@
Malaria Journal BioMed Centa

Research

The impact of HIV-1 on the malaria parasite biomass in adults in
sub-Saharan Africa contributes to the emergence of antimalarial

drug resistance
Jean-Pierre Van geertruyden*!, Joris Menten2, Robert Colebunders?3,
Eline Korenromp#> and Umberto D'Alessandro!

Address: 'Department of Parasitology, Unit of Epidemiology Institute of Tropical Medicine Antwerpen, Nationalestraat 155 B2000, Antwerpen,
Belgium, 2Department of Public Health, Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium, 3Department of Clinical
sciences, Institute of Tropical Medicine and University of Antwerp, Antwerp, Belgium, 4Department of Public Health, Erasmus MC, University
Medical Centre Rotterdam, Rotterdam, The Netherlands and 5Performance Evaluation and Policy unit, The Global Fund to Fight AIDS,
Tuberculosis and Malaria, Geneva, Switzerland

Email: Jean-Pierre Van geertruyden* - jpvangeertruyden@itg.be; Joris Menten - jmenten@itg.be; Robert Colebunders - bcoleb@itg.be;
Eline Korenromp - Eline.Korenromp@TheGlobalFund.org; Umberto D'Alessandro - UDAlessandro@itg.be

* Corresponding author

Published: 22 July 2008 Received: 25 February 2008
Malaria Journal 2008, 7:134  doi:10.1186/1475-2875-7-134 Accepted: 22 July 2008
This article is available from: http://www.malariajournal.com/content/7/1/134

© 2008 Van geertruyden et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: HIV-related immune-suppression increases the risk of malaria (infection, disease
and treatment failure) and probably the circulating parasite biomass, favoring the emergence of
drug resistance parasites.

Methods: The additional malaria parasite biomass related to HIV-1 co-infection in sub-Saharan
Africa was estimated by a mathematical model. Parasite biomass was computed as the incidence
rate of clinical malaria episodes multiplied by the number of parasites circulating in the peripheral
blood of patients at the time symptoms appear. A mathematical model estimated the influence of
HIV-1 infection on parasite density in clinical malaria by country and by age group, malaria
transmission intensity and urban/rural area. In a multivariate sensitivity analysis, 95% confidence
intervals (Cls) were calculated using the Monte Carlo simulation.

Results: The model shows that in 2005 HIV-1 increased the overall malaria parasite biomass by
18.0% (95%Cl: 11.6-26.9). The largest relative increase (134.9-243.9%) was found in southern
Africa where HIV-1 prevalence is the highest and malaria transmission unstable. The largest
absolute increase was found in Zambia, Malawi, the Central African Republic and Mozambique,
where both malaria and HIV are highly endemic. A univariate sensitivity analysis shows that
estimates are sensitive to the magnitude of the impact of HIV-1| infection on the malaria incidence
rates and associated parasite densities.

Conclusion: The HIV-I epidemic by increasing the malaria parasite biomass in sub-Saharan Africa
may also increase the emergence of antimalarial drug resistance, potentially affecting the health of
the whole population in countries endemic for both HIV-1 and malaria.
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Background

Since the 1980s, the epidemiological overlap of HIV-1/
AIDS and malaria in tropical regions, and particularly in
Eastern and Southern Africa, has been cause for concern as
even a small interaction between the two diseases may be
of great public health importance [1-4]. HIV-1 and
malaria coexist in regions where the health surveillance
systems are poorly performing so that the magnitude of
any interaction is difficult to determine. Nevertheless, the
evidence of such interaction has recently grown and is still
increasing. The incidence of symptomatic malaria epi-
sodes, severe or uncomplicated, and the corresponding
parasite density is higher in HIV-1 infected individuals
with low CD4 count [5].

It has been recently stated that, in Sub-Saharan Africa, the
direct impact of HIV-1 infection on malaria morbidity
and mortality is limited as the two diseases do not have
the same geographical distribution and affect different age
groups [6]. However, a model assessing the impact of
HIV-1 on malaria in sub-Saharan Africa, estimated that in
areas of unstable malaria transmission, such as southern
Africa, the HIV-1 epidemic contributed to the increase of
malaria observed in the 1990s. Moreover, a recent mathe-
matical model indicated a significant role for the dual
infection in fueling the spread of both diseases in sub-
Saharan Africa [7]. Besides a direct effect, HIV-1 infection
may indirectly influence the malaria burden by increasing
the malaria parasite biomass and consequently the prob-
ability of drug resistant parasites emerging. Antimalarial
drug resistance, particularly for Plasmodium falciparum, is
considered a major contributor to the global resurgence of
malaria observed over the last three decades [8] and one
of the greatest obstacles for an effective malaria control
[9]. The basis of resistance lies in one or several genetic
mutations in the parasite genome. Malaria parasites with
such mutations when in contact with a given drug survive
the treatment and eventually spread. Assuming that the
occurrence of a de novo resistance mutation is evenly dis-
tributed among all parasites, a larger parasite biomass
would increase the probability of new resistant strains
emerging. Therefore, the additional malaria parasite bio-
mass related to HIV-1 infection was estimated by review-
ing the available literature on the impact of HIV-1
infection on malaria morbidity (incidence of clinical cases
and parasite density) at individual level, and HIV-1 prev-
alence and malaria transmission intensity data at country
level. The results of this analysis and the possible conse-
quences of HIV-1 on the emergence of antimalarial drug
resistance are reported and discussed below.

Methods

Definition of endemicity

The MARA ("Mapping Malaria Risk in Africa") climate
suitability index was used for determining the country
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endemicity, i.e. high > 0.75 and low <0.75 [10]. However,
Botswana, Namibia, South Africa, Swaziland, and Zimba-
bwe, because of their successful vector control pro-
gramme, were not classified according to this criterion
and despite a climate suitability index >0.75 were consid-
ered as low rather than high transmission areas [10].

Malaria incidence and parasite density without HIV-I
infection

Incidence rates of symptomatic malaria (uncomplicated
and severe) by transmission intensity and age group were
collected from the available literature [6]. In high
endemic rural areas the average incidence was estimated
at 1.4 malaria episodes/person-year (py) among children
<5 years of age, 0.59/py in the 5-14 year old and 0.11/py
in adults (= 15 year old)[10]. In low endemic rural areas,
incidence was estimated at 0.18/py in children <15 years
old and 0.09/py in those aged 15 years and above (Table
1). In high endemic urban areas, the malaria incidence
was estimated to be similar to that in low endemic rural
areas while in low endemic urban areas, the malaria inci-
dence was estimated at half of the low endemic rural areas
[11] (Table 1). In Botswana, Namibia, South Africa, Swa-
ziland, and Zimbabwe, the average incidence was esti-
mated at 0.03/py [10], with the age pattern distribution
similar to that of low endemic areas [6]. The proportion
of urban dwellers was assumed not to vary by malaria
endemicity. Urban and rural populations were based on
countries' definitions, with no standardization between
countries [12].

Geometric mean parasite density in falciparum malaria
patients was usually between 5,000 and 50,000/ul, with
the lowest densities found where transmission was low
and the highest where transmission was high [13]. In low
endemic and in high endemic urban areas, the mean par-
asite density in clinical cases was assumed to be 30,000/pl
in children <5 years old, 25,000/ul in those aged 5-14
years and 20,000/ul in patients aged > 15 years. In high
endemic rural areas, the mean parasite density in clinical
cases was assumed to be 30,000/l for children <5 years
old,, 20,000/ul for those aged 5-14 years, and 15,000/ul
for patients aged > 15 years (Table 1). To allow the calcu-
lation of the population-level parasite biomass, the geo-
metric mean parasite densities were converted into
arithmetic means, by assuming that parasite densities in
symptomatic malaria have an exponential distribution
[14]. Arithmetic mean densities were therefore estimated
at 51,347/pl for children <5 years old, 42,789/ul for those
aged 5-14 years, and 34,231/pl for patients aged > 15
years in low endemic and high endemic urban areas; in
high endemic rural areas the corresponding figures by age
group were 51,347/ul, 34,231/ul and 25,678/pl.
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Table I: Assumptions on malaria incidence rates, parasite density, and effects of HIV-1, sub-Saharan Africa*

Age group

HIV-negative persons and HIV-infected persons with CD4 > 500/l <5 years 5-14 years > 15 years
Incidence of symptomatic malaria (per person-year) low/high endemicity[10]

Rural 0.18/1.4 0.18/0.59 0.09/0.11

Urban 0.09/0.18 0.091/0.18 0.046/0.09
Proportion of symptomatic episodes with hyperparasitaemia (includes severe malaria): 4.0%/4.0% 4.0%/1.5% 4.0%/1.5%
low endemic and high endemic urban areas/high endemic rural areas
Geometric mean parasite density (/pL) in uncomplicated malaria: low endemic and high 30,000/30,000 25,000/20,000 20,000/
endemic urban areas/high endemic rural areas [|3] 15,000
Geometric mean parasite density (/uL) in severe malaria (all age groups and 458 000

endemicities) [20]

Proportion of HIV-I patients [6]
Stabilized HIV epidemic

Rising HIV epidemic (e.g.Madagascar)
Relative change in HIV infection

with CD4<200/ul  CD4 200—499/uL
37% 25%
22% 15%

with CD4<200/.4 CD4 200-499/uL

Relative risk of symptomatic malaria incidence (all age groups and endemicities) [I,21- 5.0 3.0
24]

Relative parasite density in symptomatic malaria 3.0 1.5
(all age groups and endemicities) (Table 2)

Relative risk of progression to severe malaria (all age groups and endemicities) 15.0 6
[16,25,26]

Relative parasite density during severe malaria (all age groups and endemicities) 1.0 1.0

A proportion of symptomatic malaria episodes evolves
towards severe disease [15], generally with higher parasite
densities than uncomplicated episodes. However, the
sequestration of P. falciparum-infected erythrocytes in the
deep circulation confounds the relationship between
peripheral parasite density and disease severity [16-19]. It
was assumed that 4% of clinical episodes both in low
transmission (all age groups) and high (children) trans-
mission areas evolve towards high parasite densities
(some of them would have severe malaria). In high-trans-
mission areas, 1.5% of all adult malaria episodes were
assumed to be hyperparasitaemic at enrolment. Based on
arecent model[20], these patients were assumed to have a
geometric mean parasite density of 458,000 parasites/pL
(309,659-678,910), corresponding to an arithmetic
mean of 784,000 parasites/ul (530,000-1,162,000).
Average blood volumes were estimated for each age group
on the basis of heights and weights, i.e. one liter in the <5
years old, two liters for the 5-14 years old and five liters
for the > 15 years old (range across human populations
0.25-8 liters).

Malaria incidence and parasite density with HIV-I
infection

The best evidence for an association between HIV infec-
tion and incidence of symptomatic malaria comes from
four longitudinal population-based studies in rural
Uganda and Malawi, where malaria is highly endemic. In
Uganda, odds ratios of symptomatic malaria in HIV-
infected compared to uninfected adults were 6.0, 3.4 and
1.2 for CD4 counts <200/ul, 200-499/ul and > 500/pl,

respectively [1]. In another study in Uganda, the incidence
of symptomatic malaria in HIV-infected individuals var-
ied according to CD4 count and was 0.14/py, 0.093/py
and 0.057/py for CD4 count of <200/pL, 200-499/uL and
>500/puL, respectively (0.09/py, 0.053/py, and 0.022/py
when considering only episodes with more than 2,800
parasites/puL)[21]. In Malawi, incidence rates of sympto-
matic malaria in HIV-1 infected adults varied with CD4
count; compared to individuals with CD4 count of > 500,
the malaria incidence was 3-fold higher with a CD4 count
of 200-499/uL and a 4.4-fold higher with a CD4 count
<200/uL [22]. Another study from Malawi reports malaria
incidence of 3.2/py, 4.9/py and 5.4/py in HIV-1 infected
adults with CD4 count of > 400/uL, 200-399/uL and
<200/uL, respectively [23]. In most of these studies
malaria infection was not assessed at the time that CD4
count was done. This is a limitation as malaria itself
causes a temporarily and reversible decrease in peripheral
CD4 count (by one third) [24]. Therefore, the risk for clin-
ical malaria may increase at a higher-than-expected CD4
count. We assumed that, compared to HIV-1 negative
individuals, the risk of clinical malaria in HIV-1 infected
individuals with a CD4 count <200/ul and 200-499/uL is
5 and 3-fold higher, regardless of endemicity and age.
HIV-1 infected with a CD4 count > 500 were expected to
have no additional risk.

HIV-1 infection considerably increases the risk of severe
malaria in adults [16,25,26]. In South Africa, in an area of
low (unstable) transmission, malaria-attributable mortal-
ity was nearly 7-fold higher in HIV-infected malaria
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patients. Similar observations have been collected in an
ongoing study in a meso-endemic region of Zambia, with
the highest risk in HIV-1 infected with low CD4 count
(Chalwe, unpublished data). We assumed that, compared
to HIV-1 negative individuals, the risk of severe malaria in
HIV-1 infected individuals with a CD4 count <200/ul and
200-499/uL is 15 and 6-fold higher, regardless of ende-
micity and age. HIV-1 infected with a CD4 count > 500
were expected to have no additional risk.

Parasite density in clinical malaria and HIV-1 infection
HIV-1 infection tends to increase the mean parasite den-
sity, although this effect is largely limited to patients with
advanced immune suppression (Table 2). In HIV-1
infected individuals, the geometric mean parasite density
in uncomplicated malaria was assumed to be three-fold
higher at CD4 count <200/ul and 50% higher at CD4
count 200-499/ulL, irrespective of malaria endemicity and
patient's age. For severe malaria, because parasite density
is already high and few data are available, it was conserv-
atively assumed that parasite density does not vary accord-
ing to HIV infection.

HIV-1 prevalence and CD4 counts in HIV-infected
individuals

Point estimates of national HIV-1 prevalence for 2005 are
available from the Joint United Nations Programme on
HIV/AIDS (UNAIDS) [27]. The impact of HIV infection
was evaluated separately for urban and rural areas,
because of varying intensity of malaria transmission. The
urban-to-rural ratios in HIV-1 prevalence were estimated
from national household surveys or antenatal clinic sur-
veillance data [27,28]. For all countries, except Madagas-
car, it was assumed that 37% and 25% of HIV-infected
people have a CD4 count <200/uL and 200-499/uL
respectively, a good approximation for the African popu-
lations where HIV prevalence has stabilized [6]. For Mada-
gascar, where adult HIV prevalence is low but rising, 37%
of HIV-infected people were assumed to have a CD4 count
<500 pL [6].

HIV-1 infection and parasite biomass increase at
population level

Annual parasite biomass was defined as the incidence rate
(per person-year) of symptomatic (uncomplicated and
severe) episodes multiplied by the total number of para-
sites circulating in the patient's peripheral blood at the
time of the clinical episode (i.e. when parasite density is
measured at a health facility). The parasite biomass was
estimated for each country by age group (<5, 5-15 and
above 15 years), by urban/rural and by low and high
endemicity taking into account the HIV-1 prevalence, the
incidence rates of uncomplicated and severe (hyperparasi-
taemic) malaria and their corresponding parasite density.
The overall country parasite biomass was computed by

http://www.malariajournal.com/content/7/1/134

summing up the estimations for each category listed
above.

To assess the sensitivity of the results, both univariate and
multivariate sensitivity analyses were performed. In the
univariate sensitivity analysis, the impact of HIV was
recalculated for two alternative scenarios, corresponding
to the lower and upper bound of the likely range. In the
multivariate sensitivity analysis, 95% confidence intervals
were calculated using the Monte Carlo simulation in
which 1,000 samples were taken from triangular distribu-
tions for all parameters [29] and the resulting propor-
tional increase in parasite was calculated. All statistical
analyses were performed using Microsoft Excel and the
statistical software R version 2.2.1 [30].

Results

In sub-Saharan Africa (41 countries), the HIV-1 epidemic
increases the malaria parasite biomass on average by
18.0% (95%CI: 11.6-26.9), ranging from 2.0% in Mada-
gascar to 243.9% in Swaziland. The highest proportional
increases were found in Southern African countries, where
HIV prevalence is the highest and malaria transmission
unstable (Table 3, Figure 1).

In absolute terms, HIV-1 infection increased the annual
malaria parasite biomass from 4.08*10'° (95%CI:
1.30-8.65*1019) to 4.86*1019
(95%CI:1.48-10.63*1019). Within the countries, the
median increase per person living in a malaria endemic
area was 7.5*10%, ranging from 0.4*10° in Somalia to
54.3*10° in Mozambique (Table 3). The highest absolute
increases were found in countries where both HIV preva-
lence and malaria endemicity were high (Table 3, Figure
2), i.e. Zambia, Malawi, Mozambique and the Central
African Republic.

The sensitivity analysis (Table 4) shows that these esti-
mates are sensitive to the magnitude of the impact of HIV-
1 infection on the malaria incidence rates and associated
parasite densities, with the assumptions for uncompli-
cated episodes being more influential than those for
severe episodes. Excluding the effect of HIV-1 in children
did not markedly reduce the estimate of biomass increase
because in this age group the HIV-1 prevalence is low. For
all alternative scenarios, the country ranking of absolute
or relative increases in parasite biomass remained
unchanged (not shown). Combining the uncertainty
ranges on assumptions for all parameters presented in
Table 1, the overall 95%CI for the estimated relative
increase in parasite biomass would be 11.6-26.9% (best
estimate 18.0%).
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Table 2: Overview of African studies on geometric mean parasite densities during uncomplicated symptomatic malaria, by HIV-1
status of the patient

Study Setting Median age # patients (or Parasite density, Parasite density in HIV-infected:
(range) malaria episodes, HIV-positive vs. HIV negative immune-suppressed vs. not immune-
if indicated) patients suppressed*
CHILDREN HIGH Values % change P-value Values % change P-value
ENDEMICITY
Shaffer [45] Zaire, 1988 33y 166 (6 HIV+) 93 325vs 8913/ 947% 0.04 -
pulk
Mermin, 2004 [46] Uganda, 2001-3 05y NR 154 vs 61/200 152% 0.03 -
WBC
Kamya, 2006 [47] Uganda, 20024 3y 1802 28 186 vs 20 40% NS -
076/uL
Otieno, 2006 [19] Kenya, 2003—4 I'm 317 48 356 vs 47 2% NS -
245/uL
Greenberg, 2001 DRC, 1986-8 5-2I'm 271 episodes 4173 vs 3 854/ 8% NS AIDS vs. HIV 370% 0.068
[17] uL positive: 11256 vs
2394/uL
Taha, 1994 [48] Malawi, 1989 0-18m 564 episodes - NS -
Colebunders, 1990 Zaire, 19867 7y 59 3210vs4 170/ -23% NS -
[49] pL
Muller, 1990 [50] Uganda, 1989 I'm 75 NS -
ADULTS HIGH
ENDEMICITY
Mermin, 2004 [46] Uganda, 2001-3 34y 90 episodes --- NS <200 vs. > 200 185% 0.02
CD4/uL: 60 vs. 24/
200 WBC
French [21] Uganda, 1995-98 3ly 153 episodes - Association low 0.0001
CD4 < high
parasite density
Kamya, 2006 [47] Uganda, 20024 28y 163 20537 vs I5 35% NS -
174/uL
Laufer, 2006 [22] Malawi, 2002-3 31.7y 203 -- Association low 0.005
CD4 < high
parasite density
Van geertruyden, Zambia, 2003-5 27 y (15-50) 971 8715vs 8538/ 2% NS <300 vs. > 300 37% 0.03
2006 [37] pL CD4/pL: 10 093
vs. 7328/uL
Shah, 2006 [38] Kenya, 2002—4 Adults 619 11 732vs 9516/ 22% NS <200 vs > 173%, <0.005
pL 200CD4/pL: 22
515 vs. 8232/uL
Fi'%ncesconi, 2001 Uganda, 2000 25y 170 - NS ---
(18]
Whitworth, 2000 Uganda, 1990-98 35y 559 episodes --- NS Association low 0.02
[ CD4 < high
parasite density
Simooya [51] Zambia, 1988 >12y 170 - 0.10 -
Muller, 1990 [50] Uganda, 1989 26y 200 NS -
CHILDREN LOW
ENDEMICITY
Klaglesubula, 1997 Uganda, 1988 04y 635 episodes --- NS ---
(e8]
Grimwade, 2003 South Africa, 7y 663 - NS ---
[52] 2000
ADULTS LOW
ENDEMICITY
Atzori, 1993 [2] Tanzania, 1991 1841y 300 . NS -
Grimwade, 2004 South Africa, 30y 613 16.7% vs 12.5%* 34% 036 ---
[16] 2000
Birku, 2002 [36] Ethiopia, 2000 3ly 19 27 486 vs 32 -16% NS -
892/uL
Abbreviations: NS = non-significant; --- = Not reported; m = months; y = years; RR = relative risk; WBC = white blood cells. *All studies except for [23] measured CD4

count during malaria episodes, which, due to the temporary decrease in CD4 caused by symptomatic malaria [24], probably inflated the CD4 threshold below which HIV-
related immune-suppression starts to increase malaria incidence.
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Discussion

Impact of HIV on parasite biomass

The HIV-1 epidemic may have increased malaria parasite
biomass in sub-Saharan Africa by 17.4%. The highest
absolute increases were found in countries with both high
malaria and HIV burden (Zambia, Malawi, Mozambique
and the Central African Republic). A recently published
model [7] found that the largest epidemiological impact
occurs when one baseline measure is very high while the
other is very low and near its endemic threshold. When
both prevalences were very high, the direct epidemiologi-
cal impact of the interaction seemed to be minimal. It is
indeed conceivable that, when both diseases reach an epi-
demic equilibrium, the epidemiological impact of the
interaction will be minimal while the disease interaction
should be maximal. Nevertheless, when both diseases are
at epidemic equilibrium, there may be an indirect but
important epidemiological impact such as the increased
parasite biomass, higher biodiversity and higher probabil-
ity of de novo resistance mutations emerging.

The model presented has several limitations. Pregnant
women were not considered in the model as the parasite
biomass in this high-risk group and its changes according
to the HIV-1 infection could not be estimated, partly
because of the sequestration of parasites in the placenta.
Considering that pregnant women are particularly vulner-
able to malaria infection and that such vulnerability is
increased by HIV-1 infection, their exclusion may have led
to an underestimation of the actual impact of HIV-1 infec-
tion at population level.

Moreover, the possible impact of HIV-1 infection on par-
asite density in asymptomatic individuals was not consid-
ered. This simplification may be justified because, due to
the logarithmic distribution of malaria parasites in
human populations, asymptomatic carriers, despite out-
numbering the clinical cases, carry only a small propor-
tion (probably less then 1/1000) of the world's
potentially transmissible parasites [31,32]. In addition,
asymptomatic infections most often are not treated,
reducing the risk of selecting resistant parasites. In
absence of drug pressure, mutant resistant parasites may
be "less fit" and possibly less transmitted. However, once
resistance has emerged and spread above a certain thresh-
old, asymptomatic infections could play a substantial role
for its further spread, especially in high endemic areas,
and this effect could be enhanced by a higher prevalence
of asymptomatic infection in HIV co-infected individuals.
The spread of these resistant strains should be calculated
by a stochastic model where asymptomatic carriers most
probably play an important role.

An additional limitation of the model presented is the
assumption that the effect of the HIV-1 infection on para-
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site density is constant throughout the clinical episode.
This may not be true as the actual parasite density may
vary throughout the clinical episode.

Impact of HIV on the emergence of antimalarial drug
resistance?

Several factors determine the probability of selecting the
de novo mutations linked to antimalarial drug resistance
[33]. Amongst them, the frequency at which the resistance
mutation occurs and the number of parasites in the
human host exposed to the drug are considered as inde-
pendent risk factors. If the probability of de novo resistance
mutations is distributed evenly among all parasites then
the biomass increment due to HIV-1 directly increases the
rate at which these mutations occur.

Mathematical models of malaria epidemiology and drug
resistance represent important tools in guiding malaria
control strategies. They consistently predict that once drug
resistance arises, it spreads rapidly, with the level of host
immunity (both aspecific and specific) considered as an
additional important independent factor. Although the
dynamics underlying the spreads of antimalarial resist-
ance may be much more complex than previously realized
[34], the cycle of the emergence and subsequent spread of
antimalarial drug resistance [35], and the influence of
HIV-1-related immune-suppression can be schematically
represented (Figure 3). Drug resistance starts with one or
several genetic mutations in parasites which, if exposed to
the drug, are selected and may spread. HIV-1 infection
contributes to the emergence and spread of drug resist-
ance by increasing drug exposure and drug pressure. HIV-
1 infection increases the probability of a malaria infection
progressing to symptomatic illness and to a higher para-
site densities, increasing the probabilities of treatment
and contact between the parasites and the drug [1,21-23].
In addition, immune suppressed HIV-infected adults suf-
fer frequently of non-malaria-attributable acute fevers that
may be misdiagnosed as malaria and treated as such [22].
Once resistance has emerged and spread above a certain
threshold, malaria treatment of non-malaria fever in HIV
immune-suppressed individuals might contribute to the
further spread of drug resistance by increasing the drug
pressure on asymptomatic malaria infections. After treat-
ment, a delayed cure rate [36] and a higher rate of recru-
descence [37,38], a phenomenon already described in
HIV-1 infected individuals, accelerate the spread of resist-
ant parasites and increase the parasite biomass in sympto-
matic patients and asymptomatic carriers alike.

Besides contributing to the emergence and spread of anti-
malarial drug resistance, HIV-1 infection may influence
and modify its expected geographical pattern. It has been
postulated that antimalarial drug resistance first emerges
and spreads in low-endemic areas, where the population
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Table 3: Estimated impact of HIV on malaria parasite biomass, sub-Saharan Africa, 2005*

Country Adult HIV prevalence Urbant % low-high Parasite biomass*10%  HIV-related additional Proportional increase in

malaria endemic /individual at risk in the  parasite biomass*10° parasite load due to

absence of HIV# findividual at risk¥ HIV
(95%Cl)

Mozambique 16.1% 38% 4-96 772 543 64.0 (41.0-95.8)
Zambia 17% 36.5% 16 —83 67.8 428 59.1 (35.3-94.3)
Malawi 14.1% 17.2% 22-77 753 40.2 54.1 (26.4-96.8)
CARepublic 10.7% 43.8% 0-10 76.6 322 41.9 (23.4-773)
Uganda 6.5% 12.4% 20-73 753 20.6 25.2 (14.4-37.0)
Togo 6.7% 36.3% 0-100 82.2 19.1 22.1 (13.2-35.1)
Cote d'lvoire 7.1% 45.8% 0-100 75.9 19.1 23.4 (14.2-39.1)
Congo 5.3% 54.4% 0-100 62.5 132 18.6 (9.8-29.3)
Swaziland 33.4% 23.9% 69-0 5.6 12.8 243.9 (122.1-402.3)
Gabon 7.9% 85.2% 0-96 385 12.5 30.7 (19.6-53.0)
Nigeria 3.9% 48.3% 1-99 70.8 12.0 16.7 (9.4-26.6)
Guinea-Bissau  3.8% 35.6% 0-100 78.9 1.4 13.9 (7.9-23.6)
Cameroon 5.4% 52.9% 24-74 533 1.3 20.1 (13.3-31.2)
Chad 3.5% 25.8% 14-86 76.3 1,2 I5.1 (6.4-23.9)
Gambia 2.4% 26.1% 0-100 95.4 10.8 11.3(5.8-19.0)
Botswana 24.1% 52.5% 13-0 4.9 9.3 197.6 (116.5-278.9)
DRCongo 3.2% 32.7% 10-85 737 9.2 12.2 (6.5-20.4)
Liberia 4% 47.9% 0-100 69.2 9.1 12.2 (7.3-21.5)
Equat Guinea 3.2% 50% 02-97 68.1 84 11.7 (7.1-18.0)
Tanzania 3.2% 37.5% 21-75 65.0 7.8 1.2 (5.8-194)
Zimbabwe 20.1% 35.9% 54-0 52 75 144.2 (75.6-221.0)
Ghana 2.3% 46.3% 02-98 76.1 7.5 9.2 (5.5-13.5)
Namibia 19.6% 33.5% 8-0 5.3 7.1 134.9 (74.4-247.1)
South Africa 18.8% 57.9% 15-0 5.0 6.8 137.0 (84.5-212.1)
Burkina Faso 2% 18.6% 0-100 94.9 6.5 6.8 (3.7-10.9)
Sudan 2.3% 40.8% 42 -56 48.9 5.8 13.4 (4.2-283)
Kenya 6.1% 47.9% 57 -2l 228 5.7 25.6 (15.3-37.7)
Angola 3.7% 37.2% 53-46 389 5.7 14.7 (8.8-23.4)
Mali 1.7% 33.7% 10-90 727 50 6.5 (3.7-10.0)
Guinea 1.5% 36.5% 01-99 81.0 5.0 5.6 (3.3-8.3)
Benin 1.8% 46.1% 0-100 737 5.0 6.4 (3.6-10.4)
Burundi 3.3% 10.6% 6421 299 4.1 13.5 (8.0-18.9)
Niger 1.1% 23.3% I1-89 794 238 3.5 (1.8-6.6)
Sierra Leone 1.6% 40.2% 0-100 789 2.7 3.6 (1.7-5.8)
Senegal 0.9% 51% 03-97 68.1 2.6 3.9 (2.1-6.4)
Eritrea 2.4% 20.8% 83-16 19.5 23 1.4 (5.8-19.8)
Ethiopia 2% 16.2% 50-14 25.7 2.0 8.2 (3.8-13.3)
Rwanda 3.1% 21.8% 60-7 14.3 2,0 13.8 (8.1-19.0)
Mauritania 0.7% 64.3% 59 -41 25,4 1.3 5.3 (1.9-10.5)
Madagascar 0.5% 27% 36 -60 58.3 I.1 2.0 (0.9-3.7)
Somalia 0.9% 35.9% 96 -3 72 0.4 5.6 (25-9.2)
Average Africa® 6.1% 23 -87 55.1 9.9 18.0% (11.6-26.9)
Median Africa  3.5% 36.5% 11-83 68.0 75 14.1 (9.2-20.5)

*Excluded from analyses were the following small countries: Seychelles, Reunion and Comoros, which are at negligible malaria risk and the islands of
Sao Tome & Principe and Cap Verde, which are subject to stable transmission but have not been precisely characterized in the malaria risk model.
Calculations used country-specific age distributions, based on HIV-1 prevalence estimates by UNAIDS/World Health Organization (WHO) for end
of 2005[27], and assuming urban/rural ratios in HIV prevalence estimated by UNAIDS/WHO) for end of 2003 [27,28]

T Urban and rural populations were based on countries' definitions[ 2], without standardization between countries.

*Individual at risk is person living in a malaria prone area.

$ Weighted according to countries' population size living in malaria endemic areas.
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Figure |
Additional parasite biomass due to HIV-I in individuals living in malaria risk. No Malaria Transmission

10-99% Parasite Biomass increase* | > 100% Para-

I:I. < |0% Parasite Biomass increase*

site Biomass increase* 8. *High Malaria Transmission areas shaded.

acquired immunity is so low that most infections are  areas, less malaria infections become symptomatic and
symptomatic and thus treated, exposing a large numbers  are treated (especially in adults). In sub-Saharan Africa,
of parasites to antimalarial drugs [39]. In highly endemic =~ when considering the geographical distribution of both
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Figure 2
Additional parasite biomass due to HIV-1 in individuals living in malaria risk areas in absolute terms *. No

Malaria Transmission |:| < 3 *]07 parasites/individual at risk increase* . 3-20*1 07 parasites/individual at

1. > 20 *109 parasites/individual at risk increase* — *High Malaria Transmission areas

risk increase® |
shaded.

the HIV-1 infection and the spread of drug resistance (to =~ HIV-1 prevalence) than in western Africa (relatively low
chloroquine and sulphadoxine-pyrimethamine) [33,40],  HIV-1 prevalence) [41], the question on the role of HIV-1
the latter having been faster in eastern-southern (high  pandemic as an additional contributing factor could be
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Table 4: Sensitivity analyses on the estimated relative increase in Plasmodium falciparum parasite biomass due to HIV-1, sub Saharan

Africa*

Relative increase parasite
biomass

Best estimate (95% CI)*

18.0%(11.6-26.9)

Parameters

Lower-bound assumption Upper-bound assumption Lower-bound assumption Upper-bound assumption

HIV prevalence lower-bound
(UNAIDS country point

estimate)

Relative risk of incidence of 4/2
uncomplicated

symptomatic malaria, in

HIV-infected individuals

with CD4<200/ul and CD4

200499 compared to HIV-

negatives

Relative parasite density 2/1
during uncomplicated

symptomatic malaria, in

HIV-infected patients with

CD4<200/ul and CD4

200—499/uL compared to

HIV-uninfected patients

Relative risk of progression 8/3

to severe malaria, in HIV-
infected individuals with
CD4<200/ul and CD4
200—499/uL compared to
HIV-uninfected patients
Relative parasite density
during severe malaria, in
HIV-infected patients with
CD4<500/pl compared to
HIV-uninfected patients

0.5/0.5

Assume no HIV-1 impact on incidence of symptomatic malaria, severe malaria or

parasite density in children under 15 years

Mean parasite density during uncomplicated symptomatic malaria in HIV-negative n.a.

patients equal for all age groups and endemicities: 20000/pL

higher-bound

24/12

2.0/2.0

11.4% 23.8%

15.8% 19.4%

15.5% 19.9%

17.2% 18.6%

16.9% 18.2%

17.6% n.a.

17.2%

* For default values underlying this best estimate, see Table 2.

raised. It is impossible to provide a definitive answer
though the results of the model presented in this paper are
compatible with an influence of HIV-1 infection on the
epidemiology of antimalarial drug resistance.

Malaria parasite biomass is influenced through various
malaria control interventions. Easy access, prompt diag-
nosis and efficacious treatment with combination therapy
are essential to halt or delay the emergence and spread of
antimalarial drug resistance [9]. The artemisinin deriva-
tives, commercialized in the last decade, are the most
potent antimalarial drugs with parasite reduction levels of
10,000 per cycle. Furthermore, if used in combination,
the artemisinin component is protected by the partner
drug and the parasite reduction rate is positively affected.
Unfortunately, it is still unclear how treatment combina-
tions for both malaria and HIV-1 interact. More data on
the biological effects of therapy combinations would be of

great utility to complement recent 'in vitro' evidence of a
synergistic effect between protease inhibitors and antima-
larials [32]. Preventive interventions are equally impor-
tant as they diminish the parasite load, transmission and
drug pressure. Indeed, the incidence of symptomatic
malaria in HIV-infected adults can decrease by 95% by
giving cotrimoxazole prophylaxis and antiretroviral treat-
ment combined with insecticide-treated bed nets [42].
Furthermore, next to individual protection, preventive
activities as indoor residual spraying, use of bed nets and
cotrimoxazole prophylaxis reduce the parasite biomass at
community level. For indoor residual spraying this is
quite obvious as it is a community intervention but it has
been shown that cotrimoxazole prophylaxis taken by
HIV-infected people was associated with decreased mor-
bidity and mortality among family members [43]. Recent
modeling has demonstrated that insecticide-treated nets
protection has a substantial impact on the circulating
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Figure 3

Effects of HIV on the emergence and consequent spread of antimalarial drug resistance in human populations.

malaria parasite biomass and has community-wide bene-
fits that are often underestimated [44]. Therefore, during
the ongoing scale-up of HIV/AIDS and malaria control
measures, HIV-1 infected individuals should be consid-
ered a priority group for the distribution of insecticide-
treated nets, co-trimoxazole prevention and artemisinin-
based combination therapy.

Conclusion

Earlier studies on the impact of HIV infection on malaria
morbidity and mortality focused on the direct effects in
HIV-infected people. They concluded that the population-
level effect was limited because of different geographical
distribution and contrasting age patterns of the two dis-
eases. However, the model presented suggests that the
overall impact of HIV-1 infection may be greater than pre-
viously estimated. If HIV-1 is a major contributing factor
for the emergence of antimalarial drug resistance, this will

have a major impact over the whole population by
increasing malaria morbidity and mortality. A second sto-
chastic model dealing with the contribution of HIV-1
infection on the spread of antimalarial drug resistance
once resistance has emerged is currently under develop-
ment.

Preventive interventions, easy access, prompt diagnosis
and efficacious treatment with combination therapy are
essential to diminish the parasite biomass, transmission
and drug pressure and halt or delay the emergence and
spread of antimalarial drug resistance [9]. This is even
more important for HIV-1 infected malaria patients. Tar-
geting this vulnerable group will greatly contribute to
malaria control and will benefit the whole population in
endemic countries.

Page 11 of 13

(page number not for citation purposes)



Malaria Journal 2008, 7:134

Authors' contributions

JPVg developed the model, did the literature research, did
the analyses and wrote the paper. J]M worked out the
model in R®. RC reviewed the paper. EK contributed to
analyses and writing of the paper. UDA contributed to the
data interpretation and the writing of the paper. All
authors read and approved the final manuscript.

Conflict of interest stated
The authors declare that they have no competing interests.

Acknowledgements
Thanks to lan Hastings, Brian Greenwood and Feiko Ter Kuile for useful
comments on earlier versions of the manuscript.

References

Whitworth ], Morgan D, Quigley M, Smith A, Mayanja B, Eotu H,
Omoding N, Okongo M, Malamba S, Ojwiya A: Effect of HIV-1 and
increasing immunosuppression on malaria parasitaemia and
clinical episodes in adults in rural Uganda: a cohort study.
Lancet 2000, 356:1051-1056.

Atzori C, Bruno A, Chichino G, Cevini C, Bernuzzi AM, Gatti S,
Comolli G, Scaglia M: HIV-1 and parasitic infections in rural
Tanzania. Ann Trop Med Parasitol 1993, 87:585-593.

Steketee RW, Wirima ), Bloland PB, Chilima B, Mermin JH, Chitsulo
L, Breman JG: Impairment of a pregnant woman's acquired
ability to limit Plasmodium falciparum by infection with
human immunodeficiency virus type-1. Am | Trop Med Hyg
1996, 55:42-49.

Verhoeff FH, Brabin B, Hart CA, Chimsuku L, Kazembe P, Broadhead
RL: Increased prevalence of malaria in HIV-infected pregnant
women and its implications for malaria control. Trop Med Int
Health 1999, 4:5-12.

Hewitt K, Steketee R, Mwapasa V, Whitworth ], French N: Interac-
tions between HIV and malaria in non-pregnant adults: evi-
dence and implications. AIDS 2006, 20:1993-2004.

Korenromp EL, Williams BG, de Vlas SJ, Gouws E, Gilks CF, Ghys PD,
Nahlen BL: Malaria attributable to the HIV-1 epidemic, sub-
Saharan Africa. Emerg Infect Dis 2005, 11:1410-1419.
Abu-Raddad L, Patnaik P, Kublin JG: Dual infection with HIV and
malaria fuels the spread of both diseases in sub-Saharan
Africa. Science 2006, 314:1603-1606.

Marsh K: Malaria disaster in Africa. Lancet 1998, 352:924.
White NJ, Nosten F, Looareesuwan S, Watkins WM, Marsh K, Snow
RW, Kokwaro G, Ouma J, Hien TT, Molyneux ME, Taylor TE, New-
bold CI, Ruebush TK, Danis M, Greenwood BM, Anderson RM,
Olliaro P: Averting a malaria disaster. Lancet 1999,
353:1965-1967.

RW S, MH C, Newton CR]C, RW S: The public health burden of
Plasmodium falciparum malaria in Africa: deriving the num-
bers. Working Paper |1, Disease Control Priorities Project.
In The Disease Control Priorities Project (DCPP) Working Paper Series
Edited by: Bethesda . Maryland, Fogarty International Center,
National Institutes of Health;; 2003.

Beier JC, Killeen GF, Githure JI: Short report: entomologic inoc-
ulation rates and Plasmodium falciparum malaria prevalence
in Africa. Am | Trop Med Hyg 1999, 61:109-113.

Nations U: World population prospects - the 2004 revision
population database. New York, United Nations Population Divi-
sion; 2002.

Kitchen SF: Symptomatology: general considerations and fal-
ciparum malaria. In Malariology Edited by: Boyd MF. Philadelphia,
WB Saunders; 1949:996-1017.

EL, WAS, M A: LOG-normal distributions across the sciences:
keys and clues. Bioscience 2001, 51:34] -352.

Greenwood B, Marsh K, Snow R: Why do some African children
develop severe malaria? Parasitol Today 1991, 7:277-281.
Grimwade K, French N, Mbatha DD, Zungu DD, Dedicoat M, Gilks
CF: HIV infection as a cofactor for severe falciparum malaria
in adults living in a region of unstable malaria transmission in
South Africa. AIDS 2004, 18:547-554.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31
32.

33.
34.
35.
36.

37.

38.

http://www.malariajournal.com/content/7/1/134

Greenberg AE, Nsa W, Ryder RW, Medi M, Nzeza M, Kitadi N, Baangi
M, Malanda N, Davachi F, Hassig SE: Plasmodium Falciparum
malaria and perinatally acquired human immunodeficiency
virus type | infection in Kinshasa, Zaire. A prospective, lon-
gitudinal cohort study of 587 children. N Engl | Med 1991,
325:105-109.

Kalyesubula I, Musoke-Mudido P, Marum L, Bagenda D, Aceng E,
Ndugwa C, Olness K: Effects of malaria infection in human
immunodeficiency virus type l-infected Ugandan children.
Pediatr Infect Dis | 1997, 16:876-881.

Otieno RO, Ouma C, Ong'echa JM, Keller CC, Were T, Waindi EN,
Michaels MG, Day RD, Vulule JM, Perkins DJ: Increased severe
anemia in HIV-1-exposed and HIV-I-positive infants and chil-
dren during acute malaria. AIDS 2006, 20:275-280.

Ross A, Maire N, Molineaux L, Smith T: An epidemiologic model
of severe morbidity and mortality caused by Plasmodium fal-
ciparum. Am | Trop Med Hyg 2006, 75:63-73.

French N, Nakiyingi ], Lugada E, Watera C, Whitworth JA, Gilks CF:
Increasing rates of malarial fever with deteriorating immune
status in HIV-l-infected Ugandan adults. AIDS 2001,
15:899-906.

Laufer MK, van Oosterhout JJ, Thesing PC, Thumba F, Zijlstra EE,
Graham SM, Taylor TE, Plowe CV: Impact of HIV-associated
immunosuppression on malaria infection and disease in
Malawi. | Infect Dis 2006, 193:872-878.

Patnaik P, Jere CS, Miller WC, Hoffman IF, Wirima ], Pendame R,
Meshnick SR, Taylor TE, Molyneux ME, Kublin )G: Effects of HIV-1
serostatus, HIV-1 RNA concentration, and CD4 cell count
on the incidence of malaria infection in a cohort of adults in
rural Malawi. | Infect Dis 2005, 192:984-991.

van Geertruyden JP, Mulenga M, Kasongo W, Polman K, Colebunders
R, Kestens L, D'Alessandro U: CD4 T-Cell Count and HIV-I
Infection in Adults With Uncomplicated Malaria. | Acquir
Immune Defic Syndr 2006, 43:363-367.

Khasnis AA, Karnad DR: Human immunodeficiency virus type |
infection in patients with severe falciparum malaria in urban
India. | Postgrad Med 2003, 49:114-117.

Cohen C, Karstaedt A, Frean ), Thomas ), Govender N, Prentice E,
Dini L, Galpin ], Crewe-Brown H: Increased prevalence of severe
malaria in HIV-infected adults in South Africa. Clin Infect Dis
2005, 41:1631-1637.

UNAIDS. Report on the global HIV/AIDS epidemic. Geneva,
Joint United Nations Programme on HIV/AIDS (UNAIDS) Report
No.:; 2006.

Asamoah-Odei E, Garcia Calleja M, Boerma JT: HIV prevalence
and trends in sub-Saharan Africa: no decline and large subre-
gional differences. Lancet 2004, 364:35-40.

Law AM, Kelton WD: Simulation modeling and analysis MacGraw-Hill,
400 p.; 1982.

Team RDC: A Language and Environment for Statistical Computing. 2005
[http://www.r-project.org]. Vienna, Austria, R Foundation for Statisti-
cal Computing

White NJ, Pongtavornpinyo W: The de novo selection of drug-
resistant malaria parasites. Proc Biol Sci 2003, 270:545-554.
Snow RW, Craig M, Deichmann U, Marsh K: Estimating mortality,
morbidity and disability due to malaria among Africa's non-
pregnant population. Bull World Health Organ 1999, 77:624-640.
White NJ: Antimalarial drug resistance. | Clin Invest 2004,
113:1084-1092.

Hastings IM: Complex dynamics and stability of resistance to
antimalarial drugs. Parasitology 2006, 132:615-624.

Nosten F, Brasseur P: Combination therapy for malaria: the
way forward? Drugs 2002, 62:1315-1329.

Birku Y, Mekonnen E, Bjorkman A, Wolday D: Delayed clearance
of Plasmodium falciparum in patients with human immunode-
ficiency virus co-infection treated with artemisinin. Ethiop
Med | 2002, 40 Suppl 1:17-26.

van Geertruyden JP, Mulenga M, Mwananyanda L, Chalwe V, Moer-
man F, Chilengi R, Kasongo W, Van Overmeir C, Dujardin JC, Cole-
bunders R, Kestens L, D'Alessandro U: HIV-1 immune
suppression and antimalarial treatment outcome in Zam-
bian adults with uncomplicated malaria. | Infect Dis 2006,
194:917-925.

Shah SN, Smith EE, Obonyo CO, Kain KC, Bloland PB, Slutsker L,
Hamel M): HIV Immunosuppression and Antimalarial Efficacy:
Sulfadoxine-Pyrimethamine for the Treatment of Uncom-

Page 12 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11009139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11009139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8122920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8122920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8702036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8702036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10203167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10203167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17053345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17053345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17053345
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16229771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16229771
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17158329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17158329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17158329
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9752813
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10371589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10432066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10432066
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15463389
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15463389
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15090809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15090809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15090809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2052043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2052043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2052043
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9306483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9306483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16511422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16511422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16511422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16931817
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11399962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11399962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11399962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16479522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16479522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16479522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16107950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16107950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16107950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17079994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17079994
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12867684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12867684
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16267737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16267737
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15234854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15234854
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15234854
http://www.r-project.org
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12641911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12641911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10516785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10516785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10516785
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15085184
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16426485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16426485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12076181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12076181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12802828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12802828
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16960779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16960779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16960779
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17083036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17083036

Malaria Journal 2008, 7:134 http://www.malariajournal.com/content/7/1/134

plicated Malaria in HIV-Infected Adults in Siaya, Kenya. |
Infect Dis 2006, 194:1519-1528.

39. Hastings IM, D'Alessandro U: Modelling a predictable disaster:
the rise and spread of drug-resistantmalaria. Parasitol Today
2000, 16:340-347.

40. Talisuna AO, Bloland P, D'Alessandro U: History, dynamics, and
public health importance of malaria parasite resistance. Clin
Microbiol Rev 2004, 17:235-254.

41. Organization WH, Fund UNC: World Malaria Report 2005. 2005
[http://rbm.who.int/wmr2005]. Geneva, Switzerland: World Health
Organization (accessed Sept 9, 2007)

42. Mermin |, Ekwaru JP, Liechty CA, Were W, Downing R, Ransom R,
Weidle P, Lule J, Coutinho A, Solberg P: Effect of co-trimoxazole
prophylaxis, antiretroviral therapy, and insecticide-treated
bednets on the frequency of malaria in HIV-1-infected adults
in Uganda: a prospective cohort study. Lancet 2006,
367:1256-1261.

43. Mermin}, Lule ], Ekwaru JP, Downing R, Hughes P, Bunnell R, Malamba
S, Ransom R, Kaharuza F, Coutinho A, Kigozi A, Quick R: Cotrimox-
azole prophylaxis by HIV-infected persons in Uganda
reduces morbidity and mortality among HIV-uninfected
family members. AIDS 2005, 19:1035-1042.

44. Killeen GF, Smith TA, Ferguson HM, Mshinda H, Abdulla S, Lengeler
C, Kachur SP: Preventing childhood malaria in Africa by pro-
tecting adults from mosquitoes with insecticide-treated
nets. PLoS Med 2007, 4:e229.

45. Shaffer N, Hedberg K, Davachi F, Lyamba B, Breman ]G, Masisa OS,
Behets F, Hightower A, Nguyen-Dinh P: Trends and risk factors
for HIV-1 seropositivity among outpatient children, Kin-
shasa, Zaire. AIDS 1990, 4:1231-1236.

46. Mermin J, Lule J, Ekwaru JP, Malamba S, Downing R, Ransom R, Kaha-
ruza F, Culver D, Kizito F, Bunnell R, Kigozi A, Nakanjako D, Wafula
W, Quick R: Effect of co-trimoxazole prophylaxis on morbid-
ity, mortality, CD4-cell count, and viral load in HIV infection
in rural Uganda. Lancet 2004, 364:1428-1434.

47. Kamya MR, Gasasira AF, Yeka A, Bakyaita N, Nsobya SL, Francis D,
Rosenthal P}, Dorsey G, Havlir D: Effect of HIV-1 infection on
antimalarial treatment outcomes in Uganda: a population-
based study. | Infect Dis 2006, 193:9-15.

48. Taha TE, Canner JK, Dallabetta GA, Chiphangwi JD, Liomba G, Wan-
gel AM, Saah A, Miotti PG: Childhood malaria parasitaemia and
human immunodeficiency virus infection in Malawi. Trans R
Soc Trop Med Hyg 1994, 88:164-165.

49. Colebunders R, Bahwe Y, Nekwei W, Ryder R, Perriens ], Nsimba K,
Turner A, Francis H, Lebughe |, van der SP: Incidence of malaria
and efficacy of oral quinine in patients recently infected with
human immunodeficiency virus in Kinshasa, Zaire. | Infect
1990, 21:167-173.

50. Muller O, Moser R: The clinical and parasitological presenta-
tion of Plasmodium falciparum malaria in Uganda is unaf-
fected by HIV-I infection. Trans R Soc Trop Med Hyg 1990,
84:336-338.

51. Simooya OO, Mwendapole RM, Siziya S, Fleming AF: Relation
between falciparum malaria and HIV seropositivity in Ndola,
Zambia. BMJ 1988, 297:30-31.

52. Grimwade K, French N, Mbatha DD, Zungu DD, Dedicoat M, Gilks
CF: Childhood malaria in a region of unstable transmission
and high human immunodeficiency virus prevalence. Pediatr
Infect Dis | 2003, 22:1057-1063.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 13 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17083036
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10900482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10900482
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14726463
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14726463
http://rbm.who.int/wmr2005  (accessed Sept \9, 2007).
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16631881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16631881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16631881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15958834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15958834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15958834
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17608562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17608562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17608562
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2088400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2088400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2088400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15488218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15488218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15488218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16323126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16323126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16323126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8036659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8036659
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2230175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2230175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2230175
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2260160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2260160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3044486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3044486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3044486
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14688565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14688565
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Definition of endemicity
	Malaria incidence and parasite density without HIV-1 infection
	Malaria incidence and parasite density with HIV-1 infection
	Parasite density in clinical malaria and HIV-1 infection
	HIV-1 prevalence and CD4 counts in HIV-infected individuals
	HIV-1 infection and parasite biomass increase at population level

	Results
	Discussion
	Impact of HIV on parasite biomass
	Impact of HIV on the emergence of antimalarial drug resistance?

	Conclusion
	Authors' contributions
	Conflict of interest stated
	Acknowledgements
	References

