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Abstract

Background: Artemisinin-based combinations currently recommended for treatment of uncomplicated Plasmodium
falciparum malaria in many countries of sub-Saharan Africa are substrates of CYP enzymes. The cytochrome enzyme
system is responsible for metabolism of about 80-90% of clinically used drugs. It is, therefore, important to obtain
the pharmacogenetics of the population in the region with respect to these combinations and thereby enable
practitioners to predict treatment outcomes. The aim of this study was to detect and determine allelic frequencies
of CYP2C8*2, CYP2C8*3, CYP3A4*1B, CYP3A5*3 and CYP2B6*6 variant alleles in a Tanzanian indigenous population.

Methods: Genomic DNA extraction from blood obtained from 256 participants who escorted patients at Karume
Health Centre in Mwanza Tanzania, was carried out using the Gene JET™ Genomic DNA purification kit (Thermo
Scientific). Genotyping for the cytochrome P450 variant alleles was performed using predesigned primers.
Amplification was done by PCR while differentiation between alleles was done by restriction fragment length
polymorphism (PCR-RFLP) (for CYP2C8*2, CYP2C8*3) and sequencing (for CYP2B6*6, CYP3A5*3 and CYP3A4*1B).

Results: CYP2C8*2, CYP2C8*3, CYP3A5*3, CYP3A4*1B and CYP2B6*6 variant allelic frequencies were found to be
19,10,16,78 and 36% respectively.

Conclusion: Prevalence of CYP2C8*2, CYP3A5*3, CYP3A4*1B and CYP2B6*6 mutations in a Tanzanian population/
subjects are common. The impact of these point mutations on the metabolism of anti-malarial drugs, particularly
artemisinin-based combinations, and their potential drug-drug interactions (DDIs) needs to be further evaluated.
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Background
Prevention and treatment of malaria is mainly based on
the use of drugs [1]. Treatment response in Plasmodium
falciparum malaria depends on various factors such as
parasite resistance, host natural immunity, drug quality
and the pharmacokinetics of the administered drug [2].
Various studies have been carried out on molecular
mechanisms for resistance in malaria chemotherapy [3].
However limited efforts have been made to determine
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genetic polymorphisms in cytochrome P450 enzymes,
which may be associated with treatment failure (in ex-
tensive metabolizers) as a result of subtherapeutic drug
concentrations. Cytochrome P450 (CYP) polymorphisms
may also cause toxicity (in slow metabolizers) due to
high drug concentrations and emergence or spread of
drug resistance (in extensive metabolizers) as a result
of subtherapeutic drug concentrations. Recent studies
have also associated drug resistant selection with poor
metabolizer (PM) phenotype.
The increasing use of artemisinin-based combinations as

an effective treatment of resistant malaria demands deter-
mination of genetic polymorphisms in the metabolism of
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these drugs and its influence on pharmacokinetic profiles
between individuals, adverse drug reactions and clinical
outcome.
Polymorphisms in gene encoding for drug- metabolizing

enzymes and transporters are associated with individual
variation in drug response [4]. The frequency of variant
alleles encoding for CYP families varies among populations
according to race and ethnic background [5].
Cytochrome P450 metabolize about 80-90% of clinic-

ally used drugs [5-8]. About 40% of cytochrome P450
dependent-drug metabolism is due to polymorphic
enzymes [9]. Polymorphisms occur in all members of
the CYP2C subfamily, which are CYP2C8, CYP2C9,
CYP2C18 and CYP2C19 [10,11]. The genes for these
subfamilies are located on chromosome 10q24 [12]. The
role of CYP genes in metabolism varies significantly. For
example, CYP2C has been shown to be responsible for
metabolism of about 20% of clinically used drugs and
endogenous substances [10].
CYP2C8 has been proven to make up 7% of the total

CYP content of the liver [13] and plays a major role
in the metabolism of many clinically available drugs
[14-16] accounting for about 5% of the drugs used clin-
ically [17]. The CYP2C8*2 allele has been reported to be
common in Africans, but rare in Asians and Caucasians,
whereas CYP2C8*3 has been reported to be common
in Caucasians, but rare in Africans or Asians. The latter
allele (CYP2C8*3) has been associated with a marked
reduction in amodiaquine metabolism in Caucasian
population [14].
CYP2B6 is located within the CYP2B gene cluster on

chromosome 19 [18] and is one of the most poly-
morphic genes in humans [19]. This gene contributes
2-10% of the total CYP content [20]. CYP2B6*6 is more
frequent in African descent than Caucasoids [21,22] and
is associated with raised plasma concentrations of anti-
retroviral (efavirenz, nevirapine) [19] and anti-malarial
drugs (artemisinin and arteether) [1,19].
Cytochrome P450 subfamily CYP3A is the most abun-

dant CYP in the human liver and small intestine [23].
CYP3A4, which is part of CYP3A gene cluster, is in-
volved in the metabolism of approximately 50% of clinic-
ally used drugs [5,24].
CYP3A4 is widely considered to be the dominant

CYP3A isoform, but this has been questioned lately
when data have shown that the amount of CYP3A5 is
much larger than previously assumed in individuals ex-
pressing this enzyme [25]. The most common single nu-
cleotide polymorphism (SNP) within the CYP3A4 family
is CYP3A4*1B [26], an A to G transition at 392 of the
proximal promoter region of the gene. The CYP3A4*1B
variant allele is shown to be associated with higher
expression of CYP3A4 than the wild type allele, which
could be caused by a repressor element in the wild
type promoter [27,28]. CYP3A4*1B is associated with
poor metabolism of artemether, lumefantrine [29,30] and
quinine [31].
The expression of CYP3A5 in the human liver differs

vastly between ethnical groups and within the groups.
CYP3A5*3 is the most frequently recognized non-
functional allele and one of the most frequent poly-
morphism among cytochrome P450 genes being recog-
nized [32]. In Caucasians, the frequency of CYP3A5*3 has
been showed to be ≥90% [33] whilst the occurrence among
black Africans differs between 11 and 78% over the African
continent [34].
This study aimed at determining presence of CYP

450 variant alleles (CYP2C8*2, CYP2C8*3, CYP2B6*6,
CYP3A4*1B and CYP3A5*3) responsible for the me-
tabolism of artemisinin-based combinations employed in
the treatment of uncomplicated malaria and complicated
malaria (injectable artesunate) in Tanzania where malaria
is endemic.

Methods
Study area and subjects
This was a cross-sectional study conducted from April
2013 to April 2014 at Karume Health Centre in Igombe,
a semi-urban and malaria meso-endermic area in Ilemela
district, Mwanza region, Tanzania, with a population of
about 40,000.

Sampling procedure
Serial sampling method was employed where every third
and sixth individual was selected until the sample size
was reached.

Blood sample collection and DNA extraction
Venous blood (1-2 ml) was collected into sterile EDTA-
containing tubes from 256 healthy volunteers after
obtaining informed consent from each of the partici-
pants. The collected blood was stored at -40°C until gen-
omic DNA extraction was done. Genomic DNA extraction
was performed with Gene JET Genomic DNA Purification
Kit (Thermo Scientific) according to the manufacturer’s
instructions.

Genotyping
PCR conditions
The PCR master mix contained 2 μl 1X Dream Taq
Green Buffer (Fermentas), 2 μl 1 mM dNTP Mix (Thermo
Scientific), 10 μl 0.5 μM reverse primer (Eurofins), 10 μl
0.5 μM forward primer (Eurofins), 0.25 μl 1.25 U Dream
Taq (Thermo Scientific).
PCR amplification was done using primers shown in

Table 1 and conditions indicated in Table 2: 2.5% agarose
gel electrophoresis was performed to confirm successful
PCR amplification for all samples.



Table 1 Primers used

SNP Primers Reference

Forward Reverse

CYP3A4*1B 5′-ATGGCCAAGTCTGGGATGAG-3′ 5′-CTCACCTCTGTTCAGGGAAAC-3′ [29,35]

CYP2B6*6 5-′TGAGTGATGGCAGACAATCACA-3′ 5-′CAAGTTGAGCATCTTCAGGAACT-3′ [29,35]

CYP3A5*3 5′-TGGAGAGTGGCATAGGAGATAC-3′ 5′CCATACCCCTAGTTGTACGACACA-3′ [29,35]

CYP2C8*2 5′-GAACACCAAGCATCACTGGA-3′ GAAATCAAAATACTGATCTGTTGC-3′ [36]

CYP2C8*3 5′-CTAAAGGACTTGGTAGGTGCA-3′ 5′-CAGGATGCGCAATGAAGACC-3′ [29,35]
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Restriction fragment length polymorphism (PCR-RFLP) for
CYP2C8*2 and CYP2C8*3
The PCR product (10 μL) was digested with ten units of
Bcll (for CYP2C8*2) in Buffer G (Thermo Scientific)
at 55°C for three hours or five units of BseRI (for
CYP2C8*3) in CutSmart Buffer (New England Biolabs)
at 37°C for 15 min. Digestion was followed by thermal
inactivation of BcII at 80°C for 20 min. Five μL of inacti-
vated digested product mixed with a drop of loading dye
was analysed by electrophoresis on a 2.5% agarose gel
containing ethidium bromide and visualized under UV
light illuminator. The mutant variant of CYP2C8*2 was
undigested and observed as a band of 107 bp, while wild
type DNA was observed as bands of 57 and 50 bp after
Bcll digestion. Results with bands at 107, 57 and 50 bp
were recorded as heterozygotes. For CYP2C8*3, wild
type DNA was observed as bands of 187 and 282 bp
after BseRI digestion. Mutants were undigested with one
band at 439 bp and heterozygotes yielded bands of
157,282 and 439 bp.

CYP3A4*1B, CYP3A5*3 and CYP2B6*6 sequencing
The PCR products were purified from excess dNTP and
primers. To every PCR sample of 15 μl, 7.5 μl of ExoSAP
Mix was added consisting of 0.019 μl Exonuclease I
(20 U/μl), 0.190 μl SAP (Shrimp Alkaline Phosphate
1 U/μl) and 7.290 μl of sterile water. The samples were
incubated at 37°C for 30 min and then at 90°C in a ther-
mocycler for 5 min. In order to prepare for sequencing
2 μl of the PCR-product was mixed with 0.4 pmol of the
primer and 15.6 μl of sterile water. The samples were
Table 2 PCR conditions employed for various SNPs

SNP PCR conditions

Initial denaturation Denaturation Annealing

CYP3A4*1B 94°C for 2 min 94°C for 30 s (30 cycles) 60°C for 30 s (30

CYP2B6*6 96°C for 3 min 96°C for 30 s (40 cycles) 64°C for 1 min 30

CYP3A5*3 96°C for 3 min 96°C for 30 s (40 cycles) 59.3°C for 30 s (40

CYP2C8*2 96°C for 3 min 96°C for 30 s (40 cycles) 56°C for 1 min (4

CYP2C8*3 96°C for 3 min 96°C for 30 s (30 cycles) 64°C 1 min 30 s (
then sent for sequencing at Uppsala Genome Centre
after DNA quantification.

Ethical clearance
Ethical and study approval was granted by the joint
Catholic University of Health and Allied Sciences
(CUHAS)/Bugando Medical Centre (BMC) Institutional
Review Board. All participants signed a written informed
consent.

Statistical analysis
Allelic frequencies were analysed using SPSS 17, SNPs
analysed were evaluated using the online tool Hardy-
Weinberg equilibrium calculator including analysis for
ascertainment bias [37].

Results
A total of 256 subjects were studied for the frequency of
SNPs in this study. The median age of the subjects was 28
(IQR 22-35) years and 80.5% (206/256) were females. All
study subjects were natives. Successfully amplified samples
were 239 for CYP2C8*2 out of 256, 92 for CYP3A4*1B out
of 100, 97 for CYP3A5*3 out 100, 100 for CYP2C8*3 out
of 100 and 95 for CYP2B6*6 out of 100. For CYP3A4, the
A392G mutation known as CYP3A4*1B was investigated.
The allele prevalence was found to be 78% among the
92 subjects included in the study, where 57 (62%) of them
were homozygote for the mutant variant. The allele preva-
lence of the A6986G mutation in CYP3A5, named
CYP3A5*3 was 16% among 97 subjects. Out of the 97 sub-
jects, only two (2%) were homozygous for the mutation.
Extension Final extension Hold temp

cycles) 72°C for 90 s (30 cycles) 72°C for 5 min 4°C

s (40 cycles) 72°C for 1 min 30 s (40 cycles) 72°C for 10 min 4°C

cycles) 72°C for 30 s (40 cycles) 72°C for 10 min 4°C

0 cycles) 72°C for 1 min (40 cycles) 72°C for 10 min 4°C

30 cycles) 72°C 1 min 30 s (30 cycles) 72°C for 10 min 4°C



Table 4 Allele frequencies of CYP2C8*2, CYP2C8*3 and
CYP2B6*6 reported from previous studies in African
populations

Country number CYP2C8*2 (%) CYP2C8*3 (%) CYP2B6*6 (%)

Burundi 60 - - 50.0 [48]

Burkina Faso 275 15.5 [49] 0.3 [49] -

Ghana 200 17-17.9 [50-52] 0 [50] 46.9 [22]

Zimbabwe 74 - - 49 [53]

Mozambique 115 16.0 [54] - -

Senegal 88 22.0 [36] - -

Tanzania 165 (Zanzibar) 13.9 [55] 2.1 [55] -

Tanzania 165 (Mainland) - - 34-41.8 [29,56]

South Africa 182 (Xhosa) - - 32.14 [57]

Madagascar 153 15.0 [36] - -
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For CYP2C8 the A805T mutation known as CYP2C8*2
was investigated. The allele prevalence was found to be
19% among the 239 subjects included in the study, where
11 (4.6%) of them were homozygote for the mutant variant.
The G416A mutation (CYP2C8*3) was also analysed, the
allele prevalence was identified to be 10% among the 100
subjects included in the study, where 0 (0%) were homozy-
gote for the mutant variant. For CYP2B6, the G15631T
mutation (CYP2B6*6) was investigated. The allele preva-
lence was found to be 36% among the 95 subjects included
in the study, where 11 (11.6%) were identified as homozy-
gote for the mutant variant. The allele frequencies were all
at Hardy Weinberg equilibrium. These results are in agree-
ment with several earlier studies from other African coun-
tries (Tables 3 and 4).

Discussion
The present study was designed to establish the fre-
quencies of common CYP polymorphisms in Mwanza,
Tanzania, as a background for future studies on drug me-
tabolism in clinical trials with anti-malarial drugs. Since
artemisinin-based combination therapy (ACT) is the rec-
ommended treatment, the study focused on the markers
that have been shown to be mostly related with metabol-
ism of anti-malarial drugs, taking into account that some
of these mutations have been shown to affect therapeutic
response and safety during treatment.
In general, there were no big differences in allele fre-

quencies in comparison with other studies done on African
populations (Tables 3 and 4). Despite there being limited
information in Tanzania, a few studies on CYP markers
done have been performed in Zanzibar, where the popula-
tion history is different from mainland Tanzania, and
Mwanza is geographically distant from Zanzibar. It cannot
thus be taken for granted that genetic polymorphisms
should be the same in these locations.
Table 3 Allele frequency of CYP3A4*1B and CYP3A5*3
reported from previous studies in African populations

Country Number of
subjects

CYP3A4*1B (%) CYP3A5*3 (%)

Senegal 178 79 [38] -

Cameroon 72 78.0 [39] -

East Africa - 36 [40]

South Africa 980,987 73.0-76.0 [41,42] 15.0 [41]

Ghana 129-204 72.0-81 [38,43] 15.0 [43]

Mozambique 86 73.8 [44] -

Sao Tomé and 78 67.7 [44] -

Tanzania (Zanzibar) 99, 92 69.2 [45] 15.8 [45]

Tanzania (Mainland) 165 74 [29] 18 [29]

Guinea Bissau 74 [46] -

Zimbabwe 100 - 77.6 [47]
This study identified similar findings to Zanzibar in
the CYP3A5*3 variant allele: 16 vs 15.8% [45], and for
CYP2C8*3 where none of the patients was homozygous
mutant [55]. However the study recorded 10% hetero-
zygous CYP2C8*3 which differs from the 0% recorded
from earlier studies in Zanzibar [55] and a slightly
higher CYP2C8*2 (19%) compared to 13.9% recorded in
Zanzibar [55].
This study identified that 4.6% of participants were

homozygotes for the slow metabolizer allele (CYP2C8*2)
representing a significant population at high risk to
amodiaquine toxicity due to amodiaquine accumulation,
taking into account artesunate-amodiaquine is an alter-
native to artemether-lumefantrine in the treatment of
uncomplicated malaria in Tanzania and other sub-Saharan
African countries [1,58].
The mutation A6986G leads to splicing defects in

intron 3, introducing a stop codon causing severely de-
creased enzyme activity [25]. The homozygous mutants
of CYP3A5*3 was detected in 2% of the study subjects
suggesting poor metabolism to anti-malarial drugs such
as quinine, quinidine, artemether, chloroquine, halofan-
trine, lumefantrine, mefloquine, primaquine, artemisinin,
arteether, arterlinic acid and proguanil [1], which sug-
gests that a significant proportion of the population is
exposed to toxicity of these anti-malarial drugs, including
ACT, such as artemether-lumefantrine and artesunate-
mefloquine during treatment taking into account that there
is a high diversity in CYP3A5 in Africa.
CYP3A5 diversity is higher in East Africa [6,40], which

has higher frequencies than other parts of sub-Saharan
Africa [6]. The diversity explains a difference between
CYP3A5*3 data from this study and that observed from
other areas of East Africa [40], but is similar to data
from other parts of Tanzania mainland [29] and South
Africa [41]. A high frequency of CYP2B6*6 homozygous
mutant allele from this study indicates that a significant



Table 5 Allele and genotype frequencies of CYP3A4*1B and CYP3A5*3 in Igombe, Tanzania, and expected frequencies
according to Hardy Weinberg equilibrium

Gene SNP Allele frequency Genotype frequency

wt/wt wt/mut mut/mut Gene allele

CYP3A4 A392G G, 78% 5.4% (5/92) 32.6% (30/92) 62% (57/92) CYP3A4*1B wild type

A, 22%

Expected 4 31 56

CYP3A5 A6986G G, 16% 70.1 (68/97) 27.9% (27/97) 2% (2/97) CYP3A5*3 wild type

A, 84%

Expected 68 26 2

CYP2C8 G416A A, 10% 80% (80/100) 20% (20/100) 0% (0/100) CYP2C8*3 wild type

G, 90%

Expected 81 18 1

CYP2C8 A805T T, 19% 66.1 (158/239) 29.3% (70/239) 4.6% (11/239) CYP2C8*2 wild type

A, 81%

Expected 159 74 9

CYP2B6 G15631T T, 36% 39% (37/95) 49.4% (47/95) 11.6% (11/95) CYP2B6*6 wild type

G, 64%

Expected 39 44 12

Note: wt/wt means homozygous wild type, wt/mut means heterozygous mutant and mut/mut means homozygous mutant.
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proportion of the population are poor metabolizers of
artemisinin and arteether [1] resulting in an increased
risk to toxicity of the above anti-malarial drugs.
For CYP3A4*1B, a very high proportion of the poor

metabolizer allele (PM) in the population indicates high
risk to artemisinin, artemether and lumefantrine toxicity
due to a less efficient metabolism as discussed with
CYP3A5*3 and CYP2C8*2 above. The high frequency
recorded in this study demonstrates the previous docu-
mentations on a higher occurrence of this variant allele
in Africans than Caucasians [59]. The high allele fre-
quency observed from the study population is similar to
other African populations, Ghana being one example
[43]. Population variability for CYP3A4 is also excep-
tionally high, more than 100-fold [60]. The frequency of
the CYP3A4*1B mutation differs between populations.
Among Caucasians and Hispanics the frequency is 3-5%,
among Asians it seems to be absent [60] while the variant
is more common among Africans as shown by findings
from this study and previous studies (Tables 3, 4 and 5).
CYP2C8*3 has been shown to affect metabolism to a

higher extent than CYP2C8*2. This study did not iden-
tify any homozygous patients who are PM of amodia-
quine. This finding is not surprising since this variant
allele has been shown to be rare/uncommon among
indigenous Africans and predominantly concentrated
in Caucasians [14]. CYP2C8*3 frequencies recorded
in this study are similar to Uganda [61] and other
African countries [50].
Findings from this study demonstrate the existence of

diverse genetics of the above CYP 450 s in Tanzania,
thus calling for an evaluation of the impact of CYP 450
polymorphisms on metabolism of artemisinin-based com-
binations and its impact on clinical outcome and toxicity
among P. falciparum malaria-infected patients in African
populations.
Conclusion
Prevalence of CYP2C8*2, CYP3A5*3, CYP3A4*1B and
CYP2B6*6 mutations are common while CYP2C8*3 mu-
tations are rare in a Tanzanian population. The frequen-
cies recorded in this study are comparable to data
obtained from previous studies on African populations.
Pharmacogenomics data, such as that presented in this
paper, provides a basis for further studies on impact of
polymorphism in ACT safety and efficacy.
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