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Abstract
Background: Malaria epidemics due to Plasmodium falciparum are reported frequently in the East
African highlands with high case fatality rates. There have been formal attempts to predict
epidemics by the use of climatic variables that are predictors of transmission potential. However,
little consensus has emerged about the relative importance and predictive value of different factors.
Understanding the reasons for variation is crucial to determining specific and important indicators
for epidemic prediction. The impact of temperature on the duration of a mosquito's life cycle and
the sporogonic phase of the parasite could explain the inconsistent findings.

Methods: Daily average number of cases was modeled using a robust Poisson regression with
rainfall, minimum temperature and maximum temperatures as explanatory variables in a polynomial
distributed lag model in 10 districts of Ethiopia. To improve reliability and generalizability within
similar climatic conditions, we grouped the districts into two climatic zones, hot and cold.

Results: In cold districts, rainfall was associated with a delayed increase in malaria cases, while the
association in the hot districts occurred at relatively shorter lags. In cold districts, minimum
temperature was associated with malaria cases with a delayed effect. In hot districts, the effect of
minimum temperature was non-significant at most lags, and much of its contribution was relatively
immediate.

Conclusions: The interaction between climatic factors and their biological influence on mosquito
and parasite life cycle is a key factor in the association between weather and malaria. These factors
should be considered in the development of malaria early warning system.

Background
Malaria epidemics due to Plasmodium falciparum are
reported frequently in the East African highlands [1-6].

Immunity to malaria in the populations of these epi-
demic-prone regions is often incomplete, so that epidem-
ics cause high case fatality rates among all age groups. In
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1958, a malaria epidemic covering over 250,000 square
kilometers resulted in an estimated three million cases
and 150,000 deaths in Ethiopia [2]. Since then, large scale
epidemics of malaria have been noted every five to eight
years. Thus, there is an urgent need for the development
of malaria early warning systems [7-9] to predict where
and when malaria epidemics will occur, with adequate
lead-time to target scarce resources for prevention activi-
ties. Unusual meteorological conditions, such as espe-
cially high rainfall or high temperature, are often cited
retrospectively as the precipitating factors for epidemics
[10,11]. There have also been formal attempts to predict
epidemics by the use of local weather and/or global cli-
matic variables that are predictors of vector abundance
and, therefore, of transmission potential [12-20]. How-
ever, little consensus has emerged about the relative
importance and predictive value of different factors
[2,6,21-27]. Woube [27] showed that although one epi-
demic in Ethiopia was associated with higher rainfall, an
epidemic in another year was preceded by very little rain-
fall. Lindsay et al. [23] found a reduction in malaria infec-
tion in the Usambara Mountains of Tanzania following
2.4 times more rainfall than normal, while excessive rain-
fall during the same period was associated with increased
malaria in south-western highlands of Uganda [3]. More-
over, Mbogo et al. [24] found variation in the relationship
between the mosquito population and rainfall in different
districts of Kenya and attributed the variation to environ-
mental heterogeneity. Similarly, Zhou et al. [28] showed

that there was high spatial variation in the sensitivity of
malaria outpatient numbers to climate fluctuations in
East African highlands. Similarly, determination of the
amount of lead time between weather factors and malaria
cases is necessary to develop prediction models, but
results from different studies have revealed a range of lead
times [3,4,22,24,29]. Despite the varying results of these
studies, there has not been critical examination of the
sources of variation in the association and lag structure
(the magnitude of association between weather and
malaria at a later time) between weather and incidence of
malaria.

The inconsistency of findings from different studies may
be due in part to the interaction of weather factors affect-
ing vector abundance and survival, and parasite matura-
tion, key determinants of malaria transmission.
Deposition of mosquito eggs, and their maturation into
larvae and then into adults, requires aquatic breeding
sites, and is, therefore, dependent on rainfall [30,31]. The
time required for mosquito maturation shortens as tem-
perature increases [30,32]. At 16°C, larval development
may take more than 45 days (reducing the number of
mosquito generations and putting the larvae at increased
risk of predators), compared to only 10 days at 30°C
(Table 1). By affecting the duration of the aquatic stage of
the mosquito life cycle, temperature determines the tim-
ing and abundance of mosquitoes following adequate
rainfall.

Table 1: The effect of mean temperature on the duration of mosquito's life cycle and sporogonic cycle and its effect on the amount of 
lead time from the availability of breeding sites to the occurrence of malaria cases.

Weather factors Stages and duration of mosquito's life cycle and sporogony cycle affected by weather factors

Mean temperature (Rainfall 
temperature)

Availability of breeding sites ----------------→ Malaria

Mosquito's life cycle* Sporogony† Incubation period in human 
host

Larva ----→ Adult(days) Adult first bite ----→ Infectious 
bite (days)

16°C 47 111 (10–16 days)
17°C 37 56
18°C 31 28
20°C 23 19
22°C 18 7.9
30°C 10 5.8
35°C 7.9 4.8
39°C 6.7 4.8
40°C 6.5 4.8

* see references [32, 44]; †see references [35, 45]
Page 2 of 11
(page number not for citation purposes)



Malaria Journal 2004, 3:41 http://www.malariajournal.com/content/3/1/41
Once female adult mosquitoes emerge, they look for a
blood meal, and in the process they ingest malaria para-
sites (gametocytes) with the blood. The feeding frequency
of mosquitoes increases with temperature, resulting in
increased proportions of infective mosquitoes [33]. The
duration of the extrinsic phase of the parasite (sporogony
cycle), which is the development of the ookinete, the egg
of the parasite, in the midgut of the anopheline mosquito,
depends on temperature. The sporogony cycle on average
lasts about 10 days, but shortens as temperature increases
[34,35], becoming as short as five days when the temper-
ature exceeds 30°C (Table 1).

These data on the timing of the mosquito life cycle suggest
that malaria cases should follow, at defined intervals, peri-
ods of increased temperature and increased rainfall. More-
over, because temperature accelerates several steps in the
process of mosquito and parasite development, the time
lag between the appearance of suitable weather condi-
tions and the appearance of new malaria cases should
shorten as temperature rises. Although based largely on
laboratory findings, these data suggest quantitative
hypotheses about the precise time lag between increases
in temperature and rainfall, and increases in malaria
cases. At an average temperature of 20°C, the aquatic
phase of the mosquito will be completed in about 28 days
(five days for eggs to hatch and 23 days for the larva to
develop into adult stage); and sporogony is completed in
28 days (Table 1). At this temperature, malaria cases
should, therefore, appear 9–10 weeks following rainfall,
assuming an average incubation period of about 10–16
days. Similarly, in this situation, the number of malaria
cases should be positively related to increases in tempera-
ture three to seven weeks beforehand (during the aquatic
and sporogony stages). When the mean temperature is
higher (30°C), the aquatic stage of mosquito and the spo-
rogony cycle are completed in about 12 and 8 days respec-
tively (Table 1). In this relatively hot environment,
malaria cases should appear 4–5 weeks following rainfall
and the lag in the effect of temperature should also be
shorter.

The purpose of the investigations reported here is to test
these hypotheses using weekly data on weather and
malaria cases. Specifically, we used Polynomial Distrib-
uted Lag Models (PDL) to determine the effect of weather
factors and their lag distribution on malaria in relatively
hot and cold environments using a data set consisting of
weekly parasitologically confirmed malaria cases col-
lected from health facilities and locally collected meteor-
ological factors in 10 districts of Ethiopia for the years
1990 to 2000.

Methods
Data
Microscopically confirmed malaria cases were collected
from a health facility in each of ten districts of Ethiopia
over an average of 10 years. Each of these health facilities
serve people living in the surrounding localities with few
exceptions coming from other places. The data were
extracted from records of outpatient consultations for the
years 1990 through 2000. These data were compiled by
residency (urban and rural) and Plasmodium species; the
analysis was restricted to P. falciparum. The original data
collected on the basis of Ethiopian weeks were normal-
ized to obtain mean daily cases for each Ethiopian week
[36].

Daily meteorological data (minimum and maximum
temperature and rainfall) recorded at the local weather
stations nearest to the health facility were obtained from
the National Meteorological Services Agency (NMSA) for
the same period. The assumption is that the meteorologi-
cal data from the local weather stations represent the sur-
rounding localities whose inhabitants are served by the
respective health facilities. These daily data were collapsed
into weekly data to correspond with the weekly malaria
cases. The weekly mean for minimum and maximum tem-
perature and the total weekly amount of rainfall were cal-
culated from the daily records.

Missing data
The data set consists of records with missing values for
some of the variables (4.4%, 10.2% and 9.9% for rainfall,
minimum and maximum temperature respectively).
Because of the multiple time lags considered in the analy-
sis (see below), discarding estimates with a single missing
value results in multiple records lost for each missing
value. To avoid this substantial loss of data, missing val-
ues of the independent variables (weather variables) were
interpolated by fitting a linear regression using the value
from the previous week and a dummy variable for that
week. A new variable was created with original values for
non-missing data points and interpolated values for miss-
ing data points.

Model
The daily average number of cases (of the weekly micro-
scopically confirmed malaria cases) was modeled using a
robust Poisson regression (implemented in Splus), using
weekly rainfall, minimum and maximum temperature as
explanatory variables in a distributed lag model. The
model was:
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where E(Yst) denotes the expected value for the daily aver-

age number of malaria cases at site s on week t; ,

 and Rt - i are the weekly minimum and maximum
temperature and the rainfall i weeks previously; αs and βs

represent the intercept and coefficient for time trend (t),
which are specific to the site under consideration.

As described in the introduction, biological considera-
tions suggest that the lag between rainfall and associated
malaria cases will be different from that between temper-
ature and associated cases. Therefore, lags of 4–12 weeks
were considered for rainfall, and relatively shorter lags of
3–10 weeks for the minimum and maximum tempera-
ture. The assumption is that changes in temperature and
rainfall at a particular time do not have an important
influence after 10 and 12 weeks respectively. The overall
effect of a unit increase in minimum temperature (for
example) is the sum of the coefficients βi.

A large number of variables (a total of 25; eight lags each
for minimum and maximum temperatures and nine lags
for rainfall) were introduced for the three weather factors
in this model. The efficiency of the coefficient estimates
may be affected due to the large number of parameters to
be estimated and the possibility of multicollinearity
between the lagged weather factors. When lag terms are
put in the same model, correlation between measure-
ments of weather on weeks close together will cause a high
degree of collinearity that may result in unstable
estimates.

Polynomial Distributed Lag Model
A polynomial distributed lag (PDL) model [37] imposes
constraints on the coefficients βi,γi,θi, forcing each of them
to take the form of a (separate) 4th-degree polynomial in
i. This reduces the number of degrees of freedom for each
weather factor from the number of lags considered to five
and circumvents some of the difficulties associated with
estimation of coefficients for multiple lags, including
instability of estimates due to collinearity of the different
lags of the same variable. With this model the coefficients
for lagged minimum temperature, for example, are
assumed to take the form:

where φk is the parameters of the d-th degree (here d = 4)
polynomial distributed lag. To estimate the parameters
describing the polynomial lag φk equation (2) was substi-
tuted into the unconstrained distributed lag model (1) to
obtain a constrained polynomial distributed lag model:

Grouping of districts
The effects of weather factors on the number of malaria
cases were distributed over multiple weeks and the sepa-
rate analysis for each district (not shown) indicated heter-
ogeneity in magnitude and direction of the effects of the
weather factors. Districts with similar climatic characteris-
tics were grouped, in order to reduce the effect of random
error and to produce more reliable and precise estimates
of weather effects. Moreover, this approach will produce
more generalizable results within similar climatic condi-
tions. Thus, the districts were grouped into hot (altitude <
1700 mm above sea level) and cold on the basis of alti-
tude and temperature. The hot districts included
Diredawa, Nazareth, Wolayita and Zeway; and the cold
districts included Alaba, Awasa, Bahirdar, Debrezeit,
Hosana and Jimma. Two separate PDL models were fitted
to estimate the effects of different weather factors.

A basic issue in epidemiological analysis is controlling for
the effect of confounding factors. Malaria transmission is
affected by different factors and shows a systematic varia-
tion over time. To control for other factors that may affect
the long-term trend, a time variable was included in the
model, which would remove the long-term wavelength
patterns, leaving the deviations representing short fluctu-
ations. Since the long-term trend and the numbers of
weekly cases vary between districts, an interaction term
between the time variable and district (dummy variable)
was introduced.

Urban areas may have other sources of breeding sites for
mosquito not driven by rainfall. To examine the influence
of these and other unmeasured factors that vary between
urban and rural environments, separate models were fit-
ted for urban and rural cases.

Results
The data set consists of microscopically confirmed P. falci-
parum cases from a health facility in each of 10 districts
over an average of 10 years and meteorological data from
local stations in each of the districts. Table 2 presents the
descriptive analysis of cases, meteorological variables and
altitude of each district. The daily averages treated by each
of the 10 health facilities ranged from 11–39 malaria cases
and over 300 cases during the peak transmission season.
Minimum temperature was positively correlated with
rainfall, significantly (rho = 0.37) in the cold districts and
nonsignificantly (rho = 0.06) in the hot. Maximum tem-
perature, however, was negatively correlated with rainfall,
significantly (rho = -0.33) in the cold districts and nonsig-
nificantly (rho = -0.033) in the hot.
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The effect of rainfall and temperature on daily average
microscopically confirmed cases was estimated by lag in
the 10 districts grouped into two climatic zones, hot and
cold (Table 2). Figure 1a shows the estimates of the dis-
tributed lag between rainfall and cases in cold areas. Coef-
ficients represent the multiplicative effect of one
additional millimeter of rain at a given lag on the number
of malaria cases at a site. Rainfall is significantly associ-
ated with the number of malaria cases in the cold districts.
The magnitude and direction of the association varies
with lags. At shorter lags of 4 and 5 weeks, rainfall is neg-
atively and significantly associated with malaria cases. At
lags of six, seven and eight, rainfall is not significantly
associated with malaria cases. Lags of nine, 10, 11 and 12
are positively associated with malaria cases and the mag-
nitude of effect increases almost linearly with maximum
effect at lag 12. The conclusion is that rainfall in the cold
districts is associated with a much delayed increased
malaria cases and immediate decrease in malaria cases.

Similarly, rainfall is significantly associated with malaria
cases in the hot districts. Compared to the cold districts, a
significant and positive effect of rainfall in the hot districts
manifests at relatively shorter lags (six, seven, eight, nine
and ten weeks) and remains positive afterwards but
declines and becomes non-significant for the longer lags
(Figure 1b). Much of the contribution of rainfall to the
increase in malaria cases in the hot districts occurs at rela-
tively shorter lags (compared to its effect in cold districts)
and wanes slowly with increasing lags. Thus, the results
for rainfall agree qualitatively with biological
expectations.

Figure 1c shows the estimated distributed lag relationship
between minimum temperature and malaria cases in the
cold districts; coefficients represent the multiplicative
effect of one degree Celsius increase in temperature at a

given lag on the number of malaria cases at a site. Mini-
mum temperature is positively associated with the
number of malaria cases, with a significant increase
extending from 7 to 10 weeks prior to cases and the size of
the effect growing over that range.

In the hot districts, by contrast, the effect of minimum
temperature on malaria cases is more complicated. At
short lags, its effect is small and non-significantly positive
(Figure 1d). A significant positive association at longer
lags is also observed. In summary, minimum temperature
contributed significantly to the estimated increase in
malaria cases in the cold districts with a delayed effect. In
the hot districts, while its effect is non-significant, much
of the contribution is relatively immediate. Unexpectedly,
the only significant contribution of minimum tempera-
ture in the hotter districts occurs at long lags.

Figures 1e and 1f show the relationship between maxi-
mum temperature and malaria cases in the cold and hot
district groups respectively. Maximum temperature is not
significantly associated with the estimate of malaria cases
in either group of districts. However, the trend of the esti-
mates along the lags shows that at shorter lags of three,
four and five weeks, maximum temperature is negatively
associated with the number of malaria cases in hot dis-
tricts, while it is positively associated at lags of six, seven
and eight weeks in the cold districts.

To test the linearity of the association between the
weather factors and malaria cases, a three dimensional
relationship between weather factors, lag and the magni-
tude of effect at each lag was explored (See Additional file
1 for the method and figure). In that figure, a positive
effect of a factor at a given lag is seen as a positive slope of
the surface cut at the given lag; the magnitude of that slope
corresponds to the linear effect estimated by the PDL

Table 2: Characteristics of the study districts (average daily malaria cases and meteorological variables)

District Altitude Malaria cases Maxt Mint Rain Group
(m) Mean Min Max (°C) (°C) (mm)

Alaba 1750 39 0 163 27.4 11.7 19.6 cold
Awasa 1750 11.3 0 17 27.4 12.6 19.3 cold
Bahirdar 1770 22.1 1 83 27.2 13 25.2 cold
Debrezeit 1900 25.2 1 147 26.5 12.1 16.5 cold
Hosana 2200 19.4 0 96 22.4 10.7 23.4 cold
Jima 1725 13.2 0 85 27.6 11.6 30 cold
Diredawa 1260 25.3 0 330 31.8 19 13.8 hot
Nazareth 1622 17.7 0 109 27.5 14.3 17.1 hot
Wolayita 13.9 0 113 25.3 14.4 24.4 hot
Zeway 1640 11.4 1 102 27.5 13.9 13.7 hot

maxt-maximum temperature, mint-minimum temperature
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Distributed lag structure for the association between 1 mm increase in rainfall, 1°C increase in minimum and maximum tem-perature and average daily malaria casesFigure 1
Distributed lag structure for the association between 1 mm increase in rainfall, 1°C increase in minimum and maximum tem-
perature and average daily malaria cases. (a) & (b) for rainfall, (c) & (d) for minimum temperature, and (e) & (f) for maximum 
temperature in the cold and hot districts respectively. The shaded areas represent 95% confidence intervals.
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model. The effect of rainfall plateaus at higher rainfall lev-
els; beyond a given quantity of rain, additional rain adds
little to the malaria risk. Similarly, although the effect of
minimum temperature in the cold districts is linear, it lev-
els off at higher temperature (>16°C) in the hot districts.

The results of analysis stratified by rural versus urban sites
are shown in Figure 2. The association between rainfall
and cases varies by residency (a & b). Rainfall is signifi-
cantly associated with cases originated from rural resi-
dents but not generally among urban residents, however,
the magnitude of effect of rainfall looks similar in both
rural and urban areas,. The effect of minimum tempera-
ture on malaria cases does not vary by residency (c & d).

Predicted case numbers for hot and cold districts were
compared against actual values to assess how well the
models predict the seasonal peaks and interannual varia-
bility. Plots of the actual data and predicted values
showed that the models predicted the seasonal fluctua-
tions very well (Figure 3). However, the models were not
able to differentiate clearly between years with high and
low peaks.

Discussion
The development of malaria early warning systems [7,8]
to predict where and when malaria epidemics will occur,
in order to target scarce resources for prevention activities
[9,38], has motivated many studies [13-15,18,19]. How-
ever, little consensus has emerged as to which factors
should be used as indicators, because multiple studies
have yielded differing results on the main determinants of
increased malaria transmission [2,6,21-23,25,27] and the
lead time prior to observable effects [3,4,22,24,29]. In this
study a polynomial distributed lag model was used to
assess the lag distribution of the effects of weather factors
on Plasmodium falciparum malaria in relatively hot
(Diredawa, Nazareth, Wolayita and Zeway) and cold
(Alaba, Awasa, Bahirdar, Debrezeit, Hosana and Jimma)
environments in Ethiopia.

The findings are largely consistent with hypotheses based
on the relationship between weather factors and mos-
quito and parasite development. Rainfall is associated
with malaria cases in both hot and cold districts with a
lagged effect, and as expected, this lag is shorter in hot dis-
tricts. The effect of rainfall on malaria is linear with satu-
rating effects at higher rainfall levels (See Additional file 1
for the method and figure). Interestingly, malaria in the
urban areas is not associated with rainfall. Although the
maximum temperature is not generally associated with
malaria cases in either group of districts, the minimum
temperature is significantly associated with malaria cases
in the cold districts with delayed effect, and the lag for the
minimum temperature is shorter than that for rainfall,

reflecting the two factors' effects on different stages of the
transmission cycle. The detection of a positive effect of the
minimum temperature at long lags (9–10 weeks) in the
warmer districts was not predicted by biological
considerations.

One of the most striking uncertainties in the literature on
weather and malaria is the variability in the reported rela-
tionship between rainfall and malaria, with several stud-
ies showing the importance of rainfall as a precipitating
factor for malaria transmission [3,4,10,11,29], while
other studies show negative or neutral effects
[21,23,26,27]. For rainfall to have a positive effect on
malaria cases, the temperature must be warm enough to
support mosquito and parasite development [39], and, as
the data confirm, the effect of rainfall on cases becomes
more immediate in warmer temperatures. This is consist-
ent with the laboratory findings that a mosquito popula-
tion peaks early at higher temperatures, while a mosquito
population at low temperatures experiences slow, steady
growth with a delayed peak [40]. Increases in rainfall may
also fail to produce additional malaria cases if aquatic
breeding sites are not limiting for mosquitoes; this mech-
anism is consistent with the observed saturating effect of
rainfall in our data.

Furthermore, malaria in the urban areas is not signifi-
cantly associated with rainfall, which may have been one
of the sources of inconsistent findings of such analysis.
The weak association may be due to the presence of other
sources of breeding sites that may persist during the dry
season such as brick pits, puddles, blocked drains and cis-
terns [41]. Moreover, developmental activities, aggrega-
tion of migrant labor forces and overall population
movement affect urban malaria. It is also interesting to
note that the effect of rainfall in the cold districts is nega-
tive at shorter lags, which may be due to breeding sites
being flushed away during the rainy season [23]. Another
possible explanation for the negative effect could be that
low temperature during the rainy season might suppress
malaria transmission. Maximum temperature was lower
during the rainy season (shown by negative correlation
with rainfall), however, the effect of maximum tempera-
ture on malaria is non significant. Moreover, minimum
temperature seems to be elevated during the rainy season
(positive correlation). Although the effect of rainfall in the
hot districts declines after longer lags (due to evaporation
and drying up of breeding sites), making the main trans-
mission season shorter, the overall effect of rainfall (sum
of the lag coefficients) is bigger in the hot than cold dis-
tricts. Taken together, the analyses suggest that tempera-
ture requirements, saturating effects of rainfall, and
urban-rural differences in the effect of rain on malaria
transmission are all plausible mechanisms that could
Page 7 of 11
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Distributed lag structure of the effects of rainfall and minimum temperature on average daily malaria cases by residencyFigure 2
Distributed lag structure of the effects of rainfall and minimum temperature on average daily malaria cases by residency. (a) & 
(b) for rainfall in rural and urban respectively, (c) & (d) for minimum temperature in rural and urban respectively. The shaded 
areas represent 95% confidence intervals.
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explain the inconsistent relationship between excessive
rainfall and malaria epidemics.

The minimum temperature contributes significantly to
the estimated increase in malaria cases with a delayed
effect in the cold districts, but not in the hot districts. At
lower temperatures, the larval and pupal stages of mos-
quitoes take longer to complete (for example, 47 days at
16°C) and a small increase in temperature substantially
shortens the duration of these phases (to 37 days at
17°C). Similarly, the duration of the sporogony cycle will
be short with increasing temperatures (Table 1). In addi-
tion, raised temperature increases the frequency of mos-
quito feeding and, hence, the probability of transmitting
infection [33]. Although all such effects of minimum tem-
perature increase malaria transmission in the cold dis-

tricts, the effect will be seen after a lag. The effect of
minimum temperature in the hot districts, on the other
hand, is immediate but non-significant. These findings
are consistent with reports that small increases in temper-
ature will have a greater effect on malaria transmission in
areas with relatively lower average temperatures than
areas with higher temperatures [42,43]. The significant
effect of minimum temperature at relatively long (9–10
week) lags is not explainable, to our knowledge, on bio-
logical grounds.

The maximum temperature is not significantly associated
with cases in either hot or cold districts. However, the neg-
ative (but non-significant) correlation between weekly
malaria cases and maximum temperature at shorter lags
seen in hot districts may be due to its inhibitory and lethal

Plot of observed number of cases and predicted cases from the polynomial distributed lag models of 4 districtsFigure 3
Plot of observed number of cases and predicted cases from the polynomial distributed lag models of 4 districts.
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effect on the survival of the parasites in the mosquitoes
[30]. The survival rate of Anopheles gambiae is also reduced
at higher temperatures. Nonetheless, the maximum tem-
perature is not very extreme even in the relatively hot dis-
tricts, thus the negative effect is not significant.

As with all observational studies of malaria incidence and
weather, a limitation of this study is the likely presence of
some confounding factors that may have influenced the
number of malaria cases and may have been associated
with weather. Existing interventions such as insecticide
residual spraying and other methods are routinely applied
and were not included in this analysis. The results would
have been biased by such confounding factors if interven-
tions were undertaken on the basis of weather, or if they
were undertaken on the basis of incidence and their effect
was differential depending on the weather. Another
minor problem is with the assumption of a finite length
for the delayed effect of the different weather factors.
However, the lag length was chosen based on the inter-
relationship between weather, mosquitoes and parasites
(Table 1) and it was assumed that this is biologically
plausible.

Weather factors alone explain seasonal cycles but were not
accurate in explaining the magnitude of unusually bad
years (Figure 3). This study was a scientific not a predictive
exercise and suggests that no other factor is required for
explaining seasonal cycles. A good early warning system
has not been created, but some principles have been sug-
gested for one. The first principle is that the lag length
from time of rain to the expectation of malaria cases varies
with climatic zone (with a saturating effect at higher rain-
fall levels), and rainfall may not be a key factor in urban
malaria transmission. Secondly, minimum temperature is
only important in the cold climatic zones, but not in the
hot. Finally, maximum temperature makes little differ-
ence in either climatic zone. These key points need to be
considered in the development of an early warning system
for malaria. Such an early warning system would also
include autoregressive terms or other terms that could
improve prediction, but would have complicated the
interpretation of coefficients in a model of the sort used,
which was designed to detect the effects of weather factors
on cases, rather than to predict case numbers. Such an
early warning system is now being evaluated.

Conclusions
The findings are largely consistent with hypotheses, based
on experimental data on mosquito and parasite develop-
ment, about the interactions of climatic factors in deter-
mining the strength and lag structure of weather effects on
falciparum malaria incidence. In the examined Ethiopian
districts, weather-based predictors of malaria incidence
are more useful in rural than in urban settings. These key

points should be considered in the development of an
early warning system for malaria.
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