Skip to main content

Table 2 Probabilities associated with changes in ELPA\(_{s}\) model

From: Stochastic lattice-based modelling of malaria dynamics

l Change, \(\Delta X^{l}_{k,\zeta }(t)\) Probability, \(p^{l}_{k,\zeta }(t)\) Description
1 \([1, 0, 0, 0, 0, 0]^T\) \(b \psi ^{\mathsf {W}}_{\zeta } \rho _{A_o} \mathcal {A}_{o,\zeta } \Delta t\) A new egg E is deposited by \(A_o\)
2 \([-1, 0, 0, 0, 0, 0]^T\) \(\mu _E \mathcal {E}_{\zeta } \Delta t\) An egg E dies
3 \([-1, 1, 0, 0, 0, 0]^T\) \(\rho _E \mathcal {E}_{\zeta } \Delta t\) An egg E hatches into a larva L
4 \([0, -1, 0, 0, 0, 0]^T\) \((\mu _{L_1} + \mu _{L_2} \mathcal {L}_{\zeta } ) \mathcal {L}_{\zeta } \Delta t\) A larva L dies
5 \([0, -1, 1, 0, 0, 0]^T\) \(\rho _L \mathcal {L}_{\zeta } \Delta t\) A larva L develops into a pupa P
6 \([0, 0, -1, 0, 0, 0]^T\) \(\mu _P \mathcal {P}_{\zeta } \Delta t\) A pupa P dies
7 \([0, 0, -1, 1, 0, 0]^T\) \(\rho _P \mathcal {P}_{\zeta } \Delta t\) A pupa P develops into a host-seeking adult \(A_h\)
8 \([0, 0, 0, 1, 0, -1]^T\) \(\psi ^\mathsf {W}_{\zeta } \rho _{A_o} \mathcal {A}_{o,\zeta } \Delta t\) An oviposition adult \(A_o\) enters host-seeking state
9 \([0, 0, 0, -1, 0, 0]^T\) \(\mu _{A_h} \mathcal {A}_{h,\zeta } \Delta t\) A host-seeking adult \(A_h\) dies
10 \([0, 0, 0, -1, 1, 0]^T\) \(\psi ^\mathsf {H}_{\zeta } \rho _{A_h} \mathcal {A}_{h,\zeta } \Delta t\) A host-seeking adult \(A_h\) enters resting state
11 \([0, 0, 0, 0, -1, 0]^T\) \(\mu _{A_r} \mathcal {A}_{r,\zeta } \Delta t\) A resting adult \(A_r\) dies
12 \([0, 0, 0, 0, -1, 1]^T\) \(\rho _{A_r} \mathcal {A}_{r,\zeta } \Delta t\) A resting adult \(A_r\) enters oviposition searching state
13 \([0, 0, 0, 0, 0, -1]^T\) \(\mu _{A_o} \mathcal {A}_{o,\zeta } \Delta t\) An oviposition searching adult \(A_o\) dies