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Abstract
Molecular markers for drug resistant malaria represent public health tools of great but mostly unrealized potential value. A key
reason for the failure of molecular resistance markers to live up to their potential is that data on the their prevalence is scattered
in disparate databases with no linkage to the clinical, in vitro and pharmacokinetic data that are needed to relate the genetic data
to relevant phenotypes. The ongoing replacement of older monotherapies for malaria by new, more effective combination
therapies presents an opportunity to create an open access database that brings together standardized data on molecular
markers of drug resistant malaria from around the world. This paper presents a rationale for creating a global database of
molecular markers for drug resistant malaria and for linking it to similar databases containing results from clinical trials of drug
efficacy, in vitro studies of drug susceptibility, and pharmacokinetic studies of antimalarial drugs, in a World Antimalarial
Resistance Network (WARN). This database will be a global resource, guiding the selection of first line drugs for treating
uncomplicated malaria, for preventing malaria in travelers and for intermittent preventive treatment of malaria in pregnant
women, infants and other vulnerable groups. Perhaps most important, a global database for molecular markers of drug resistant
malaria will accelerate the identification and validation of markers for resistance to artemisinin-based combination therapies and,
thereby, potentially prolong the useful therapeutic lives of these important new drugs.
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Background
This article is the result of a workshop held in October,
2006, at the Wellcome Trust Sanger Genome Centre in
Hinxton, England. The background section reviews les-
sons learned over the last 15 years as molecular markers
for drug resistant malaria were identified, validated, and
to a regrettably limited degree, applied as tools to guide
the use of drugs whose efficacy is now severely compro-
mised by resistance. An argument is made that this history
must not be repeated in the era of artemisinin-based com-
bination therapies (ACTs) by using molecular markers
only to chart passively the rise of resistance to this new
generation of highly efficacious drugs. A rationale is pro-
vided for creating a global database for molecular markers
of drug resistant malaria that will be linked to databases
for malaria drug efficacy trials, in vitro drug resistance,
and pharmacokinetics, and for using this network of data-
bases (World Antimalarial Resistance Network, or WARN)
proactively as a tool to monitor and deter resistance and
to guide malaria treatment and prevention policies.
Potential sources of data that would go into the database
are described, followed by discussion of who will benefit
from the creation of a tool for monitoring antimalarial
drug resistance and facilitating rapid public health
responses to changes in resistance profiles.

Molecular markers for drug resistant malaria are based on
genetic changes that confer parasite resistance to drugs
used to treat and prevent malaria. Polymorphisms in the
Plasmodium falciparum chloroquine resistance transporter
(PfCRT) confer resistance to chloroquine [1,2], and muta-
tions in the P-glycoprotein homologue (Pgh1) encoded
by pfmdr1 modulate this resistance [3]. Polymorphisms in
pfmdr1 and amplifications of this gene also affect suscep-
tibility to structurally unrelated antimalarial drugs,
including mefloquine, artesunate, lumefantrine and qui-
nine [4-6]. Polymorphisms in P. falciparum dihydrofolate
reductase (DHFR) cause resistance to the antifolate drugs
including pyrimethamine and other DHFR inhibitors,
and polymorphisms in dihydropteroate synthase (DHPS)
cause resistance to sulphadoxine and other sulphas and
sulphones [7,8].

These molecular markers have been validated as tools for
surveillance of resistance [9,10], and their potential value
to policymakers has been demonstrated by their use to
help control a malaria epidemic [11], to guide national
malaria treatment policies [12] and to monitor changes in
parasite drug susceptibility following changes in malaria
drug treatment policy [13]. However, by the time the
molecular markers for resistance to chloroquine and the
antifolate combination sulphadoxine-pyrimethamine
(SP) were established as tools for predicting clinical treat-
ment outcomes, resistance had already severely compro-
mised the efficacy of these drugs in most of the world. The

emergence and spread of resistance to chloroquine and SP
has led to recommendations that they be replaced with
ACTs, which offer much-improved efficacy [14]. However,
the development of resistance to artemisinins or their
partner drugs may severely limit the utility of ACTs, and
reliable markers for monitoring resistance to ACTs are
needed.

Development and validation of molecular markers
Candidate molecular markers for resistance to chloro-
quine, SP and mefloquine were identified by laborious
molecular genetic approaches, including identifying para-
site homologues of genes that mediate resistance in other
organisms [8,15,16], and analysing the progeny of genetic
crosses between sensitive and resistant parasites [1,7,17].
Differences in DNA sequence or gene expression between
sensitive and resistant parasites were described, and point
mutations, [1,7,18] and differences in gene expression or
copy number [19,20] were evaluated for associations with
in vitro resistance phenotypes. Causal relationships
between molecular markers and in vitro resistance were
then confirmed in genetic transformation studies in
which DNA sequence substitutions conferred changes in
the resistance phenotypes of cultured parasite clones
[2,21];Triglia, 1998 596/id;Reed, 2000 1279/id} or in
model systems such as yeast [22,23].

To assess their clinical importance, molecular markers
were evaluated in the field in ecological studies [24,25]
and clinical trials [9,10,26]. Establishing the predictive
value of molecular markers for outcomes of antimalarial
drug treatment has been challenging, mainly because fac-
tors other than intrinsic parasite resistance affect these
outcomes. Even for markers that correlate almost perfectly
with in vitro resistance, other factors including acquired
immunity [9,27], initial parasite biomass, compliance,
dosing [28] and pharmacokinetics [20,29] affect the clear-
ance of drug-resistant parasites. As the prevalence of resist-
ance markers approaches fixation in a population, these
non-resistance factors become more important in deter-
mining treatment outcomes [30]. The most important
contributor to clearance of resistant parasites in high
transmission areas is acquired immunity, which can be
partially accounted for by controlling for age in a simple
model for relating the prevalence of molecular markers to
treatment failure rates [10,31]. When validated in a variety
of settings with different levels of malaria transmission
and acquired immunity and where resistance markers are
not yet fixed in the population, this "genotype-failure
index" model allows good prediction of treatment efficacy
based on the prevalence of molecular markers for resist-
ance (Figure 1). Unfortunately, without available pooled
data from diverse sites, such as a global database for
molecular markers would provide, this model has been
validated only in a few local settings, including Mali [10],
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Uganda [32] and Tanzania [12] (Figure 1). Multivariate
models that account for pharmacokinetic and other fac-
tors that contribute to treatment outcomes would
improve the predictive ability of molecular markers for
resistance, providing strong justification for the set of
linked databases proposed in this series of papers. Such a
comprehensive global database would provide the statis-
tical power needed to assess the roles played by multiple
genetic and non-genetic determinants of treatment out-
comes.

Reliable methods for using molecular markers to monitor
chloroquine and SP resistance were established only after
resistance to these drugs was so widespread that the infor-
mation provided by molecular surveys was, with some
notable exceptions [11,12], mainly of historical interest
and of little immediate relevance to antimalarial treat-
ment policies. As ACTs become the first line in most coun-
tries, it will be important to characterize markers for
resistance as it develops, before clinical efficacy is lost.
Most efforts to date to identify the genetic determinants of
resistance to the drugs that comprise ACTs have taken a
candidate gene approach, based on homologues of resist-
ance genes from other organisms or suspected targets for
drug action. In an example of this approach, in vitro and
clinical evidence suggests that increased pfmdr1 copy
number is associated with decreased sensitivity to artem-
isinin and other antimalarial drugs [5,20]. Genes encod-
ing potential targets of artemisinin action are also being
pursued as molecular markers. Based on studies showing
that artemisinins inhibit a Ca++ ATPase, sequence
changes in the gene encoding PfATPAse6 were assayed
and found to be associated with in vitro resistance in iso-
lates from South America, but not Africa or Asia [33].
These candidate gene approaches rely on an optimistic
hope that individual genes will be found to be responsible
for resistance to ACTs. In the more likely scenario in
which resistance to these drugs is mediated by multiple
genes, whole-genome strategies that search for signatures
of selection around resistance loci may accelerate the
identification of molecular markers for resistance [34-36].

Rationale for a global database of resistance markers
Clinical trials are and will remain the gold standard for
measuring drug efficacy, but when assays for molecular
resistance markers are sufficiently predictive of clinical
treatment outcomes, their simplicity, robustness and scal-
ability make them a potentially powerful adjunct to clini-
cal trials. Molecular assays for common polymorphisms
are straightforward and relatively low cost when scaled
up. The assays generally evaluate DNA, so they can be per-
formed from blood spots on filter paper, which are easy to
collect and store [37]. Thus, samples can easily be col-
lected by health workers when patients present for diag-
nosis and treatment of malaria, or in targeted cross-

sectional surveys in areas with high prevalence of asymp-
tomatic malaria infection. These molecular analyses are
routinely performed in many laboratories in endemic
countries and can be shipped internationally for quality
control without a need for special containers or precau-
tions.

Prevalence of sulphadoxine-pyrimethamine (SP) treatment failure and molecular markers of resistance to SP at five sites in TanzaniaFigure 1
Prevalence of sulphadoxine-pyrimethamine (SP) 
treatment failure and molecular markers of resist-
ance to SP at five sites in Tanzania. Ratios of prevalence 
of the DHFR triple mutant to SP treatment failure ranged 
from 2.0 to 2.1 at four of the five sites where SP resistance 
was low or moderate, suggesting that this molecular marker 
could serve as a reliable surrogate for SP efficacy at these 
sites. Adapted from [12] with permission.
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How resistance markers have been used
The potential public health value of molecular resistance
markers lies in their utility as tools for surveillance of
trends in parasite drug sensitivity. Routine use of molecu-
lar data in decisions regarding appropriate antimalarial
therapy is not yet a reality, in part because of the lack of
mechanisms for timely sharing of molecular data in for-
mats that are useful for non-specialists. However, the
direct practical value of molecular surveys was demon-
strated in 1999 in Mali, where chloroquine was then the
first line antimalarial treatment [11]. A sharp increase in
the incidence of malaria in a non-immune population
occurred in a district in northern Mali where clinical
assessments of drug efficacy could not be made because of
limited infrastructure and civil unrest. An epidemic out-
break investigation team collected slides for microscopic
diagnosis and filter paper blood samples for molecular
analyses. In the capital city, Bamako, microscopy and
molecular assays for markers predictive of resistance to
chloroquine and SP suggested an unexpectedly high prev-
alence of resistance to chloroquine, but not to SP. Based
on this information, special efforts were made to obtain
SP and the population was effectively treated. Had evalu-
ation of the gene-specific molecular markers not been per-
formed, chloroquine would have been used to try to
contain the epidemic and considerable malaria morbidity
and mortality would have been anticipated.

In another example of molecular markers informing treat-
ment policy, when a replacement for chloroquine was
urgently needed in Tanzania, the prevalence of SP resist-
ance markers predicted that, while SP would initially be
more effective than chloroquine, its efficacy would soon
be compromised. Based on this information, the Ministry
of Health adopted SP on an interim basis as the best avail-
able first line drug, while actively seeking a more effective
regimen [12]. Molecular markers for resistance are also
guiding malaria treatment policy in Southeast Asia, where
initial reports of high rates of artesunate-mefloquine treat-
ment failure on the Thai-Cambodian border [38,39] were
met with skepticism about whether they represented
resistance. However, when these treatment failures were
shown to be highly correlated with pfmdr1 copy number
[40], suggesting bona fide resistance to mefloquine,
health officials began conducting surveys for the preva-
lence of this molecular marker and using this information
to guide the choice of sites for in vivo assessments of effi-
cacy.

Studies in Malawi illustrate the power of molecular resist-
ance markers to track changes in drug susceptibility fol-
lowing changes in drug use policies. In 1993, Malawi
became the first African nation to replace chloroquine
with SP as the first line antimalarial drug countrywide
[41]. Molecular surveillance of the PfCRT, DHFR and

DHPS markers demonstrated two clear trends. First, the
prevalence of the PfCRT T76 allele, which is associated
with chloroquine resistance, declined rapidly after the
withdrawal of chloroquine, from 85% in 1992 to undetec-
table levels by 2001. Second, the prevalence of parasites
that carried DHFR mutations associated with resistance to
SP progressively increased [1] (Figure 2). A clinical trial
recently confirmed that these changes in the prevalence of
resistance-mediating mutations have been accompanied
by a dramatic increase in chloroquine efficacy in Malawi
for the treatment of malaria, from about 50% to 99% in
just 12 years, and an equally dramatic decrease in SP effi-
cacy, from nearly 100% to 21% during the same time
period [42].

Why markers for chloroquine and SP resistance are still 
useful
Today, although the efficacies of chloroquine and SP have
declined to unacceptable levels in much of Africa, atten-
tion to parasite mutations that mediate resistance to these
drugs remains relevant for several reasons. First, in some
areas the older drugs remain efficacious, including SP in
parts of West Africa, and the combination of amodiaquine
and SP in many areas [43,44]. Because they are inexpen-
sive (about $0.20 U.S. per treatment), safe, and given in
simple one- or three-day regimens, these drugs are likely
to continue to be used even in the face of expert consensus
that ACTs should be the first line therapy. However, little
support will be available for continued clinical trials of
chloroquine or SP efficacy under programmes funded by
donors who recommend exclusive use of ACTs. Molecular
surveillance that shows increasing prevalence of resistance
markers known to be associated with treatment failure
may be the only evidence available to convince policy-
makers that it is time to stop using these older drugs as
their efficacy declines.

Second, SP is now recommended and increasingly used as
intermittent preventive therapy (IPT) to prevent malaria
in pregnant women [45] and infants [46], even in areas
where SP efficacy for treatment of acute malaria is com-
promised. The value of mutations in DHFR and DHPS for
predicting efficacy of IPT with SP needs to be established
in settings with different levels of malaria transmission
and acquired immunity, because of the impact of these
factors on the relationship between prevalence of molec-
ular markers and clinical efficacy. A global database of
molecular markers for resistance will aid and accelerate
the process of validating simple models for using these
markers to predict SP efficacy for IPT, and then provide a
means for monitoring this efficacy to guide decisions to
move to newer but more expensive drugs as these are
brought on line.
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Third, an antifolate drug that is closely related to SP, tri-
methoprim-sulphamethoxazole, is a standard treatment
for children with fever attributable to either respiratory
infections or malaria [47], and is recommended as proph-
ylaxis to prevent opportunistic infections in HIV-infected
individuals in developing countries [48]. Trimethoprim-
sulphamethoxazole prophylaxis effectively prevents
malaria [49], and has the same genetic basis of in vitro
resistance as SP [50,51]. However, it has been difficult to
discern the impact that the DHFR and DHPS mutations
that mediate resistance to SP may have on the protective
efficacy of trimethoprim-sulphamethoxazole [49,52].
Surveillance for these mutations and pooled analysis of
data from genotype and efficacy studies will clarify these
associations. With a better understanding of relevant asso-
ciations, coordinated surveillance for DHFR and DHPS
mutations will be very helpful in determining optimal
management strategies for people living with HIV in
malaria endemic regions [53].

The fourth and final reason for continued surveillance of
markers for resistance to chloroquine and SP is that, as
was recently demonstrated in Malawi, the withdrawal of
antimalarial drugs from use in a region may be followed
by a return of clinical efficacy, heralded by falling preva-
lence of molecular markers for resistance [13,42]. Thus,
surveillance of markers of resistance may help to guide the
reintroduction of drugs whose efficacy has returned, in
new combinations designed to deter the reemergence of
resistance, thus creating the possibility of rotating drugs to
maintain their efficacy [54].

Molecular markers in the ACT era
As malaria treatment moves into the era of ACTs, the most
important rationale for a database of molecular markers
of drug resistance will be surveillance for resistance to the
drugs included in these combinations. ACTs were
designed to deter resistance by attacking parasites simulta-
neously with two or more drugs with different mecha-

Prevalence of drug-resistance mutations in Plasmodium falciparum malaria infections in Malawi before and after chloroquine was replaced with sulphadoxine-pyrimethamine in 1993Figure 2
Prevalence of drug-resistance mutations in Plasmodium falciparum malaria infections in Malawi before and 
after chloroquine was replaced with sulphadoxine-pyrimethamine in 1993. Chloroquine resistance-conferring T76 
mutation in PfCRT (A); Pyrimethamine resistance-conferring C59R mutations in DHFR (B); Adapted from [13] with permis-
sion.
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nisms of action, reducing the probability of resistance
emerging [14]. These drug combinations were developed
in settings of low malaria transmission, where the phar-
macokinetic mismatch between the short-acting artemisi-
nins and longer-acting partner drugs was not problematic,
due to the low risk of encountering new infections during
the elimination phase of the longer-acting partner drug.
As these drugs are deployed in Africa, where the risk of
new infection soon after treatment is high, the ability of
the artemisinins to protect partner drugs from resistance is
diminished. Thus, as ACTs are rolled out as first-line ther-
apies for malaria, surveillance of molecular markers
should be used to monitor the development of resistance
to ACT partner drugs.

Each ACT partner drug is likely to select for resistance,
potentially leading to loss of treatment efficacy as well as
failure to protect the artemisinins against the develop-
ment of resistance. At present the most important partner
drugs used with artemisinins in ACTs are amodiaquine,
lumefantrine, and piperaquine. The molecular mediators
of resistance are not as well defined for these drugs as they
are for chloroquine and SP, but recent data show hints of
mechanisms of resistance. For amodiaquine, polymor-
phisms in both PfCRT and Pgh1 appear to predict resist-
ance and to be selected for by treatment with
amodiaquine [55] or artesunate-amodiaquine [56]. Arte-
mether-lumefantrine treatment selects for polymor-
phisms in pfmdr1 associated with diminished sensitivity
to the related drug halofantrine [57,58]. Markers for pip-
eraquine resistance have not been identified, but this ami-
noquinoline may well act similarly to chloroquine and
amodiaquine in its selection of resistance-mediating
mutations.

To avoid unacceptably long delays in identifying, validat-
ing and deploying molecular markers of ACT resistance,
the malaria research and control community must be pre-
pared to investigate aggressively early reports of resistance,
confirm resistance with careful in vitro assays, and bring
genetic and genomic tools to bear to elucidate mecha-
nisms and identify candidate molecular markers. The
sequencing of the P. falciparum genome has led to
genome-wide approaches that may help to identify
genetic markers of drug resistance far more quickly than
was previously possible [35,59,60]. There is a critical need
to detect and confirm resistance to the component drugs
in ACTs, and to the artemisinins in particular, as soon as
it emerges, and then to develop and validate tools to mon-
itor this resistance. These tools can then be applied in real
time to help establish rational treatment policies and to
design and deploy drug combinations that will deter
resistance. The creation of a global database of molecular
markers for drug resistance is a critical step in this process.

To the extent that known markers for resistance to ACT
partner drugs are available now, a global database for col-
lating and analysing trends in their prevalence will inform
choices of which ACTs to introduce as countries change
their policies. Moreover, a database of the type proposed
will accelerate the process of validating predictive geno-
type-failure index models for ACT partner drugs in differ-
ent settings with varying levels of malaria transmission
and acquired immunity. Even more important, without a
global database of molecular markers for drug resistant
malaria, the evaluation of candidate molecular markers
for resistance to the artemisinins and their partner drugs
and the discovery of new such markers through whole-
genome analyses is certain to lag far behind the develop-
ment of resistance to these drugs.

Sources of data
Drug efficacy trials
The data included in a global database of molecular mark-
ers for drug resistant malaria will consist primarily of the
results of molecular assays for resistance markers. These
will come from several sources. First, in most clinical trials
of antimalarial drug efficacy, filter paper blood samples
are routinely collected to preserve parasite DNA at the
time of treatment and whenever post-treatment infections
appear. These samples are usually subjected to analysis for
genetic markers to determine whether post-treatment
infections are due to recrudescence or to new infections,
and in many cases the samples are also analysed for the
presence of resistance markers. In studies aimed at validat-
ing candidate markers for resistance, these samples can be
used to ask two types of questions: (1) Are resistance
markers more common in post-treatment infections than
in the initial infections, i.e. does drug treatment select for
specific markers? (2) Is the presence of molecular markers
for resistance at the time of presentation with malaria
associated with the clinical and parasitological outcome
of drug treatment, i.e. can markers predict efficacy? The
first question is an important step in assessing putative
markers for biological evidence of their association with
resistance in vivo. The second question is a key step in val-
idating the utility of molecular markers for predicting
clinically relevant outcomes.

Molecular surveillance
In addition to surveys and efficacy trials in endemic areas,
travelers returning from these areas to developed coun-
tries can provide surveillance data on drug resistant
malaria [61,62]. Data from this source would provide use-
ful information for travel medicine specialists and also
serve as a sentinel surveillance system to direct targeted
investigation of resistance [63]. Genotyping of isolates
also subjected to in vitro drug susceptibility testing will
provide another source of valuable data. These in vitro
genotype-phenotype studies will be a crucial component
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of investigations to confirm and characterize reports of
clinical resistance to ACTs, because they assess intrinsic
drug resistance in the absence of confounding clinical fac-
tors such as host immunity. Lastly, data will come from
the use of molecular markers as a broad surveillance tool.
Once the association between resistance markers and clin-
ical outcomes is well established, evaluation of samples
collected in simple community surveys and at points of
malaria diagnosis can provide a "snapshot" of local resist-
ance patterns.

The need for standardization and linkage
Although standardized methods for recording and inter-
preting molecular resistance results have been proposed
[26], a wide variety of approaches is presently used to ana-
lyse, interpret and report these data. Making the ability to
access large datasets contingent on contributing data that
adhere to standard formats will provide a strong incentive
for investigators to do so, and should vastly increase the
value of the large volumes of data that are presently avail-
able, but unlinked. For data from any of these sources, it
will be essential to build systems that link the molecular
data to corresponding demographic, geographic, epide-
miological, clinical, in vitro and pharmacokinetic data. To
insure that data are comparable and interpretable, it will
be important to standardize genotyping technologies as
well as data analysis and reporting. To this end reference
laboratories should be supported to maintain and update
standardized protocols on the network, and to provide
blinded quality assurance testing of samples sent by con-
tributing groups. Standardized reagents and controls can
be provided by centralized references centers [64] or
regional reference laboratories.

Resistant vivax malaria
Chloroquine resistant Plasmodium vivax arose in Asia in
the 1980s [65] and has since spread throughout signifi-
cant parts of Asia and South America. Resistance to other
drugs, including antifolates and primaquine, also occurs
with P. vivax. Some progress has been made toward iden-
tifying molecular markers for drug resistant vivax malaria
[66,67]. As this work progresses, a database for molecular
markers of resistance could easily be adapted to incorpo-
rate data for P. vivax, and inclusion of these data would
aid in the process of validating P. vivax resistance markers.

Existing datasets
A starting point for a new global database will be to link a
number of valuable existing databases. The utility of this
approach will be limited to those datasets that include
individual treatment outcome data that are amenable to
conversion to standardized formats. The East African Net-
work for Monitoring Antimalarial Treatment (EANMAT),
formed in 1997, was the first network for monitoring drug
resistance in Africa, with the objective of providing a

dynamic assessment of current antimalarial treatment
using standardized protocols, and generating data to
guide policy changes. Similar regional surveillance net-
works have been created linking neighboring countries in
other regions of Africa and in Southeast Asia and South
America. The Multilateral Initiative on Malaria initiated
an Antimalarial Drug Resistance Network linking fives
study sites in Africa with the plan to systematically assess
specific gene mutations, in vitro drug susceptibility, drug
pharmacokinetics, and clinical treatment responses. The
Mapping Malaria Risk in Africa project [68] has also devel-
oped a drug resistance database, sourcing published and
unpublished in vivo and molecular resistance data from
as many sites in Africa as possible. A global database
would have the potential to link many of these existing
databases, and greatly increasing both their usefulness
and their use.

Who will benefit?
A variety of consumers from different sectors will use and
benefit from this database. Policymakers in malaria-
endemic countries represent a primary set of clients. As
local authorities attempt to promote evidence-based man-
agement of malaria, high quality up-to-date data on drug
efficacy are needed. Of greatest value will be results of
controlled clinical trials of antimalarial drug efficacy.
However, limited resources will not support the number
of trials needed to provide comprehensive characteriza-
tion of efficacy, forcing authorities to make country-wide
policies based on data from a limited number of sites.
Well-designed studies of molecular markers of drug resist-
ance can help to fill this gap. A database rapidly catalogu-
ing molecular data and relaying it to policymakers would
greatly facilitate the use of these data to help guide malaria
treatment policies. It will be important for the data to be
presented in ways that are easy for those with a range of
expertise to understand and use. The database will facili-
tate this process by providing a means for standardizing
data analysis, interpretation and reporting. The regional
surveillance groups described in the preceding section will
be a second set of consumers who benefit from the data-
base. A new database linking and strengthening these net-
works will facilitate efficient use of available molecular
data and stimulate trans-region discussions to encourage
rational treatment policies. Those advising travelers from
malaria-free countries to endemic areas will benefit from
a public access database that provides early signals of
resistance. Finally, the malaria research community will
also profit from a global database. Research to understand
the roles of known polymorphisms in resistance, and
most importantly to identify new mediators of resistance,
will be greatly helped by the availability of data describing
prevalences of markers of resistance and associations with
treatment outcomes. The database would include portals
for data entry and analysis, with gates controlled by con-
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tributors who could decide when to submit data to the
central database and when to make it accessible to all
users. Working out the information technology and intel-
lectual property issues for such a database will be chal-
lenging, but not without precedent, and will benefit from
advances in systems for data management and the non-
commercial nature of almost all malaria research pro-
grams.

Summary
Molecular markers for resistance to older malaria drugs
were validated only after the efficacy of these drugs was
severely compromised by resistance. The potential of
these markers as tools for malaria control has not been
fully realized, in large part because data on their preva-
lence is scattered in many published and unpublished
datasets in non-standardized formats. The development
and validation of molecular markers for new combination
antimalarial therapies is a high priority. In this paper a
case has been made for creating a global public access
database for molecular markers of drug resistance, linked
to similar databases containing data on clinical efficacy, in
vitro susceptibility and pharmacokinetics of antimalarial
drugs, together comprising a World Antimalarial Resist-
ance Network. This database would accelerate the devel-
opment of markers for resistance to artemisinin-based
and other combination therapies and help to inform
rational malaria treatment and prevention policies
designed to prevent and contain drug resistant malaria.
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