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Abstract
Background: Understanding the genetic structure of island Anopheles gambiae populations is
important for the current tactics in mosquito control and for the proposed strategy using
genetically-modified mosquitoes (GMM). Genetically-isolated mosquito populations on islands are
a potential site for testing GMM. The objective of this study was to determine the genetic structure
of A. gambiae populations on the islands in Lake Victoria, western Kenya.

Methods: The genetic diversity and the population genetic structures of 13 A. gambiae populations
from five islands on Lake Victoria and six villages from the surrounding mainland area in the Suba
District were examined using six microsatellite markers. The distance range of sampling sites varied
between 2.5 and 35.1 km.

Results: A similar level of genetic diversity between island mosquito populations and adjacent
mainland populations was found. The average number of alleles per locus was 7.3 for the island
populations and 6.8 for the mainland populations. The average observed heterozygosity was 0.32
and 0.28 for the island and mainland populations, respectively. A low but statistically significant
genetic structure was detected among the island populations (FST = 0.019) and between the island
and mainland populations (FST = 0.003). A total of 12 private alleles were found, and nine of them
were from the island populations.

Conclusion: A level of genetic differentiation between the island and mainland populations was
found. Large extent of gene flow between the island and mainland mosquito populations may result
from wind- or human-assisted dispersal. Should the islands on Lake Victoria be used as a trial site
for the release program of GMM, mosquito dispersal between the islands and between the island
and the mainland should be vigorously monitored.

Background
Despite 50 years of malaria vector control efforts, malaria
remains a major public health threat in tropical and sub-
tropical countries [1-3]. In recent years, malaria has
caused increased human mortality and morbidity as

malaria epidemics have spread to areas where it was pre-
viously rare [4,5]. The current strategies for malaria con-
trol involve the treatment of infected individuals with
antimalarial drugs to kill the parasites and vector manage-
ment to reduce human-vector contacts via residual

Published: 06 December 2004

Malaria Journal 2004, 3:48 doi:10.1186/1475-2875-3-48

Received: 28 September 2004
Accepted: 06 December 2004

This article is available from: http://www.malariajournal.com/content/3/1/48

© 2004 Chen et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15581429
http://www.malariajournal.com/content/3/1/48
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Malaria Journal 2004, 3:48 http://www.malariajournal.com/content/3/1/48
spraying and the use of insecticide-impregnated bednets.
As demonstrated in multisite trials throughout Africa, the
large-scale use of insecticide-treated bednets can reduce
overall mortality by up to 30% [6] and morbidity in
young children [7]. The emergence of insecticide resist-
ance in mosquito vectors [8] and antimalarial drug resist-
ance in Plasmodium [9] has significantly reduced the
viability of many malaria control programs. An efficacious
malaria vaccine will not be available in the near future
[10].

One potential alternative malaria control strategy is based
on the genetic disruption of mosquito vector competence
[11-13]. This genetic control approach requires identifica-
tion and cloning of parasite-inhibiting genes in the mos-
quito vectors, development of stable and efficient
mosquito transformation tools and the development of
strategies for spreading the parasite-inhibiting genes. Over
the past several years, remarkable progress has been made
in the development of mosquito germline transformation
and in the identification of parasite-inhibiting molecules.
For example, A. gambiae cell lines were successfully trans-
formed with the Hermes element [14,15], and the Minos
transposable element bearing an exogenous gene was effi-
ciently integrated into the genome of Anopheles stephensi
[16,17]. Genetic linkage maps have been constructed for
A. gambiae [18], and genes conferring mosquito refractori-
ness to malaria parasites have been mapped [19]. Availa-
bility of complete A. gambiae genome sequences will
greatly facilitate identification and cloning of parasite-
inhibiting genes [20].

The success of the transgenic mosquito approach depends
on the spread and even fixation of parasite-inhibiting
genes into natural populations. Presently, releasing trans-
genic mosquitoes to the field is premature. Isolated
islands have been suggested as an ideal natural site for
testing transgenic mosquito release strategies and spatial
spreading of transgenes [13,21,22]. Information on mos-
quito population genetic structure and gene flow on
islands and the surrounding mainland area is critical.
Using microsatellite markers, the A. gambiae population
genetic structure in the African continent has been exam-
ined [23-28]. These studies revealed that the Great Rift
Valley in East Africa is a substantial gene flow barrier for
A. gambiae; however, no significant genetic structure was
detected for mosquito populations between western
Kenya and West Africa. The minimum area associated for
a deme of A. gambiae in western or coastal Kenya is larger
than 50 km [24]. Simard et al. [29] found a high degree of
genetic differentiation of the Anopheles arabiensis popula-
tions from the high plateau of Madagascar and those from
Réunion and Mauritius islands (FST ranges from 0.080 to
0.215). Population substructure was also detected on the
island of São Tomé, West Africa [22].

The present study examined the genetic diversity and the
population genetic structures of A. gambiae mosquitoes
from five islands on Lake Victoria and the surrounding
mainland in western Kenya. This information is valuable
for selecting field sites to test transgene release strategies
and evaluating the spread of transgenes in nature.

Materials and Methods
Study sites and mosquito collection
Anopheline female mosquitoes were collected from seven
villages on five islands in Lake Victoria and from six vil-
lages in the mainland Suba District, western Kenya (Fig.
1). The sampled islands were Kibuogi, Mfangano (Sena
village), Ngodhe, Takawiri and Rushinga. Mosquitoes
were collected from three villages (Kamsengere, Utajo and
Wanyama) on Rushinga Island and one village on each of
the other islands. Mfangano Island is the largest and the
most offshore (about 10 km away from the nearest main-
land village). Rushinga Island is the most populated
among the five islands and is connected to the mainland
by a walkway. The islands are about 2.5–21.0 km apart.
Also, five mainland villages (Ragwe, Roo, Gingo, Mbita
and Kasunga) along the shore of Lake Victoria and one
inland village (Ruri) about 11 km away from the lake-
shore were selected. The distance between the islands and
the mainland sites ranges from 4.9 to 35.1 km. Malaria on
these islands and the mainland area is holoendemic, and
A. gambiae mosquitoes are the major malaria vectors in
this region [30].

At least 170 anopheline mosquitoes were collected from
four to 28 houses within each village using the pyrethrum
spray collection method [31]. Mosquitoes from Mbita,
Kasgunga and Ruri were sampled in May 1997; collection
in other villages was conducted in April and May 1999. A.
gambiae sensu lato (s.l.) specimens were separated from
other anophelines according to the identification key pro-
vided by Gillies and Coetzee [32] and then preserved in
95% ethanol and kept at -20°C until further analyzed.

PCR assay for species identification
PCR analysis was conducted for species identification
using the rDNA-PCR method because individual species
within the A. gambiae species complex cannot be identi-
fied by morphology alone [33]. About 100 A. gambiae s.l.
females per village were tested. If the initial PCR testing
failed to amplify for a sample, then the PCR analysis was
repeated once or twice until successful amplification was
achieved. If a sample could not be identified after three
PCR amplifications, it was scored as unknown.

Microsatellite loci and genotyping
Six microsatellite markers were used for specimen geno-
typing, including AGXH1D1 and AGXH131 of Chromo-
some X, AG2H46 and AG2H79 of Chromosome 2, and
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AG3H29C and AG3H33C of Chromosome 3
[17,18,22,23]. Microsatellite analyses were conducted on
51–70 individuals per village (See the 1: A table of sample
size, allelic number, heterozygosities and breeding coeffi-
cient of 13 A. gambiae populations from the Lake Victoria
islands and the surrounding mainland in western Kenya).

A Li-Cor Model 4200 Automated DNA Analyzer (Li-Cor
Inc., Lincoln, NE) was used for gel electrophoresis. For the
apparatus to detect PCR products, one primer in every pair
of microsatellite primers must be fluorescently labelled.
To reduce the cost associated with synthesis of fluores-
cently labelled primers, we used the "tailed primer"
method [34,35]; that is, the forward primer for each mic-
rosatellite locus was synthesized with an additional 19 bp
sequence (5' CACGACGTTGTAAAACGAC 3') added to
the 5' end of the primer. A third primer with the same 19
bp sequence was directly labelled with the fluorescence
and was used as the sole type of labelled primer for the
detection of all microsatellite alleles. The tailed primer
method reduced the cost of oligonucleotide synthesis by
>80%. The 10 µl PCR reaction contained 1X Taq buffer,
0.2 mM dNTPs, 1.5 pmol forward and reverse primers, 1.5
pmol fluorescently labelled 19 bp sequences, 1.5 mM
MgCl2, 1.0 µg BSA, 1.0 unit Taq polymerase and about 20
ng genomic DNA. Cycling conditions in a MJ Research

PTC-220 thermocycler were 35–40 cycles of 94°C for 30
seconds, 55°C for 30 seconds and 72°C for 45 seconds.
Allele sizes were determined using Gene ImagIR computer
software [36]. The allele sizes used in the analysis were
true allele sizes that have been adjusted for the 19 bp tail
in the forward primer.

Data analysis
Microsatellite polymorphism was measured by the
number of alleles and heterozygosity at each locus. Using
the probability test available in the GENEPOP computer
program [37], conformance with Hardy-Weinberg Equi-
librium (HWE) was tested for each locus and population,
and the Bonferroni correction was applied for multiple
comparisons. The FIS statistics and probability test were
used to determine whether distortion from HWE resulted
from heterozygosity deficiency or excess using. Because
the probability test is robust to low allele frequencies, rare
alleles were not pooled. Variations in heterozygosity
among the populations were analyzed following Weir's
method [38], using the analysis of variance (ANOVA)
with subpopulations, individuals, loci and interactions of
loci, and individuals as factors. All factors were treated as
random effects except loci. The Fisher exact test was per-
formed to detect linkage disequilibrium for pair-wise loci
in each population and the pooled population.

Map of study area showing the distribution of Anopheles gambiae populations on the Lake Victoria islands and the surrounding mainland area in Suba District, western KenyaFigure 1
Map of study area showing the distribution of Anopheles gambiae populations on the Lake Victoria islands and the surrounding 
mainland area in Suba District, western Kenya.
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Population genetic structure was examined with Wright's
F-statistics (FST) using FSTAT 2.8 [39]. FST statistic appears
to be more sensitive to detect intraspecific differentiation
than RST [40,41]. The standard deviations of the F-statis-
tics were obtained for each locus by a jackknife procedure
over all the alleles and were used to test the statistical sig-
nificance. Nei's unbiased genetic distances [42] were cal-
culated for all pairs of populations based on microsatellite
allele frequencies at six loci using TFPGA [43]. A dendro-
gram was created based on the pair-wise genetic distances
using the unweighted pair group method with arithmetic
mean (UPGMA). The bootstrap confidence values were
generated by 1,000 permutations.

The isolation-by-distance model of population genetic
structure was tested by linear regression of pair-wise FST/(1
- FST) against the natural logarithm of straight-line geo-
graphical distance between population pairs [44]. Statisti-
cal significance of the regression was tested using the
Mantel test with 10,000 permutations [45].

Results
Population genetic variability
A moderate to high level of polymorphism was found in
six loci across the 13 populations (See the 1). The three
populations from Rushinga Island had a similar number
of alleles per locus (ANOVA, F = 0.02, df = 2, P > 0.05) and
observed heterozygosities (F = 0.029, df = 2, P > 0.05).
Among the island populations, the average observed
number of alleles per locus was not significantly different
(F = 0.08, df = 6, P > 0.05), but observed heterozygosity
varied significantly (F = 4.52, df = 6, P < 0.01). The three
populations on Rushinga Island, Kamsengere, Utajo and
Wanyama, showed significantly lower heterozygosity
than other islands. Similarly, the six mainland popula-
tions did not differ in the number of alleles per locus (F =
0.29, df = 5, P > 0.05), but they varied significantly in the
observed heterozygosities (F = 5.45, df = 5, P < 0.01). In

particular, the Ruri population had the highest observed
heterozygosity (0.343), about two-fold higher than the
Mbita population (See the 1). Overall, there was no signif-
icant difference between the island and mainland popula-
tions in the number of alleles per locus (7.3 vs. 6.8; t =
0.67, df = 74, P > 0.05) and observed heterozygosities
(0.32 vs. 0.28; t = 1.82, df = 74, P > 0.05). A total of 12 pri-
vate alleles were identified, nine of them from the island
populations.

A total of 14.1% loci (11 out of 78 tests) showed signifi-
cant departure from Hardy-Weinberg equilibrium, all due
to heterozygote deficiency. This was caused entirely by
heterozygote deficiency in the locus AG2H46, a locus
known for the presence of null alleles in western Kenyan
A. gambiae populations [46]. The Fisher exact test revealed
linkage disequilibrium in 13 out of 195 pairs of loci
(6.7%; data not shown), suggesting a low level of linkage
disequilibrium among the six loci scored.

Population genetic structure
A low, but significant, genetic structure was detected
among the seven island and the six mainland populations
(Table 1). The genetic differentiation in the seven island
populations (FST = 0.019, P < 0.001) was almost twice as
high as the six mainland populations (FST = 0.010, P <
0.001). Genetic differentiation between island and main-
land populations was also small (FST = 0.010, P < 0.001).
Pair-wise comparisons between all populations revealed
that only seven pairs (Kibougo/Kamsengere, Kasgunga/
Kamsengere, Takawiri/Ruri, Sena/Ruri, Utajo/Ruri,
Ngodhe/Ruri and Ngodhe/Gingo) exhibited significant
FST values, and six of them were between an island and a
mainland population.

The Mantel test revealed a significant correlation between
geographic distance and pair-wise FST/(1 - FST) (P <
0.001), suggesting that the population genetic structure of

Table 1: FST estimates of Anopheles gambiae populations on the islands of Lake Victoria and from surrounding mainland sites in western 
Kenya

Locus Among seven island 
populations

Among six mainland 
populations

Between island and 
mainland areas

Among all populations

AGXH1D1 0.082*** 0.022*** 0.002*** 0.042***
AGXH131 0.000 0.009*** 0.005*** 0.006***
AG2H46 0.008*** 0.006 0.006*** 0.009***
AG2H79 0.011*** 0.011*** 0.000 0.010***
AG3H29C 0.026*** 0.008*** 0.000 0.007***
AG3H33C 0.003*** 0.009*** 0.000 0.005***
Overall 0.019*** 0.010*** 0.003*** 0.012***

* P < 0.05, ** P < 0.01, *** P < 0.001.
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A. gambiae populations from the island and mainland is
consistent with the isolation-by-distance model. When
the Ruri population is removed from the analysis, the cor-
relation was still statistically significant (P = 0.015).
Therefore, the population genetic structure of our study
populations is consistent with the isolation-by-distance
model. The cluster analysis revealed that the Ruri popula-
tion, located farther inland from the other populations,
was out-grouped from other populations with a signifi-
cant bootstrap value, while other mainland and island
populations were intermixed with non-significant branch
bootstrap values (Fig. 2).

Discussion
The present study demonstrated a similar level of genetic
diversity between the island A. gambiae populations in the
Lake Victoria and adjacent mainland populations in the

Suba District, western Kenya. For the seven island popula-
tions, the average number of alleles at six microsatellite
loci was 7.3 and the observed heterozygosity was 0.32. For
the six mainland populations, the average number of alle-
les was 6.8 and the observed heterozygosity was 0.28. The
population genetic diversity at most loci in this study was
similar to other western Kenyan populations [23,47-49].
Compared with West Africa populations [23,27,48,49],
lower heterozygosities, particularly at loci AG2H46,
AG2H79 and AG3H33, were reported in this study,
caused by fewer alleles detected in the studied
populations. The comparable level of genetic diversity
between island and mainland populations suggests that
the island mosquito populations have a similar effective
population size as the mainland populations, and they
have not suffered severe genetic bottleneck during the pre-
vious vector control efforts. For each population, all loci

A UPGMA tree based on Nei's unbiased distance showing genetic divergence among Anopheles gambiae populationsFigure 2
A UPGMA tree based on Nei's unbiased distance showing genetic divergence among Anopheles gambiae populations. The num-
bers above branches indicate those with >50% bootstrap support. The populations marked with an asterisk are the mainland 
populations.
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except the AG2H46 locus did not show a significant devi-
ation from Hardy-Weinberg equilibrium, suggesting that
the microsatellite markers used in the study are not under
strong selection and mosquito populations are in random
mating. A heterozygote deficit at the locus AG2H46 was
observed for all populations in this study. Heterozygote
deficiency at the locus AG2H46 was also demonstrated in
other western Kenya populations by Lehmann et al.
[23,24]; the presence of null alleles as a result of muta-
tions in the primer-annealing region was the cause.

A small but statistically significant genetic structure was
detected for A. gambiae populations among the five
islands in Lake Victoria (FST = 0.019) and among the six
villages in the mainland in an area of approximately 40 ×
20 km2 (FST = 0.010). The degree of genetic differentiation
between the island populations in this study was less than
for the island A. gambiae populations of São Tomé, west-
ern Africa (FST = 0.032) [22]. The lower FST estimates in the
populations in this study were probably caused by shorter
distance between islands (3–15 vs. 23–38 km) [22] and a
lack of mountainous topography as gene flow barriers.
The FST estimates for the mainland populations in this
study were comparable to other studies on the western
Kenya populations (FST = 0.0033) [24,27]. The genetic
differentiation between island and mainland populations
was small but statistically significant (FST = 0.003). Thus,
there is a very small degree of genetic isolation between
island and mainland populations. This estimation is con-
sistent with the private allele distribution in the studied
populations, in which nine of the 12 private alleles were
from the island populations. Further evidence for a small
degree of genetic differentiation between island and
mainland populations is from pair-wise population com-
parisons in which six out of the seven pairs that exhibited
significant genetic differentiation were between an island
population and a mainland population.

The low level of genetic differentiation between island
and mainland mosquito populations implies large gene
flow between the two areas (83.1 migrants per genera-
tion). The normal flight range of A. gambiae is usually less
than 1 km [50]. The distance to the lake shore of the main-
land from the islands ranges from 2.5 to 15 km, farther
than the normal flight range of the mosquitoes. Thus,
mosquito migration is likely assisted by wind. Lindsay et
al. [51] found that the spatial distribution of A. gambiae
mosquitoes was related to the predominant wind
direction at night, suggesting that wind assisted the dis-
persal of mosquitoes from their breeding site. A. gambiae
have been shown to fly up to 7 km with the assistance of
wind [52,53]. This distance is in the range for mosquitoes
to disperse between the closest islands and between
islands and their closest mainland in this study area. Mos-

quitoes may also use one island as a stepping-stone to
extend their dispersal distance.

Mosquito migration may also be assisted by human activ-
ities. A study on Aedes polynesiensis populations from
islands found no significant effect of geographic distance
on the population genetic structure, but detected a signif-
icant correlation between gene flow and commercial traf-
fic by planes and/or boats between islands [54]. The
introduction of A. arabiensis to the Mascarene islands and
Madagascar was thought to be caused by human transpor-
tation by steamship lines [55,56]. In Lake Victoria, small
wooden boats may transport mosquito larvae between the
islands and the mainland. A. gambiae larvae were collected
at the bottom of a wooden fishing boat [57]. Rushinga
Island in the study area was connected to the mainland by
a walkway, and the island mosquito larvae could be
moved to the mainland by vehicle transportation.

The results of this study of the population genetic stricture
of island and mainland A. gambiae populations have
implications for the ecological safety evaluation of the
transgenic mosquito release program. During the initial
field test of environmental safety and public health conse-
quences by transgenic mosquito release, ideal sites would
be islands that are totally genetically isolated from other
islands and the mainland, with a sufficient number of
human inhabitants and active malaria transmission on
the island. Such an island may be extremely difficult to
find, so islands with some genetic isolation from the
mainland may have to be chosen. If so, the Lake Victoria
islands could be used as field test sites; however, due to
potential gene flow between the islands and between the
islands and the mainland, mosquito dispersal between
the islands and between the islands and the mainland
should be vigorously monitored. After the release of the
genetically modified mosquitoes, long-term monitoring
programs should be launched to evaluate the spread of
the transgenes to any unintended areas. In addition,
methods to minimize the negative effects of transgene
leak need to be developed prior to the field trial of trans-
gene release [58].

Conclusions
This study showed that a low level of genetic differentia-
tion existed between the island and mainland popula-
tions and no any genetically-isolated population was
found among the 13 mosquito populations. If the islands
on Lake Victoria were used as a trial site for the program
to release genetically-modified mosquitoes, short-term
and long-term mosquito dispersal between the islands
and between the island and the mainland should be vig-
orously monitored.
Page 6 of 8
(page number not for citation purposes)



Malaria Journal 2004, 3:48 http://www.malariajournal.com/content/3/1/48
Authors' Contributions
HC conducted species identification using PCR, microsat-
ellite analyses and drafting the manuscript. NM was
responsible for sample collection, and participated in
species identification and drafting the manuscript. JB and
GY supervised the study, and assisted data analysis and
manuscript preparations.

Additional material

Acknowledgments
We thank L. Carson and two anonymous reviewers for critical comments. 
This work was supported by WHO TDR grant A10429 and NIH grants 
D43 TW01505 and R01 AI50243.

References
1. Spielman A, Kitron U, Pollack R: Time limitation and the role of

research in the worldwide attempt to eradicate malaria. J
Med Entomol 1993, 30:6-19.

2. Miller LH, Greenwood B: Malaria – a shadow in Africa. Science
2002, 298:121-122.

3. Sachs JD: A new global effect to control malaria. Science 2002,
298:122-124.

4. Lindblade KA, Walker ED, Onapa AW, Katungu J, Wilson ML: High-
land malaria in Uganda: prospective analysis of an epidemic
associated with El Niño. Trans R Soc Trop Med Hyg 1999,
93:480-487.

5. Shanks GD, Biomondo K, Hay SI, Snow RW: Changing patterns of
clinical malaria since 1965 among a tea estate population
located in the Kenyan highlands. Trans R Soc Trop Med Hyg 2000,
94:253-255.

6. Lines J: Mosquito nets and insecticides for net treatment: a
discussion of existing and potential distribution systems in
Africa. Trop Med Int Health 1996, 1:616-632.

7. Maxwell CA, Msuya E, Sudi M, Njunwa KJ, Carneiro IA, Curtis CF:
Effect of community-wide use of insecticide-treated nets for
3–4 years on malarial morbidity in Tanzania. Trop Med Int
Health 2002, 7:1003-1008.

8. Hemingway J, Field L, Vontas J: An overview of insecticide
resistance. Science 2002, 298:96-97.

9. Wellems TE: Plasmodium chloroquine resistance and the
search for a replacement antimalarial drug. Science 2002,
298:124-126.

10. Long CA, Hoffman SL: Malaria – from infants to genomics to
vaccines. Science 2002, 297:345-347.

11. James AA: Mosquito molecular genetics: the hands that feed
bite back. Science 1992, 257:37-38.

12. Collins FH, Besansky NJ: Vector biology and the control of
malaria in Africa. Science 1994, 264:1874-1875.

13. Alphey L, Beard CB, Billingsley P, Coetzee M, Crisanti A, Curtis C,
Eggleston P, Godfray C, Hemingway J, Jacobs-Lorena M, James AA,
Kafatos FC, Mukwaya LG, Paton M, Powell JR, Schneider W, Scott
TW, Sina B, Sinden R, Sinkins S, Spielman A, Toure Y, Collins FH:
Malaria control with genetically manipulated insect vectors.
Science 2002, 298:119-121.

14. Jasinskiene N, Coates CJ, Benedict MQ, Cornel AJ, Rafferty CS, James
AA, Collins FH: Stable transformation of the yellow fever mos-

quito, Aedes aegypti, with the Hermes element from the
housefly. Proc Natl Acad Sci U S A 1998, 95:3743-3747.

15. Zhao Y, Eggleston P: Stable transformation of an Anopheles
gambiae cell line mediated by the Hemes mobile genetic
element. Insect Biochem Mol Biol 1998, 28:213-219.

16. Catteruccia F, Nolan T, Blass C, Muller HM, Crisanti A, Kafatos FC,
Loukeris TG: Toward Anopheles transformation: Minos ele-
ment activity in anopheline cells and embryos. Proc Natl Acad
Sci U S A 2000, 97:2157-2162.

17. Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC,
Crisanti A: Stable germline transformation of the malaria
mosquito Anopheles stephensi. Nature 2000, 405:959-962.

18. Zheng L, Benedict MQ, Cornel AJ, Collins FH, Kafatos FC: An inte-
grated genetic map of the African human malaria vector
mosquito, Anopheles gambiae. Genetics 1996, 143:941-952.

19. Zheng L, Cornel AJ, Wang R, Erfle H, Voss H, Ansorge W, Kafatos
FC, Collins FH: Quantitative trait loci for refractoriness of
Anopheles gambiae to Plasmodium cynomolgi B. Science 1997,
276:425-428.

20. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nussk-
ern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, Salzberg SL, Lof-
tus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF,
Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis
V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barn-
stead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal
MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I,
Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z,
Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS,
Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I,
Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC,
Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O'Brochta DA,
Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV,
Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ,
Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M,
Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM,
Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre
A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD,
Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey
PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL:
The genome sequence of the malaria mosquito Anopheles
gambiae. Science 2002, 298:129-149.

21. Scott TW, Takken W, Knols BGJ, Boete C: The ecology of genet-
ically modified mosquitoes. Science 2002, 298:117-119.

22. Pinto J, Donnelly MJ, Sousa CA, Malta-Vacas J, Gil V, Ferreira C,
Petrarca V, do Rosario VE, Charlwood JD: An island within an
island: genetic differentiation of Anopheles gambiae in São
Tomé, West Africa, and its relevance to malaria vector
control. Heredity 2003, 91:407-414.

23. Lehmann T, Hawley WA, Kamau L, Fontenille D, Simard F, Collins FH:
Genetic differentiation of Anopheles gambiae populations
from East and West Africa: comparision of microsatellite
and allozyme loci. Heredity 1996, 77:192-208.

24. Lehmann T, Besansky NJ, Hawley WA, Fahey TG, Kamau L, Collins
FH: Microgeographic structure of Anopheles gambiae in west-
ern Kenya based on mtDNA and microsatellite loci. Mol Ecol
1997, 6:243-253.

25. Lehmann T, Hawley WA, Grebert H, Danga M, Atieli F, Collins FH:
The Rift Valley complex as a barrier to gene flow for Anoph-
eles gambiae in Kenya. J Hered 1999, 90:613-621.

26. Lehmann T, Licht M, Elissa N, Maega BT, Chimumbwa JM, Watsenga
FT, Wondji CS, Simard F, Hawley HA: Population structure of
Anopheles gambiae in Africa. J Hered 2003, 94:133-147.

27. Kamau L, Lehmann T, William AH, Hawley WA, Orago ASS, Collins
FH: Microgeographic genetic differentiation and Anopheles
gambiae mosquitoes from Asembo Bay, western Kenya: A
comparison with Kilifi in coastal Kenya. Am J Trop Med Hyg
1998, 58:64-69.

28. Donnelly MJ, Simard F, Lehmann T: Evolutionary studies of
malaria vectors. Trends Parasitol 2002, 18:75-80.

29. Simard F, Fontenille D, Lehmann T, Girod R, Brutus L, Gopaul R,
Dournon C, Collins FH: High amounts of genetic differentiation
between populations of the malaria vector Anopheles arabi-
ensis from West Africa and Eastern outer islands. Am J Trop
Med Hyg 1999, 60:1000-1009.

Additional File 1
A table of sample size, allelic number, heterozygosities and breeding coef-
ficient of 13 A. gambiae populations from the Lake Victoria islands and 
the surrounding mainland in western Kenya.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1475-
2875-3-48-S1.PDF]
Page 7 of 8
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1475-2875-3-48-S1.PDF
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8094462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8094462
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364788
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10696401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10696401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10696401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10974991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10974991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10974991
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8911446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8911446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8911446
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12460390
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364782
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364789
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12130768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12130768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1352413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1352413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8009215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8009215
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364786
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9520437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9520437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10681436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10681436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10879538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8725240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9103203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364791
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14512957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14512957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14512957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8760401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8760401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8760401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9076979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9076979
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10589511
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12721225
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9452294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9452294
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11832298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11832298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10403334


Malaria Journal 2004, 3:48 http://www.malariajournal.com/content/3/1/48
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

30. Minakawa N, Sonye G, Mogi M, Githeko A, Yan G: The effects of
climatic factors on the distribution and abundance of
malaria vectors in Kenya. J Med Entomol 2002, 39:833-841.

31. World Health Organization: Manual on practical entomology in malaria.
Part II. Methods and techniques. No. 13. Geneva 1975.

32. Gillies MT, Coetzee M: A supplement to the Anophelinae of
Africa south of the Sahara (Afrotropical region). Publication of
the South African Institute for Medical Research. No. 55 1987.

33. Scott JA, Brogdon WG, Collins FH: Identification of single speci-
mens of the Anopheles gambiae complex by the polymerase
chain reaction. Am J Trop Med Hyg 1993, 49:520-529.

34. Oetting WS, Armstrong CM, Ronan SM, Young TL, Sellers TA, King
RA: Multiplexed short tandem repeat polymorphisms of the
Weber 8A set of markers using tailed primers and infrared
fluorescence detection. Electrophoresis 1998, 19:3079-3083.

35. Sharakhov IV, Braginets O, Mbogo CN, Yan G: Isolation and char-
acterization of trinucleotide microsatellites in African
malaria mosquito Anopheles funestus. Mol Ecol Notes 2001,
1:289-292.

36. Scanalytics, Inc: Gene Profiler User's Manual, Version 10.98. Fairfax, VA
1998.

37. Raymond M, Rousset F: An exact test for population
differentiation. Evolution 1995, 49:1280-1283.

38. Weir BS: Genetic Data Analysis: Methods of Discrete Population Genetic
Data Sunderland, MA: Sinauer Associates, Inc; 1990. 

39. Goudet J: FSTAT Version 1.2: A computer program to calcu-
late F-statistics. J Hered 1995, 86:485.

40. Slatkin L: A measure of population subdivision based on mic-
rosatellite allele frequencies. Genetics 1995, 139:457-462.

41. Balloux F, Lugon-Moulin N: The estimation of population differ-
entiation with microsatellite markers. Mol Ecol 2002,
11:155-165.

42. Nei M: Estimation of average heterozygosity and genetic dis-
tance from a small number of individuals. Genetics 1978,
89:583-590.

43. Miller MP: Tools for population genetic analyses (TFPGA) 1.3:
A windows program for the analysis of allozyme and molec-
ular population genetic data. Computer software distributed by
author 1997.

44. Rousset F: Genetic differentiation and estimation of gene flow
from F-statistics under isolation by distance. Genetics 1997,
145:1219-1228.

45. Mantel N: The detection of disease clustering and a general-
ized regression approach. Cancer Research 1967, 27:209-220.

46. Lehmann T, Hawley WA, Collins FH: An evaluation of evolution-
ary constraints on microsatellite loci using null alleles. Genet-
ics 1996, 144:1155-1163.

47. Lanzaro GC, Zheng L, Toure YT, Traore SF, Kafatos FC, Vernick KD:
Microsatellite DNA and isozyme variability in a West Afri-
can population of Anopheles gambiae. Insect Mol Biol 1995,
4:105-112.

48. Norris DE, Shurtleff AC, Toure YT, Lanzaro GC: Microsatellite
DNA polymorphism and heterozygosity among field and lab-
oratory populations of Anopheles gambiae s.s. (Diptera:
Culicidae). J Med Entomol 2001, 38:336-340.

49. Wondji C, Simard F, Fontenille D: Evidence for genetic differen-
tiation between the molecular forms M and S within the For-
est chromosomal form of Anopheles gambiae in an area of
sympatry. Insect Mol Biol 2002, 11:11-19.

50. Costantini C, Li SG, Della Torre A, Sagnon N, Coluzzi M, Taylor CE:
Density, survival and dispersal of Anopheles gambiae complex
mosquitoes in a west African Sudan savanna village. Med Vet
Entomol 1996, 10:203-19.

51. Lindsay SW, Schellenberg A JR, Zeiler HA, Daly RJ, Salum FM, Wilkins
HA: Exposure of Gambian children to Anopheles gambiae
malaria vectors in an irrigated rice production area. Med Vet
Entomol 1995, 9:50-8.

52. De Meillon B: The Anopheline of the Ethiopian Region. Publica-
tion of the South African Institute for Medical Research 1947.

53. Gillies MT, De Meillon B: The Anophelinae of Africa South of the Sahara
2nd edition. Publications of the South African Institute for Medical
Research No. 54; 1968. 

54. Failloux AB, Raymond M, Ung A, Chevillon C, Pasteur N: Genetic
differentiation associated with commercial traffic in the
Polynesian mosquito, Aedes polynesiensis Marks 1951. Biol J Lin-
nean Soc 1997, 60:107-118.

55. Julvez J, Mouchet J, Ragavoodoo C: Epidémiologie historique du
paludisme dans l'archipel des Mascareignes (Océan Indien).
Ann Soc Belg Med Trop 1990, 70:249-261.

56. Julvez J, Mouchet J: Le peuplement culicidien des îles du sud-
ouest de l'Océan Indien. L'action de l'homme dans l'impor-
tation des espèces d'intérêt médical. Ann Soc Entomol Fr 1994,
30:391-401.

57. Minakawa N, Seda P, Yan G: Influence of host and larval distribu-
tion on the abundance of African malaria vectors in western
Kenya. Am J Trop Med Hyg 2002, 67:32-38.

58. Braig HR, Yan G: The spread of genetic constructs in natural
insect populations. In In Genetically Engineered Organisms: Assessing
Environmental and Human Health Effects Edited by: Letourneau KD,
Burrows BE. Boston: CRC Press; 2001:251-314. 
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12495180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12495180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12495180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8214283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8214283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9932797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9932797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9932797
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7705646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7705646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11856418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11856418
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9093870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9093870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6018555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6018555
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8913757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8913757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7551192
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11296845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11296845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11841498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11841498
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8887330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8887330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7696688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7696688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2291690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2291690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12363061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12363061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12363061
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Materials and Methods
	Study sites and mosquito collection
	PCR assay for species identification
	Microsatellite loci and genotyping
	Data analysis

	Results
	Population genetic variability
	Population genetic structure

	Discussion
	Conclusions
	Authors' Contributions
	Additional material
	Acknowledgments
	References

