Skip to main content

Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Table 2 Demographic and influence characteristics of advisors of pregnant women seeking antenatal care in Kumasi, Ghana

From: Reported bed net ownership and use in social contacts is associated with uptake of bed nets for malaria prevention in pregnant women in Ghana

Characteristic All advisors (n = 692) Advisor of bed net owner (n = 525) Advisor of bed net non-owner (n = 167) Advisor of bed net user (n = 303) Advisor of bed net non-user (n = 222) Scoring
Age (years), mean (SD) 43.5 (16.4) 43.9 (16.4) 42.4 (16.2) 43.5 (16.0) 44.4 (17.0) N/A
Gender, n (%)
 Male 141 (20.4) 107 (20.3) 34 (20.4) 76 (25.1) 36 (16.2) N/A
 Female 393 (56.8) 307 (58.5) 86 (51.5) 170 (56.1) 142 (64.0) N/A
 Unknown 158 (22.8) 111 (21.1) 47 (28.1) 57 (18.8) 44 (19.8) N/A
Relationship, n (%)
 Mother 210 (30.3) 165 (31.4) 45 (26.9) 98 (32.3) 66 (29.7) N/A
 Sister 107 (15.4) 85 (16.2) 22 (13.1) 44 (14.5) 41 (18.5) N/A
 Husband 90 (13.0) 69 (13.1) 21 (12.6) 43 (14.2) 26 (11.7) N/A
 Aunt 23 (3.3) 12 (2.3) 11 (6.6) 6 (2.0) 6 (2.7) N/A
 Friend 75 (10.8) 52 (9.9) 23 (13.8) 31 (10.2) 22 (9.9) N/A
 Other 187 (27.0) 142 (27.0) 45 (26.9) 81 (26.7) 61 (27.5) NA
Uses a bed net (U), n (%)
 Yes 342 (49.4) 277 (52.8)* 65 (38.9) 186 (61.4)* 91 (41.0) 1
 No 241 (34.8) 162 (30.9) 79 (47.3) 64 (21.1) 98 (44.1) −1
 Don’t know 109 (15.8) 86 (16.4) 23 (13.8) 53 (17.5) 33 (14.9) 0
How often is advice followed (I), n (%)
 Very often 448 (64.7) 337 (64.2) 111 (66.5) 190 (62.7) 147 (66.2) 1
 Sometimes 221 (31.9) 172 (32.8) 49 (29.3) 103 (34.0) 69 (31.1) 0.75
 Never 23 (3.3) 16 (3.1) 7 (4.2) 10 (3.3) 6 (2.7) 0.5
Talked about malaria during pregnancy (T), n (%)
 Yes 365 (52.7) 266 (50.7) 99 (59.3) 162 (53.5) 104 (46.9) 1
 No/don’t know 327 (47.3) 259 (49.3) 68 (40.7) 141 (46.5) 118 (53.2) 0
 Influence Score, mean (SD) 0.35 (6.1) 0.41 (0.62) 0.32 (0.57) 0.52 (0.57)* 0.26 (0.65) a
  1. * p < 0.05
  2. a \({\text{Influence Score}} = \sum\nolimits_{{{\text{j}} = 1}}^{\text{j}} {{\text{R}}_{\text{j}} *\left( {{\text{U}}_{\text{j}} + {\text{T}}_{\text{j}} } \right) * {\text{I}}_{\text{j}} }\)