

In sub-Saharan Africa (SSA), malaria transmission 
is mediated by complex interactions between humans, 
and infected mosquitoes, exacerbated by the favourable 
physical environments for mosquito survival, and breed-
ing, opportunities for human exposure to mosquito bites, 
poor healthcare systems, inadequate malaria control 
interventions [1, 6, 7], as well as land use and land cover 
changes [8]. Malaria infections can even be more devas-
tating among the structurally disadvantaged populations 
(i.e. refugees, internally displaced, and asylum-seekers) 
who live in confined settlements characterized by poor 
sanitation, poor housing infrastructure, limited access to 
health care services, inadequate malaria vector control, 
and economic deprivation [9, 10]. Considering the com-
plexity of malaria transmission dynamics, modelling the 
determinants of malaria presents numerous challenges 
in regards to inclusion of uncertainties, non-linearity, 
and dynamism [11]. It is thus paramount to apply inte-
grated robust models that consider malaria transmission 
dynamics, to guide pre-emptive policies, and targeted 
actions for malaria control, and optimal use of resources 
in the refugee settlements of Uganda, and other refugee 
hosting countries in Africa.

In most malaria studies conducted in SSA, logistic 
regression models have been widely used by different 
scholars to analyse malaria risk factors. For instance, 
a recent systematic review by Obasohan and col-
leagues focusing on the period between January 1990 
and December 2020 [6], revealed that logistic regres-
sion models have been extensively utilized to identify 
statistically significant malaria risk factors including 
the nature of housing materials, household wealth sta-
tus, possession of ITNs, mother’s level of education, 

environmental resources, drinking water sources and 
sanitary conditions. In refugee geographical settings, 
researchers have also used logistic regressions to exam-
ine malaria risk factors. For-example, a study con-
ducted in Tongogara refugee camp in Zimbabwe used 
a logistic regression model, and revealed that hous-
ing structures, outdoor activities, and wearing clothes 
that do not cover the whole body, increased the risk of 
contracting malaria [12]. Another study conducted in 
Kiryandongo refugee camp in Uganda also utilized a 
logistic regression model, and concluded that Plasmo-
dium falciparum and intestinal parasitic co-infection 
was associated with malaria and anaemia [13]. A recent 
study focusing on all the refugee settlements in Uganda 
also used a logistic regression model, and revealed that 
the use of pit latrines, open water sources, lack of ITNs, 
inadequate knowledge on malaria causes, and preven-
tion, were the key drivers of malaria infections among 
children under-five [14].

Although these, and recent studies provide valu-
able insights on malaria risk factors in refugee settle-
ments, they have potential limitations. First, the logistic 
regression models employed in these studies were used 
to measure the statistical significance of each determi-
nant of malaria infections with respect to probabilities 
(P-value < 0.01; < 0.05), without any form of importance 
ranking to inform malaria control efforts in refugee set-
tlements. Second, logistic regression models have been 
observed to struggle with restrictive expressiveness, 
and predictive performance, and sometimes multipli-
cative interpretation of their generated results is dif-
ficult [15]. Third, multiple factors influencing the risk 
for malaria infections do not act in isolation, but rather 
in an aggregated format [11]. Fourth, logistic regression 
models were unable to represent conceptual reasoning 
[16], or complex interactions [15] among the malaria 
risk factors that were uncertain, stochastic, nonlinear, 
and multidimensional. Finally, in these studies, the 
inclusion criteria (P < 0.20) that was used to include 
variables in multivariable logistic regression, left out 
some key malaria risk determinants.

In response to the limitations of existing research, 
this study provides an alternative knowledge-based 
Bayesian belief network (BBN) modelling approach to 
holistically analyse, predict, and rank the determinants 
of malaria infections among children under-5 years 
in the refugee settlements of Uganda. Among others, 
the BBN is a key integrated modelling approach [17]. 
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Increasingly, BBNs are becoming popular, because of 
their probabilistic abilities to model uncertainties, and 
complex environmental domains [18]. A BBN model 
has several advantages over logistic regression models. 
BBNs are: (1) highly transparent; (2) flexible in mod-
elling causal relationships; (3) capable of integrating 
information from various sources (i.e. experimental 
data, historical data, and expert opinion), and (4) have 
the potential to explicitly handle uncertainties, and 
missing data [18, 19]. Because of their versatility, BBNs 
have been widely used in prediction, data analysis, 
updating, diagnosis, optimization, deviation detection, 
and decision-making based on available information 
[20]. Despite their increasing application in related 
malaria studies [21–24], BBNs have not been used 
to study malaria risk factors in refugee settlements of 
Uganda, and elsewhere.

Thus, a BBN model was developed and utilized data 
from the 2018–2019 Uganda Malaria Indicator Survey 
(UMIS), which is the first national wide malaria survey 
in Uganda to include households, and people in the ref-
ugee settlements [25]. Specifically, this study aimed to: 

(1) develop a novel, and effective knowledge-based BBN 
model illustrating the conceptual reasoning, and complex 
causal relationships among the risk factors for malaria 
infections among children under-five in refugee settle-
ments of Uganda; (2) predict, and rank the risk factors for 
malaria infections among children under-five in refugee 
settlements of Uganda. The study’s contribution to the 
growing body of literature on malaria is twofold. First, 
this study contributes to the methodological literature 
on the comprehensive, and holistic assessment of malaria 
risk factors using BBN technique in refugee settlements. 
Second, unlike in the previous studies which focused on 
eliciting statistical significance of the malaria risk factors, 
this study ranks the risk factors to inform malaria control 
interventions efforts in refugee settlements. Ranking, and 
prioritizing malaria risk factors are crucial for allocating 
resources to targeted malaria control interventions when 
operating within a context of limited resources.

Fig. 1  Refugee hosting districts in Uganda
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Methods
Study area and justification
This study focused on refugee settlements located in 
Uganda (Fig.  1). These settlements are distributed in 
the districts of Yumbe, Arua, Adjumani, Moyo, Lamwo, 
Kiryadongo, Kyegegwa, Kamwenge, and Isingiro. Uganda 
provided an interesting case to comprehensively, and 
holistically analyse, and rank the risk factors for malaria 
infections in refugee settlements for several reasons. 
First, Uganda is the top refugee hosting country in 
Africa, with over 1.8 refugees coming from mainly Soma-
lia, South Sudan, Democratic Republic of Congo (DRC), 
and Burundi [26]. Second, Uganda is a malaria endemic 
country, and by 2021, 5% of 247  million global malaria 
cases were reported in the country [2]. Third, all refu-
gees in Uganda come from malaria endemic countries, 
and there is a possibility of Uganda receiving imported 
malaria strains that might adding an extra burden to the 
malaria reduction, and elimination efforts [27]. Fourth, 
Uganda is the only refugee hosting country in Africa col-
lecting malaria related data (i.e., parasite prevalence, ane-
mia, and status of key malaria indicators) via the malaria 
indicator surveys [25].

The Bayesian belief network (BBN)
A BBN is a directed acyclic graph (DAG) consisting of a 
set of variables linked with defined probabilities. A BBN 
model is widely used for knowledge representation, and 
reasoning under uncertainty [18, 28]. The DAG repre-
sents a qualitative graphical structure, where nodes (i.e., 
“parent” and “child” nodes) represent the variables of 
interests that are linked with arrows indicating the exist-
ence of probabilistic conditional dependence between 
two variables. Each node is defined by mutually exclu-
sive states (i.e., categorical, boolean, continuous or dis-
crete), representing alternative choices or conditions 
for the specific node. The quantitative element of a BBN 
consists of conditional probability tables (CPTs) corre-
sponding to the nodes having incoming links. The rela-
tionships between nodes are described by conditional 
probability distributions (i.e., priori or unconditional, 
conditional, and posterior probabilities) that capture the 
dependences between variables. For-instance, if there is 
a link going from node A to node C, then A is said to be 
a “parent node” of C, and C is said to be a “child node” 
of A. This conditional relationship between the “parent” 
node A, and “child” node C is defined by a conditional 
probability table. A BBN model is based on the Bayes’ 
theorem of probability theory to propagate information 
between nodes [29]. Bayes’ theorem illustrates how prior 
knowledge about a given hypothesis X is updated by an 
observed evidence Y as shown in Eq. 1.

where P(X), is the prior probability of the hypothesis X 
(i.e., the likelihood that X will be in a particular state, 
prior to consideration of any evidence), P(Y|X) is the 
conditional probability (i.e., the likelihood of the evi-
dence, given the hypothesis to be tested); and P(X|Y) is 
the posterior probability of the hypothesis (i.e., the like-
lihood that X is in a particular state, conditional on the 
evidence provided). This equation showing probabilities 
gives an explicit representation of uncertainties [28].

Application of the BBN modelling approach to the malaria 
risk factors
In this study, well established guidelines, and protocols 
were followed to develop the BBN model [30, 31]. Before 
constructing a BBN model, it is recommended to either 
use subject-matter experts or review literature or both to 
identify key correlates or explanatory variables that influ-
ence an outcome of interest [30]. In this study, the out-
come of interest was the probability that children under 
5 years of age in refugee settlements of Uganda (Fig.  1) 
tested positive for malaria. To identify the correlates of 
malaria infections, a literature review was conducted, 
and the variables deemed relevant for the refugee set-
tlements were identified as shown in Additional file  1: 
Table  S1. Based on literature review, expert knowledge, 
and the previous BBN modelling experience [21, 22, 32], 
the risk factors for malaria infections were organized into 
an influence diagram as shown in Fig. 2.

Data source, and casefile development for model building
This study utilized a nationally representative data from 
the 2018–2019 UMIS, and this data was downloaded 
from the Demographic and Health Surveys programme 
website [33]. Standardized questionnaires were utilized 
to collect the demographic, social, economic, and envi-
ronmental information from the surveyed refugee house-
holds. Both rapid diagnostic test (RDT), and the blood 
smear test (BST) were used to test malaria parasitaemia 
among children under 5 years with consent obtained 
from the household heads [25]. The 2018–2019 UMIS 
involved 3481 children from refugee settlements shown 
in Fig. 1.

This study focused on 675 children under 5 years who 
were tested for malaria using the RDT. Microsoft Excel 
was used to compile a casefile (n = 675) containing the 
malaria RDT results, and all the variables captured in the 
influence diagram (Fig. 2). A total of 227 children tested 
positive for malaria which is equivalent to 33% of the 
observed malaria prevalence in the full casefile (n = 675).

(1)P(X |Y ) =
P(X) ∗ P(Y |X)

P(Y )
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Model design, development and parameterization
By using the influence diagram (Fig.  2), a BBN model 
(Fig. 3) was constructed using Netica software version 
6.09 (Norsys Software Corp. Vancouver, Canada). The 
BBN model structure was determined based on the 
BBN modelling experience, information from litera-
ture (Additional file 1: Table S1), and model reviewers. 
This combination was adopted to comprehensively, 

and holistically capture all the malaria risk factors, and 
to reduce on the model complexity. The model was 
parameterized based on the variable categories in the 
questionnaires that were used in the 2018–2019 UMIS.

Fig. 2  Influence diagram depicting a qualitative causal-effect relationship among the risk factors for malaria infections among children under 5 
years in refugee settlements of Uganda

Fig. 3   A BBN for modelling the risk factors for malaria infections among children under the age of 5 years in the refugee settlements in Uganda
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Model calibration
Using the K-fold partitioning approach (K = 2), the gen-
erated casefile (n = 675) was randomly partitioned into 
a training portion (80%, n = 540) used to populate the 
model, and a test dataset (20%, n = 135), which was used 
to evaluate model performance. A 80/20 data split is 
among the standard partition ranges recommended for 
model calibration, and testing [34]. Both the training, and 
testing datasets were generated using JMP 13 software 
(JMP Statistical Discovery LLC, North Carolina, USA). 
The randomly performed K-fold data split generated 182 
positive malaria cases for the training dataset (i.e. 33% 
observed malaria prevalence), and 45 positive malaria 
cases for the test dataset which also a 33% observed 
malaria prevalence. The 33% malaria prevalence in both 
the training, and test datasets is a representative of the 
33% observed malaria prevalence in the original data-
set (n = 675). The vertical lookup (V-lookup) function in 
Microsoft Excel was used to extract the randomly parti-
tioned portions (i.e., training, and testing datasets) from 
the main casefile (n = 675). The developed BBN model 
was calibrated using the training dataset (80%, n = 540). 
Learning of the CPTs was based on expectation maximi-
zation learning algorithm, a robust technique that auto-
matically updates initial parameter estimates by fitting 
the data file to the final model [19].

Model validation
The developed BBN model (Fig.  3) was evaluated using 
the sensitivity, and prediction performance metrics. 
Sensitivity analysis can help verify correct initial model 
structure, and parameterization [29]. It considers that, 
inputs to the model are uncertain, complex, and provides 
critical information on how sensitive the performance of 
the model is to slight or minor changes in the input data 
[35]. In this study, the function of ‘sensitivity to findings’ 
in Netica software was invoked to calculate the entropy, 
and mutual information measures of the BBN model. The 
entropy measure is based on the assumption that uncer-
tainty or randomness of a variable X, characterized by 
probability distribution P(X), can be represented by the 
entropy function as shown in Eq. 2.

Reducing H(X) by collecting information in addition 
to the current knowledge about variable X, can be inter-
preted as reducing the uncertainty about the true state of 
X. The entropy measure therefore enables an assessment 

(2)H(X) = −

n∑

i=1

P(Xi)logP(X)

of the additional information required to specify a par-
ticular alternative. The mutual information measure was 
used to assess the impact of obtaining information from 
variable (Y) in reducing the total uncertainty about vari-
able X using Eq. 3.

where I(Y, X), is the mutual information between vari-
ables. This measure calculates the expected degree to 
which the joint probability of X, and Y diverges from 
what it would be if X was independent of Y.

In testing the prediction performance of the BBN 
model, a ‘test with cases’ function of Netica software was 
conducted using the generated test dataset (n = 135). In 
this study, four test metrics were used to evaluate model 
performance. First, a confusion matrix was used to test 
the model’s ability to correctly predict both positive, 
and negative malaria cases among refugee children. Sec-
ond, to test the classification power of the BBN model, a 
receiver operator characteristic curve (ROC) was devel-
oped in Excel (Fig. 4) based on the sensitivity, and speci-
ficity results generated by the model. The ROC was used 
to assess the model’s prediction accuracy across a con-
tinuum of prediction threshold (i.e., 0–100). Besides, the 
area under the ROC curve (AUC) was also used to meas-
ure the overall model performance across a full range of 
possible cutoffs with value ranges of between 0.5–0.7, 
0.7–0.9, and above 0.9 indicating ‘poor’, ‘good’ and ‘excel-
lent’ discrimination abilities respectively. To evaluate the 
classification success rate of the developed BBN model, 
the error rate, and scoring rules of logarithmic loss, quad-
ratic loss and spherical payoff were used. For logarithmic 
loss range (0–infinity), and quadratic loss range (0–2), 
scores close to zero are considered to be better, whilst 1 

(3)I(Y ,X) = H(Y )−H(Y |X)

Fig. 4  A receiver-operating characteristic curve showing 
the classification performance of the BBN model



Page 7 of 14Semakula et al. Malaria Journal          (2023) 22:297 	

indicates the best model performance for spherical payoff 
(0–1) [29, 35].

Results
The Bayesian belief network model
In this study, a BBN model (Fig. 3) was developed to illus-
trate the conceptual reasoning, and the complex interac-
tions among the risk factors for malaria infections among 
children under 5 years in refugee settlements in Uganda. 
The model was compiled using the training dataset 
(n = 80%) as indicated in Methods section. The BBN 
model has a total of 23 nodes containing variables (i.e. 
malaria risk factors) with discrete black state-belief bars 
indicating the maximum likelihood state. The independ-
ent nodes contain prior, and conditional probabilities, 
and linked together with conditional probability tables. 
The arrows show the various interactions, direction, and 
influence of one node to other nodes. The output node 
(i.e. results of malaria rapid test) show a collective joint 
effect of all the malaria risk factors expressed as poste-
rior conditional probabilities. The model output results 
indicate that the probability of refugee children testing 
positive, and negative for malaria was 48.1%, and 51.9% 
respectively.

Model performance
To test the performance of the BBN model (Fig. 3), a total 
of 135 cases that were randomly selected from the origi-
nal casefile (n = 675) was used, and the results are shown 
in Table 1.

In Table  1, the confusion matrix shows the number 
of observed malaria cases that were correctly classified 
(i.e., True positive malaria cases = 38, and True negative 
malaria cases = 91). The BBN model has an error rate 
of 8.89%, implying that, it has an excellent overall accu-
racy of 91.11% to predict positive, and negative malaria 
cases correctly. The BBN model’s classification power, 
was evaluated basing on the scoring rules. The model’s 

scoring rule results indicated that the model has a strong-
est predictive power with both the logarithmic loss 
(0.3609) and quadratic loss (0.1619) scores close to zero, 
while a spherical payoff (0.9094) approaching 1. The sen-
sitivity results indicated that the BBN model was able to 
classify 90% of true positive malaria cases correctly. The 
specificity results further indicate that the model was 
able to classify true negative cases correctly. To further 
test the classification ability of the developed model, a 
receiver-operating characteristic (ROC) curve plotting 
percentages of true positives against false positives was 
constructed to assess model accuracy across a range of 
possible predication cutoffs (Fig. 4).

In Fig. 4, each point on the ROC curve depicts a trade-
off between a true positive against a false positive as the 
cutoff ranges increases from 0.0 to 1.0. The area under 
the ROC curve which computes the overall performance 
of the model is 0.9464, implying that a randomly selected 
child from a malaria positive diagnosis group, had a pre-
dicted value larger than that from a child from a malaria 
negative diagnosis group. The area under the ROC result 
indicates that the model has an excellent classification 
ability to distinguish between two diagnostic malaria 
groups (i.e., positive or negative), much better than a 
model that randomly classifies malaria cases. With these 
model performance tests, the developed model is con-
sidered to be successful, and appropriate to provide the 
best interpretation of results, and ranking of the risk fac-
tors for malaria infections among children under 5 years 
in the refugee settlements in Uganda. Extra results on 
the stability, and generalizability of the developed BBN 
model in predicting future, and unseen data are shown 
the Additional file 1: Table S2.

Ranking of the risk factors for malaria infections in refugee 
settlements in Uganda
In this study, 22 risk factors for malaria infections (Fig. 3) 
were considered in the analysis. A sensitivity analysis test 
was performed on the output node (i.e., results of malaria 

Table 1   A confusion matrix showing the predication accuracy of the BBN model

Actual: positive Scores Actual: negative Scores Total

Predicted: positive True positive (TP) 38 False positive (FP) 2 40

Predicted: negative False negative (FN) 4 True negative (TN) 91 95

Total (test dataset) 42 93 135

Model performance Sensitivity (TP/TP + FN) 0.90 Specificity (TN/TN + FP) 0.98

Model error rate 8.89%

Logarithmic loss 0.3609

Quadratic loss 0.1619

Spherical payoff 0.9094
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rapid test) of developed, and tested BBN model (Fig.  3) 
to rank the relative importance of each risk factor of 
malaria infection as shown in Fig. 5. Details of the sen-
sitivity analysis results can be found in Additional file 1: 
Table S3.

In Fig.  5, the first 10 ranked determinants caused the 
largest entropy reduction in malaria infections in refugee 
settlements. Although lack ITNs and IRS, age of house-
hold head, sex of household head, mother’s level of edu-
cation, lack of knowledge on the causes, and prevention 
of malaria have been recently associated with malaria 

infections in refugee settlements in Uganda [14], in this 
study, they are not among the 10 ranked determinants 
because they indirectly influence malaria infections 
through other factors.

Prediction of the risk factors of malaria infections 
in the refugee settlements in Uganda
In this study, the top 10 ranked risk factors (Fig. 5) that 
contributed to the largest entropy reduction in malaria 
infections were selected to predict, and estimate their 
contribution using scenario analysis. In the scenario 

Fig. 5  Important ranking of the risk factors of malaria infections in refugee settlements in Uganda
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Table 2  Predicted changes in beliefs of states when a positive state finding in the malaria rapid test results node was made 100%

Nodes and states Ranking Initial state-
beliefsa

New state-beliefsb Changes in beliefsc % point change

Malaria test results

 Negative 0.51917

 Positive 0.48083 100%

Age of refugee child 1

 Below 12 months 0.22222 0.21116 − 0.01106 − 1.11

 13–24 months 0.18148 0.18231 0.00083 0.08d

 25–36 months 0.16428 0.17481 0.00947 0.95d

 37–48 months 0.23148 0.23406 0.00258 0.26d

 49– 60 months 0.20000 0.20818 0.00818 0.82d

Main roof material 2

 Iron sheets 0.26922 0.26216 − 0.00706 − 0.71

 Tarpaulin 0.20585 0.19953 − 0.00632 − 0.63

 Thatch/palm leaf 0.52493 0.53831 0.01338 1.34d

Main wall material 3

 Bricks with cement 0.05297 0.05081 − 0.00216 − 0.22

 Bricks with mud 0.54186 0.52887 − 0.01299 − 1.30

 Cardboard walls 0.01547 0.01610 0.00063 0.06d

 Plastered walls 0.00776 0.008043 0.00028 0.03d

 Poles with mud 0.36904 0.37866 0.00962 0.96d

 Thatch walls 0.01494 0.01552 0.00058 0.06d

Type of toilet facility 4

 No toilet facility 0.03094 0.03216 0.00122 0.12d

 Open pit latrine 0.39848 0.39005 − 0.00843 − 0.84

 Pit latrine with slab 0.48398 0.48743 0.00345 0.34d

 Ventilated improved pit latrine (VIP) 0.08659 0.09035 0.00376 0.38d

Type of cooking fuel 5

 Charcoal 0.19317 0.19992 0.00675 0.67d

 Fire wood 0.80683 0.80008 − 0.00675 − 0.68

Time to get to water source 6

 0 min 0.17186 0.17270 0.00084 0.08d

 1–10 min 0.07289 0.07367 0.00078 0.08d

 11–20 min 0.27082 0.27059 − 0.00023 − 0.02

 21–30 min 0.09674 0.09233 − 0.00441 − 0.44

 Above 30 min 0.39133 0.38708 − 0.00425 − 0.43

Whether children sleep under ITNs 7

 All children 0.56862 0.56157 − 0.00705 − 0.71

 No 0.23421 0.23547 0.00126 0.13d

 Some children 0.19716 0.20296 0.00580 0.58d

Source of drinking water 8

 Boreholes 0.42631 0.42332 − 0.00299 − 0.30

 Open water sources 0.04747 0.04865 0.00118 0.12d

 Piped water on premise 0.01337 0.01375 0.00038 0.04d

 Public taps 0.42694 0.42462 − 0.00232 − 0.23

 Tanker trucks 0.08966 0.08592 − 0.00374 − 0.37

Main floor material 9

 Cement floor 0.08291 0.08584 0.00293 0.29d

 Dung floor 0.18038 0.18376 0.00338 0.34d

 Earth floor 0.73671 0.73040 − 0.00631 − 0.63

Household wealth status 10

 Poor 0.78005 0.78593 0.00588 0.59d

 Rich 0.21995 0.21407 − 0.00588 − 0.59
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analysis, the output node of the BBN models (Fig. 3.) was 
focused on, where the ‘positive’ state belief was tagged to 
the probability of 100% (i.e. positive malaria diagnosed) 
to predict the relative changes in the state probabilities 
of each malaria risk factor as shown in Table 2. Changes 
in state beliefs were used to calculate percentage point 
differences for each malaria risk factor to express their 
contribution to malaria infections among children under 
5 years (Table 2). A positive percentage point difference 
meant that children in refugee settlements were more 
likely to test positive for malaria. A negative percentage 
point difference meant that children in refugee settle-
ments were less likely to test positive for malaria.

From Table  2, refugee households with children aged 
between 13 and 24 months, 25–36 months, 37–48 
months and 49–60 months, had the probabilities of 
their children testing positive for malaria increasing by 
0.08% points (from 18.15 to 18.23%), 0.95% points (from 
16.43 to 17.48%), 0.26% points (from 23.15 to 23.41%), 
and 0.82% points (from 20 to 20.82%), respectively. This 
finding is consistent with a recent study on malaria risk 
factors in refugee settlements in Uganda, where it was 
revealed that children aged between 13 months to 60 
months, were more vulnerable to malaria infections 
compared to children below 12 months [14]. Although 
the study results indicate that refugee children below 
12 months were not vulnerable to malaria, other studies 
have shown that this age group is equally at a higher risk 
of malaria infections and should be given extra attention 
and care [36–39].

In Table  2, refugee households with thatch roof tops 
had the probability of children testing positive for malaria 
increasing by 1.34% points (from 52.49 to 53.83%). Roof 
thatch roof tops are known to be hiding, and resting 
places for mosquitoes during day time. This finding is 
consistent with a study conducted on the malaria risk fac-
tors in SSA, which revealed that households with thatch 
roofs had the probability of children testing positive for 
malaria parasitaemia increasing by 8.61% points [21]. 
Refugee households with wall constructed with card-
boards, plaster, poles and thatch had the probabilities of 
their children testing positive for malaria increasing by 
0.06% points (from 1.55 to 1.61%), 0.03% points (from 
0.78 to 0.80%), 0.96% points (from 36.9% to 37/87%), and 
0.06% points (from 1.49 to 1.55%) respectively. House-
holds with cement and dung floors, had the probabilities 

of children testing positive for malaria increasing by 
0.29% points (from 8.29 to 8.58%) and 0.34% points (from 
18.04 to 18.38%) respectively. This finding is consistent 
with other studies which have revealed that certain house 
designs, and building materials used for house construc-
tion may increase the malaria risk by enhancing the risk 
of mosquito entry, density, and survival, indoor mosquito 
resting, and mosquito bites [40–43].

Refugee households that did not have any toilet facility, 
had pit latrines with slabs and had VIP latrines, had the 
probabilities of their children testing positive for malaria 
increasing by 0.12% points (from 3.09 to 3.22%), 0.34% 
points (from 48.40 to 48.74%), 0.38% points (from 8.66 to 
9.04) (Table 2), respectively. The high malaria risk associ-
ated with pit latrines with slabs and VIP latrines is not 
surprising, since these toilet facilities tend to create con-
ducive resting places and breeding grounds for mosqui-
toes [44].

From Table  2, refugee households who spent 0  min 
and between 1 and 10 min walking to the water sources, 
had the probability of their children testing positive 
for malaria increasing by 0.08% points (from 17.19 to 
17.27%), and 0.08% points (from 7.29 to 7.37%), respec-
tively. Households whose main sources of drinking water 
were open water sources, and piped water on premises, 
had the probabilities of their children testing positive for 
malaria increasing by 0.12% points (from 4.75 to 4.87%), 
and 0.04% points (from 1.34 to 1.38%) respectively. Open 
water sources near households and piped water sys-
tems, which are poorly managed have been associated 
with creating potential breeding sites that shortened the 
gonotrophic cycles while increasing malaria transmis-
sion [14, 44]. However, as walk time distance to water 
sources increases, malaria infections tend to reduce due 
to prolonged gonotrophic cycles attributed to limited 
long-range flight abilities of mosquitoes [45]. Refugee 
households whose children did not sleep under ITNs or 
had some children sleeping under ITNs, had the prob-
abilities of their children testing positive for malaria 
increasing by 0.13% points (from 23.42 to 23.55%) and 
0.58% points (19.72–20.30%), respectively (Table 2).

Discussion
Despite extensive research on malaria, the disease 
remains a major health challenge in many countries 
of SSA attributed to various socio-economic, and 

Table 2  (continued)
a Represents the initial state belief probabilities for each malaria risk factor in the BBN model
b Reflects new state belief probabilities for the malaria risk factors when a positive state belief finding in the output node of the BBN model was made 100%
c Indicates the predicted relative changes in probabilities from the initial to new state-beliefs
d Represents the actual malaria risk factors, and their positive contribution to malaria infections
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environmental factors. The household level risk factors 
of malaria infections are known to be complex, stochas-
tic, nonlinear, multidimensional, and do not act in isola-
tion [21]. In refugee settlements, these determinants are 
also linked to a range of closely related factors including 
poverty, low levels of education, low access to basic social 
services, inadequacy of some public policies, racism, sex-
ism, and economic deprivation [9, 46]. Thus, integrated 
models [17] that consider all these factors are urgently 
required to enable decision-makers, and stakeholders to 
draw appropriate conclusions in malaria control inter-
ventions in refugee settlements. The recent attempt to 
model household level determinants of malaria infections 
in refugee settlements in Uganda [14] was based on a 
logistic regression model which is not able to fully cap-
ture dependencies, uncertainties, complex interactions 
and ranking of the various malaria risk factors to inform 
and direct policy interventions on malaria control [11]. 
The same logistics regression models have been widely 
used to determine the significant malaria risk factors in 
many countries of SSA [6, 11, 47].

Here for the first time, a knowledge-based BBN model-
ling approach has been presented as a potential method 
to clarify the holistic understanding of the complex 
interactions among the risk factors of malaria infections 
among children under 5 years in refugee settlements in 
Uganda, and quantify the impact of various malaria risk 
factors. Although a BBN modelling technique has been 
used to model household factors influencing the risk of 
malaria among children under 5 years in SSA [21], this is 
the first study to use a BBN approach focusing on refugee 
settlements, which are unique given the fact that there 
are inhabited by structurally disadvantaged populations 
[46]. Moreover, these structurally disadvantaged popu-
lations characterized by racism, sexism, and economic 
deprivation [46] can lead to further geographical distri-
bution of parasites (i.e. introducing new parasite strains 
in new locations), cause re-emergence or re-infections as 
well as lead to multiple, and co-infections with various 
populations of malaria parasites [14].

Basing on the BBN classification categories (i.e. alpha, 
beta and gamma) proposed by Marcot et  al. [29], the 
developed BBN model can be considered as a gamma-
level model or final application model containing well 
tested, calibrated, validated, and updated state beliefs 
with reliable, and accurate probabilistic results which can 
further be used to inform policy in malaria control pro-
grammes in refugee settlements of Uganda. The graphi-
cal representation of the model with summarized results 
in a visually attractive and easy-to-analyse format can be 
used as part of decision analysis tool in malaria inter-
ventions in refugee settlements. The explicit recognition 
of uncertainty by the developed BBN model can help 

decision-makers to identify the risks associated with dif-
ferent malaria intervention strategies.

In this study, the risk factors of malaria infections 
among children under 5 years in refugee settlements in 
Uganda were ranked in their order of importance (Fig. 5). 
This is a major advantage of a BBN-modelling structure 
over traditional statistical models [18, 28]. In Table  2, 
the predications and estimates provided indicate specific 
areas which need interventions. The top ranked 10 deter-
minants (i.e., age of child, main roof, wall and floor mate-
rials, whether children sleep under ITNs, type of toilet 
facility used, walk time distance to water sources, type 
of cooking fuel used, drinking water sources and house-
hold wealth) had a higher probability of contributing to 
malaria burden in refugee settlements. Although lack of 
ITNs, and IRS, age of household head, sex of household 
head, mother’s level of education, lack of knowledge on 
the causes and prevention of malaria have been associ-
ated with malaria infections among children under 5 
years in SSA as shown in the recent review study [1], in 
this study, there are not among the 10 ranked determi-
nants in refugee settlements of Uganda. This is because 
refugee settlements are occupied by structurally disad-
vantaged populations [46] coming from diverse social-
cultural and economic backgrounds which in turn 
may have varying impact on malaria infections among 
children.

The top 10 ranked determinants (Fig. 5) are crucial in 
enhancing the mosquito survival, biting and feeding, par-
asite development, and breeding [1, 44]. The vulnerability 
of refugee children to malaria infections is dependent on 
parents’ personal behaviours, gender roles, physical and 
environmental factors, social-cultural aspects, and access 
rights [9]. Ranking and prioritizing risk factors of malaria 
infections in refugee settlements rather than providing 
their statistical significance is an important component 
because, it helps to allocate resources to malaria control 
interventions within the constraint of limited humanitar-
ian funding [48]. Moreover, ranking and prioritization of 
malaria risk factors is crucial to provide targeted inter-
ventions, since the health services in malaria-endemic 
countries have had to re-allocate funding and resources 
towards COVID-19 containment efforts [4].

Strength and limitations of the study
The study’s main strength is its utilization of a new novel 
BBN modelling approach that exploited the nationally 
representative data to generate new evidence, and rank-
ing of the risk factors of malaria infections among chil-
dren in refugee settlements in Uganda. Thus, model 
results can be used for targeted malaria control inter-
ventions. Despite this strength, this study had some 
limitations. Although the influence of climate change, 
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environmental factors, land use, and land cover changes 
on malaria transmission dynamics [8, 22], was rec-
ognised, this study did not incorporate these factors, 
because BBN model was compiled with casefiles gener-
ated using non-spatial data extracted from the 2018–
2019 UMIS.

Conclusion
Targeted interventions, and resource allocation are 
essential for effective malaria control in refugee settle-
ments in Uganda, with predictive integrated models pro-
viding important information for decision-making. A 
BBN model can be used for accurate malaria prediction, 
and ranking of malaria risk factors. The developed BBN 
model has an accuracy rate of 91.11% of predicting 48.1% 
positive, and 51.9% negative malaria cases correctly 
among children under 5 years in refugee settlements of 
Uganda. Unlike in the previous studies that focused on 
the statistical significance of malaria risk factors, the 
sensitivity analysis results in this study identified, and 
ranked the malaria risk factors which is an excellent 
approach to inform policy recommendations on strategic 
malaria control interventions. The top ranked risk factors 
of malaria infections included: (1) age of child, (2) roof 
materials (i.e. thatch roofs), (3) wall materials (i.e., card-
board walls, plastered walls, poles with mud, and thatch 
wall), (4) whether children slept under ITNs, (5) type 
of toilet facility used (i.e., no toilet facility, pit latrines 
with slabs, and VIPs), (6) walk time distance to water 
sources (i.e., between 0 and 10 min), (7) type of cooking 
fuel used (i.e., charcoal), (8) drinking water sources (i.e., 
open water sources, and piped water on premises), and 
(9) household wealth status (i.e., poor). These results can 
aid in the identification of priority measures to reduce 
mosquito density, survival, breeding, mosquito biting 
rates and human vector contact in refugee settlements. 
Future studies can focus on the development of a GIS-
BBN model that can take into account the Global Posi-
tioning System datasets of the 2018–2019 UMIS, and 
other spatio-temporal environmental, and climate data to 
disclose interesting features of the malaria transmission 
hotspots. Risk mapping will captivate the spatial-regional 
malaria dimension of risk factors in refugee settlements 
of Uganda within a context of climate change.
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