Skip to main content


Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fig. 1 | Malaria Journal

Fig. 1

From: Artemisinin resistance without pfkelch13 mutations in Plasmodium falciparum isolates from Cambodia

Fig. 1

Positive association between pfkelch13 propeller mutations and in vivo clearance half-life as well as in vitro RSA0–3h. Parasites from Pursat (round symbols) or Pailin (square symbols) were classified according to their pfkelch13 alleles. a Comparison of clearance half-live values (hours, h) from culture-adapted parasites harbouring different pfkelch13 propeller alleles, and combining alleles represented by less than five samples. Parasites outlined in bold were further tested for RSA0–3h phenotypes in b. A one-way ANOVA test, with a Tukey’s post-test, was performed between wild-type (WT) and each allele category. Significance values are indicated by asterisks: *(p < 0.05); **(p < 0.01); ***(p < 0.001); and ****(p < 0.0001). b In vitro RSA0–3h testing. Percent survival is displayed on the y-axis and pfkelch13 allele represented on the x-axis. All parasites that harbour a pfkelch13 propeller mutation exhibit an RSA0–3h value of >1% (dotted line). Data were analysed by Kruskal–Wallis test followed by Dunn’s multi-comparison test. p values: ***<0.001. An additional subset represented by coloured symbols, also underwent conventional in vitro drug testing and assessment of pfmdr1 copy number variation. These were chosen as representatives of parasites that were ART sensitive (green) or, ART resistant (red) as assessed by both RSA0–3h phenotype and pfkelch13. Two ‘discordant’ samples (resistant according to RSA but wild-type at pfkelch13) are indicated in blue

Back to article page