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Abstract
Background: It has been hypothesized that the African alleles Sl2 and McCb of the Swain-Langley
(Sl) and McCoy (McC) blood group antigens of the complement receptor 1 (CR1) may confer a
survival advantage in the setting of Plasmodium falciparum malaria, but this has not been
demonstrated.

Methods: To test this hypothesis, children in western Kenya with severe malaria-associated
anaemia or cerebral malaria were matched to symptomatic uncomplicated malaria controls by age
and gender. Swain-Langley and McCoy blood group alleles were determined by restriction fragment
length polymorphism and conditional logistic regression was carried out.

Results: No significant association was found between the African alleles and severe malaria-
associated anaemia. However, children with Sl2/2 genotype were less likely to have cerebral malaria
(OR = 0.17, 95% CI 0.04 to 0.72, P = 0.02) than children with Sl1/1. In particular, individuals with
Sl2/2 McCa/b genotype were less likely to have cerebral malaria (OR = 0.18, 95% CI 0.04 to 0.77, P
= 0.02) than individuals with Sl1/1 McCa/a.

Conclusion: These results support the hypothesis that the Sl2 allele and, possibly, the McCb allele
evolved in the context of malaria transmission and that in certain combinations probably confer a
survival advantage on these populations.

Background
Plasmodium falciparum malaria is responsible for most of
the more than one million deaths that occur each year
from malaria infection in Africa [1]. Most of these deaths
occur as a result of complications such as severe malaria-
associated anaemia (SMA) and cerebral malaria (CM) or

coma [2]. The pathogenesis of these complications is
poorly understood. Evidence from several studies [3-7]
suggests that the complement receptor 1 (CR1, CD35)
may be involved in the pathogenesis of severe malaria.
However, its exact role is not known.
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CR1 is a protein ranging in Mr from 190 to 280 kDa. It is
found on erythrocytes and most leukocytes and it is
divided into three to four long homologous repeat regions
(LHRs) and 27 to 30 short consensus repeats (SCRs), also
known as complement control protein repeats (CCPs) [8]
(Figure 1). LHR-A binds C4b, whereas LHR-B and C bind
both C4b and C3b. LHR-D binds mannan-binding lectin
and C1q [9,10]. Together with other erythrocyte comple-
ment regulatory proteins such as decay accelerating factor
(DAF, CD55) and membrane inhibitor of reactive lysis
(MIRL, CD59), CR1 serves to attenuate the complement
cascade. Specifically, CR1 promotes the Factor I-mediated
inactivation of C3b to C3bi and promotes inactivation of
C3 convertases. CR1 on erythrocytes also binds opsonized
immune complexes carrying them to organs of the reticu-
loendothelial system for removal. Altogether, these func-
tions serve to protect erythrocytes and other host cells
from complement-mediated damage. In addition, CR1 is
thought to be a receptor for the P. falciparum erythrocyte
membrane protein 1 (PfEMP-1) [3,4]. The interaction
between PfEMP-1 and CR1 may be responsible for roset-
ting, a phenomenon in which erythrocytes infected with
P. falciparum late stage parasites bind to uninfected eryth-
rocytes in vitro and has been associated with cerebral
malaria in several African studies [11,12].

The CR1 gene exhibits a number of polymorphisms. There
are several size variants which are felt to be the result of

unequal gene crossover [13]. The most common variant
has four LHRs (Figure 1). Polymorphisms that correlate
with the quantitative expression of CR1 on erythrocytes of
Caucasians but not of Africans have also been identified
[14,15]. Lastly, the Knops blood group antigens, includ-
ing the Swain-Langley (Sl), McCoy (McC) and their alle-
les, have been localized to the CR1 protein in LHR-D [16-
18].

The study of the Sl and McC blood group antigens may
offer further clues as to the role of CR1 in the pathogenesis
of severe malaria. The phenotypic absence of these anti-
gens, designated Sl -1,2 [19] and McC(a-b+) respectively,
is occasionally the result of low CR1 copy numbers on the
RBC or, most commonly, due to non-synonymous base
substitutions [17]. The alleles responsible for the pheno-
typic absence are very rare in ethnic groups that are not of
African descent. Thus, this observation has led to the
hypothesis that the Sl2 and McCb alleles may confer a sur-
vival advantage in the face of diseases such as malaria. In
support of this hypothesis Sl -1,2 erythrocytes were found
to rosette less in vitro than Sl 1,-2 erythrocytes [3]. How-
ever, a recent study failed to reveal an association between
Sl2 or McCb and resistance to severe malaria in The Gam-
bia, West Africa [20]. The present study describes the find-
ings of an investigation designed to determine whether
there is an association between resistance or susceptibility
to severe malaria and the Sl and McC blood group alleles

Schematic diagram of the most common structural variant of complement receptor 1 (CR1*1, F allele)Figure 1
Schematic diagram of the most common structural variant of complement receptor 1 (CR1*1, F allele). The 
amino terminal (NH2) extracellular portion is composed of 30 complement control protein repeats (CCPs; vertical boxes 
numbered 1–30) arranged into four long homologous regions (LHRs) A-D, each composed of seven CCPs. There are two dis-
tinct functional domains each composed of three complement control protein repeats (CCPs) (vertical hatched boxes): site 1 
in LHR-A (CCPs 1–3) binds mainly C4b and has convertase decay accelerating activity, and two virtually identical copies of site 
2 in LHR-B (CCPs 8–10) and LHR-C (CCPs 15–17) that bind C3b and C4b, as well as PfEMP-1, and possess Factor I- cofactor 
activity. Functional differences in sites 1 and 2 are determined by amino acid sequence differences. Boxes with the same hatch-
ing pattern reflect near amino acid identity of the CCPs. CCP 25 (stippled box) carries the Swain-Langley (Sl) and McCoy 
(McC) Knops blood group antigens. The CCP repeats are followed by a transmembrane domain (TM) and a cytoplasmic tail 
(CYT).
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in western Kenya, a region of malaria endemicity. The
findings suggest that, contrary to a previous report [20],
Sl2 does confer an advantage in the setting of malaria
infection.

Methods
Populations and study design
Participants were recruited under human use protocols
approved by the Human Subjects Research Review Board,
Office of the Surgeon General, US Army, and the Ethics
Review Committee of the Kenya Medical Research Insti-
tute, Nairobi, Kenya. All procedures were in accordance
with the Helsinki Declaration. The study had a matched
case-control design. The demographics of some of the
study participants as well as the inclusion/exclusion crite-
ria have been described before [5-7]. SMA cases, defined
as children with asexual P. falciparum parasitaemia by
Giemsa-stained thick and thin blood smear and Hb ≤ 5 g/
dL, were recruited from the pediatric ward of the Nyanza
Provincial General Hospital (NPGH), Kisumu, Kenya. The
NPGH catchment area is the malaria holoendemic region
of the Lake Victoria basin in western Kenya, where most
individuals are of the Luo ethnic group. Because CM is
uncommon in the Lake Victoria basin, CM cases were
recruited from the pediatric ward of the Kisii District Hos-
pital (KDH), as well as from the NPGH. KDH is located in
the highlands of western Kenya where transmission is sea-
sonal and consequently receives many more CM cases
than the NPGH [21]. The predominant ethnic group in
Kisii is the Abagusii. CM was defined as asexual P. falci-
parum parasitaemia by Giemsa-stained blood smear and
a Blantyre coma score of ≤ 2 [22], lasting at least 30 min if
there was a history of convulsions. One control with
symptomatic uncomplicated malaria was matched to
each case by age ± two months and gender and was iden-
tified from the outpatient clinic of the same hospital
where the corresponding case was obtained. Symptomatic
uncomplicated malaria was defined as a Giemsa-stained
blood smear positive for asexual P. falciparum and an
axillary temperature ≥ 37.5°C or, in the absence of the lat-
ter, two of the following signs or symptoms: nausea/vom-
iting, irritability, poor feeding, myalgias or headache.
Children were excluded from participation if there was
evidence of other concomitant serious infections (i.e.
meningitis excluded by lumbar puncture, pneumonia,
sepsis) or chronic illness. All children with suspected CM
underwent a lumbar puncture to exclude meningitis and
were enrolled if the results of Gram stain and culture were
negative. In addition, because some of our studies also
included the measurement of erythrocyte complement
regulatory proteins, children were excluded if they had a
history of blood transfusion in the three months preced-
ing enrolment to avoid the influence of donor erythro-
cytes.

Genotyping of CR1 Knops blood group polymorphisms
A whole blood sample obtained at enrolment, and prior
to any blood transfusion, was used to extract DNA and/or
blotted onto filter papers for later extraction. Personnel
who were unaware of the group assignments of the study
participants carried out DNA extraction, amplification
and interpretation of restriction fragment length polymor-
phisms (RFLPs) patterns. DNA was extracted from whole
blood using the QIAamp DNA blood extraction protocol
(Qiagen, Valencia, CA). DNA extraction from filter papers
was performed using saponin and Chelex as previously
described [23]. Once extracted, genomic DNA was stored
frozen at -20°C for later analysis. The Sl1/Sl2 and McCa/
McCb Knops blood group alleles result from single nucle-
otide polymorphisms that cause specific amino acid
changes[17] in exon 29 (encoding CCP 25; Figure 1). An
established PCR-RFLP method was used for the detection
of both SNPs [24]. Briefly, the oligonucleotide forward
primer 24KnNde: 5'-ACC AGT GCC ACA CTG GAC CAG
ATG GAG AAC AGC TGT TTG AGC AT-3' and reverse
primer 25Rb: 5'-GGA GGA GTG TGG CAG CTT G-3', were
used to amplify a 305 bp fragment of CR1 exon 29 by
PCR. The amplification reactions were carried out on
~500 ng of genomic DNA in a 100 µl final volume con-
taining 1× GeneAmp PCR Buffer II (Applied Biosystems,
Foster City, CA), 2.5 mM MgCl2, 200 µM each dNTP, 0.2
µM each primer and 5 U AmpliTaq Gold® DNA Polymer-
ase (Applied Biosystems, Foster City, CA). After 9 min of
initial denaturation at 95°C, the thermocycling program
used consisted of 1 min denaturation at 94°C, 1 min
annealing at 58°C, and 1 min extension at 72°C for 44
cycles, followed by a final extension of 10 min at 72°C.
For RFLP analysis, 28 µL of each PCR product was digested
with either MfeI (New England Biolabs, Beverly, MA), for
the detection of Sl1/Sl2, or BsmI (New England Biolabs),
for the detection of McCa/McCb, and the restriction frag-
ments were resolved by agarose gel electrophoresis as pre-
viously described [24].

Statistical analysis
All analyses were done using SPSS version 11.5 (SPSS Inc.,
Chicago, IL). Chi-square tests were performed to compare
the observed and predicted frequencies of genotypes
based on allelic frequencies in different ethnic groups.
Conditional logistic regression based on matched pairs
and adjusted for ethnic groups was carried out for each
single locus (Sl and McC) and for the combination of the
two loci. Thus, each regression model included terms
both for genotype and ethnic group. All tests were two-
sided with α = 0.05.

Results
Population demographics
Table 1 describes the total numbers of cases and controls
per group and hospital. The cases and controls were well
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matched in age, gender and ethnic group distribution.
Most of the cases and controls recruited from the NPGH
were of the Luo ethnic group, whereas most of the cases
and controls recruited from the KDH were of the Abagusii
ethnic group.

Genotype frequencies
Sl2 and McCb alleles were more common in The Gambia
[20], Mali [17] and western Kenya than in other non-Afri-
can ethnic or racial groups where they occurred in very few
numbers (Table 2). There were no significant differences
between predicted and observed genotype frequencies for
the two major ethnic groups, Luos and Abagusiis (data
not shown), suggesting that the genotypes within these
populations are in Hardy-Weinberg equilibrium.

Sl2/2 is associated with decreased susceptibility to cerebral 
malaria
In order to explore whether the Sl2 or McCb alleles confer
resistance or susceptibility to severe malaria compared to
the Sl1 and McCa alleles, conditional logistic regression of
the individual genotypes at each locus was carried out
using Sl1/1 or McCa/a as reference (Table 3). There was no
association between the Sl1/2 or Sl2/2 genotype and

resistance or susceptibility to SMA. Although there was a
trend towards decreased susceptibility to SMA for the Sl2/
2 genotype, the association was not significant (OR =
0.65, 95% CI 0.14 to 3.06, P = 0.59). On the other hand,
individuals with the Sl2/2 genotype were less likely to
have cerebral malaria than individuals with Sl1/1 (OR =
0.17, 95% CI 0.04 to 0.72, P = 0.02). This finding was
independent of the hospital site since inclusion of this
variable in the model did not affect the results. There was
no significant effect of the McCa/b or McCb/b genotypes,
when averaged over the different Sl alleles, on resistance
or susceptibility to CM.

Sl2/2 McCa/b genotype is associated with decreased 
susceptibility to cerebral malaria
In order to determine the effect of the different genotype
combinations at the Swain-Langley and McCoy loci on
the susceptibility to severe malaria conditional logistic
regression was carried out using the Sl1/1 McCa/a genotype
as reference (Table 4). Only six of the ten possible Sl/McC
genotype combinations were found. Although it is not
known whether the haplotypes for the group with geno-
type Sl1/2 McCa/b are 1a/2b or 1b/2a, it was assumed that
these individuals were 1a/2b because genotypes Sl1/1

Table 2: Percent of Swain-Langley and McCoy genotypes in various populations.

Populations Swain-Langley McCoy Reference

1/1 1/2 2/2 a/a a/b b/b

Western Kenya N = 460 10 44 45 48 45 7 This paper
The Gambia N = 853 5 31 65 38 47 15 [20]
Mali N = 99 9 30 60 49 40 10 [17]
Caucasian Americans N = 100 99 1 0 100 0 0 [20]
Asian Americans N = 99 95 4 1 96 4 0 [20]
Hispanic Americans N = 100 94 6 0 95 5 0 [20]

Table 1: Group demographics

Nyanza Provincial General Hospital N = 320 Kisii District Hospital N = 140

Severe Anaemia Cerebral Malaria Cerebral Malaria

Cases N = 137 Controls N = 137 Cases N = 23 Controls N = 23 Cases N = 70 Controls N = 70

Mean age in 
months (SD)

14.8(12.6) 14.5(12.2) 29.0(15.7) 30.1(15.7) 28.5(15.9) 29.0(15.8)

No. of females (%) 57(41.6) 57(41.6) 9(39.1) 9(39.1) 37(52.9) 37(52.9)
Ethnic groups (%)

Luo 114(83.2) 115(83.9) 22(95.7) 19(82.6) 3(4.3) 4(5.7)
Abagusii 1(0.7) 0 1(4.3) 4 (17.4) 66(94.3) 65(92.9)
Luhya 15(10.9) 19(13.9) 0 0 1(1.4) 1(1.4)
Other 7(5.1) 3(2.2) 0 0 0 0

Other: Kalenjin (3), Kikuyu (3), Turkana (1), Teso (1), Nandi (1), Bukusu (1)
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McCa/b, Sl1/1 McCb/b and Sl1/2 McCb/b were not found in
the population, suggesting that haplotype 1b is extremely
rare or does not exist. Table 4 shows that among CM cases
and controls with McCa/a background the susceptibility to
CM (OR) decreased from Sl1/2 to Sl2/2, suggesting a gene
dose effect. The strongest association was seen with geno-
type Sl2/2 McCa/b (OR = 0.18, 95% CI = 0.04 to 0.77, P =
0.02). Interestingly, heterozygosity at both loci or
homozygozity for Sl2 and McCb did not show any signifi-
cant benefit.

Discussion
The present study has shown that individuals with the Sl2/
2 genotype that confers the Sl -1,2 phenotype have
decreased susceptibility to CM compared to individuals
with the Sl1/1 genotype. This finding was independent of
ethnicity, of the genotype at the McC locus and of the hos-
pital site where the cases and controls were recruited.
Among the combined genotypes, a trend of increasing
benefit was observed in the background of McCa/a from
Sl1/2 to Sl2/2, which is consistent with a gene dose effect.
Although the level of statistical significance may be influ-
enced by a larger sample size in the Sl2/2 category, the
association nevertheless appears strongest with the acqui-
sition of one McCb allele (Table 4).

The finding that genotype Sl2/2 McCa/b might be the one
that most influences the level of susceptibility to CM may
seem counterintuitive since in Table 3 McCa/b did not
show any significant advantage and perhaps showed a
trend towards a detrimental effect relative to McCa/a. How-
ever, in the analysis in Table 3 the reference genotype
McCa/a contains three variants: Sl1/1 McCa/a, Sl1/2 McCa/a,
and Sl2/2 McCa/a with the latter two both showing indica-
tions of decreased susceptibility due to the presence of Sl2
(Table 4). The lack of significant benefit from Sl2/2 in
SMA probably reflects the distinct pathogenic mecha-
nisms between this condition and CM, but this does not
exclude a role for CR1 in the pathogenesis of SMA.

In contrast to this study, a previous case-control study in
The Gambia [20] failed to demonstrate any significant
association between Sl2/2 and resistance to severe
malaria. The divergence in findings between the present
and the previous study could be explained by important
methodological differences. In the Gambian study con-
trols did not have malaria. This may have led to an over-
representation of non-protective genotypes in the controls
because these children did not have the most important
risk factor for severe malaria, i.e. malaria. Further, cases
and controls were not matched by age in the Gambian
study, and in fact, cases were older than controls by an
average of almost one year. In addition, it is possible that
differences in the pathogenesis of severe malaria between
the two sites on the basis of other genetic factors and/or
differences in the malaria transmission patterns may exist.

The mechanism by which the Sl2 and McCb alleles could
confer protection from severe malaria is not known, since
these polymorphisms are located near the C-terminus of
the CR1 molecule in an area that is outside the binding
sites for C3b, C4b, and PfEMP-1. Nonetheless, there are a
number of potential explanations based on the knowl-
edge of CR1 function and the nature of the amino acid
substitutions that take place. The Sl2 allele is the result of
the substitution of glycine, a neutral amino acid, for the
basic amino acid arginine at position 1601 (R1601G),
whereas the McCb allele is the result of the substitution of
the acidic amino acid glutamic acid for the basic amino
acid lysine at position 1590 (K1590E) [17]. These modifi-
cations may inflict significant conformational or charge
changes to the rest of the molecule and may consequently
impact on the conformation and function of the C3b and
C4b binding sites and/or the PfEMP-1 binding site.
Accordingly, Sl -1,2 erythrocytes have been reported to
rosette less than Sl 1,-2 erythrocytes [3]. In addition, it is
known that CR1 molecules are aggregated on the erythro-
cyte surface and this aggregation is felt to be critical to the
binding affinity of CR1 for C3b and C4b [25]. Therefore,
it is possible that the amino acid substitutions not only
induce conformational changes to the individual CR1

Table 3: Conditional logistic regression based on matching to compare individual genotypes.

Severe Anaemia Cerebral Malaria

Genotype No. of cases (%) No. of controls (%) OR 95% CI P No. of cases (%) No. of controls (%) OR 95% CI P

Sl1/1 11(8) 10(7) Ref - - 17(18) 10(11) Ref - -
Sl1/2 63(46) 57(42) 1.08 0.24 to 4.93 0.92 44(47) 40(43) 0.49 0.12 to 2.05 0.32
Sl2/2 63(46) 70(51) 0.65 0.14 to 3.06 0.59 32(34) 43(46) 0.17 0.04 to 0.72 0.02
McCa/a 61(45) 61(45) Ref - - 51(55) 49(53) Ref - -
McCa/b 65(47) 66(48) 0.93 0.41 to 2.11 0.86 37(40) 40(43) 1.39 0.55 to 3.52 0.49
McCb/b 11(8) 10(7) 1.38 0.29 to 6.57 0.68 5(5) 4(4) 3.52 0.43 to 29.06 0.24

OR = Odds Ratio, CI = Confidence interval, Ref = Reference Category
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molecules but also affect the ability of functional aggre-
gates to form due to conformational incompatibility or
charge interference between different CR1 molecules. This
could explain why some combinations of these alleles,
such as heterozygosity at both loci or homozygosity for
both Sl2 and McCb, did not offer any significant advan-
tage.

Although the current expectation is that CR1 may influ-
ence the development of severe malaria by virtue of its
function as a regulator of the complement cascade on
RBCs or by its direct interaction with the infected RBCs
leading to rosette formation, CR1 may exert its effect on
malaria in other ways that are not yet understood. In addi-
tion to being present on RBCs, CR1 is also present on fol-
licular dendritic cells, macrophages and T and B
lymphocytes and, therefore, may also have immunoregu-
latory functions that affect the development of immunity
against malaria [13]. Mice deficient in CR1/CR2 have
depressed humoral immune responses [26]. Further stud-
ies will be required to explore this possibility.

Further evidence that the role of CR1 in the pathogenesis
of severe malaria may not be as expected is found in a
recent case-control study in Papua New Guinea that
aimed to determine whether there was an association
between individuals who had the low CR1 expression
allele (L) and resistance to severe malaria [27]. Contrary
to expectation, the association was found only in hetero-
zygotes (HL), and not in homozygotes (LL), which pre-
sumably had the lowest CR1 levels. In addition, although
there was an association with resistance to severe malaria
as a whole, there was no apparent association between
these polymorphisms and CM. These results suggest that
the relationship between the number of CR1 molecules
on the RBC surface and severe malaria is not a straightfor-
ward one.

The results obtained in the study presented here have bio-
logical significance and are further supportive evidence of
the importance of CR1 in the pathogenesis of severe

malaria. Whatever the mechanism is by which CR1 is
involved in the pathogenesis of malaria, knowledge of
which alleles are associated with resistance or susceptibil-
ity to severe malaria will make it possible to observe the
relationship between structure and function and suscepti-
bility to severe malaria.

Conclusion
The results support the conclusion that the Sl2 allele and,
possibly, the McCb allele have evolved in the context of
malaria transmission in Africa and that in certain combi-
nations probably confer a survival advantage to malaria
endemic populations.
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