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Abstract
Background: Two Plasmodium berghei ookinete micronemal proteins, circumsporozoite and
TRAP related protein (CTRP) and secreted ookinete adhesive protein (SOAP) both interact with
the basal lamina component laminin. Following gene disruption studies it has been proposed that,
apart from their role in motility, these proteins may be required for interactions leading to
ookinete-to-oocyst transformation.

Methods: CTRP and SOAP null mutant P. berghei ookinetes were compared to P. berghei ANKA
wild-type for their ability to transform and grow in vitro. To confirm in vitro findings for P. berghei
CTRP-KO ookinetes were injected into the haemocoel of Anopheles gambiae female mosquitoes.

Results: Transformation, growth, and viability were comparable for the gene disrupted and wild-
type parasites. P. berghei CTRP-KO ookinetes were able to transform into oocysts in the
haemocoel of An. gambiae mosquitoes.

Conclusion: Neither CTRP nor SOAP is required for parasite transformation in vitro. By-passing
the midgut lumen allows for the transformation of P. berghei CTRP-KO ookinetes suggesting that
it is not required for transformation in vivo.

Background
Ever since the early 1900s, an appreciation of the role that
anopheline mosquitoes play in the transmission of
malaria [1] has directed disease control efforts towards the
vectors. Many campaigns relied upon insecticide usage
and, latterly, the use of insecticide treated bed nets is prov-
ing effective [2]. However, attendant concerns regarding
the development of insecticide resistance [2,3] make it
imperative that new tools are developed to inhibit malaria
transmission. This will be best achieved by gaining and

applying a better understanding of vector-parasite interac-
tions.

The sporogonic stages which occur in the mosquito vector
begin when a mosquito ingests infected blood containing
gametocytes. Within approximately 18 hours, gametogen-
esis, fertilization, and the transformation of the zygote to
a motile ookinete have occurred. Ookinetes migrate out of
the blood bolus, through the peritrophic matrix and
invade and transit through the midgut epithelium cells,
transforming into oocysts beneath the basal lamina 20–
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30 hours post-bloodfeeding. The initial period post-infec-
tion is critical for the malaria parasites as losses of up to
100,000 fold occur, dependant upon parasite/vector com-
binations [4-8].

Within recent years, knowledge of the ookinete at the
molecular level has burgeoned and many proteins have
been shown to be involved in midgut invasion. These
include several with functions associated with motility
and/or invasion, such as the major surface proteins P25/
P28 [9-11], secreted ookinete adhesive protein (SOAP)
[12], von Willebrand Factor A Domain-related protein
(WARP) [13], circumsporozoite and TRAP-related protein
(CTRP) [14-19], cell-traversal protein (CelTOS) [20], cal-
cium-dependent protein kinase 3 (CDPK3) [21,22], the
guanylate cyclase, PbGCβ [23], membrane-attack ooki-
nete protein (MOAP) [24,25], and Plasmodium perforin-
like proteins [26]. The rodent malaria, Plasmodium berghei,
has proven to be a useful model with which to investigate
the function of these proteins and targeted gene disrup-
tion has assisted these studies.

The micronemal protein CTRP, first described in Plasmo-
dium falciparum by Trottein et al [17], has structural homo-
logues in P. berghei [14,18], Plasmodium vivax, Plasmodium
knowlesi, Plasmodium gallinaceum, and Plasmodium yoelii
[27]. CTRP contains two types of adhesive domains (von
Willebrand factor type A-related and thrombospondin
type 1-related) and belongs to a family of proteins located
in the micronemes of several genera of apicomplexan par-
asites [14,28]. It is expressed in P. berghei ookinetes from
10 hours post-fertilization and expression continues for at
least 24 hours [18]. Using immuno-electron microscopy,
Limviroj and colleagues [15] localized PbCTRP to the
ookinete micronemes and detected it at the site of contact
with the basal lamina; suggesting that the junction so
formed may induce the ookinete to stop and begin to
transform into an oocyst.

Targeted disruption of CTRP has demonstrated that,
although ookinetes form, transgenic parasites fail to
develop into oocyst in vivo, consequently blocking mos-
quito transmission of these parasites [14,16,19]. These
studies further demonstrated that CTRP is involved in
ookinete locomotion [14]. CTRP has also been shown to
bind to laminin and collagen IV, major components of
the basal lamina, prompting further suggestions of a puta-
tive role in the transformation of ookinete to oocyst via
involvement in a signal transduction pathway [29,30].

SOAP, another microneme protein, is unique to the genus
Plasmodium. It is expressed in ookinetes and young
oocysts and asexual stages but has not been reported in
gametocytes of P. berghei and thus has a similar transcrip-
tional pattern in the mosquito to PbCTRP [12,31]. It is a

cysteine-rich, secreted protein not present on the parasite
surface. Dessens and colleagues [12] showed that disrupt-
ing the SOAP gene resulted in null mutant parasites that
were impaired in their ability to invade the mosquito mid-
gut wall and form oocysts. They further showed that this
21-kDa protein also interacts with laminin in a yeast two-
hybrid system and suggested that EGF-like domains of
laminin gamma 1 interact with SOAP sequence domains
that are homologous to laminin EGF-like domains [12].
SOAP was thus thought to play an important role during
ookinete-to-oocyst development in mosquitoes [12].
Interestingly, they also showed that PbSOAP-KO ooki-
netes invaded co-cultured mosquito cells and transformed
into oocysts therein at a more efficient rate than wild-type
ookinetes; a finding that is at odds with their identifica-
tion of SOAP as a key molecule for ookinete-to-oocyst dif-
ferentiation in the mosquito [12].

PbCRTP and PbSOAP null mutants, grown in an axenic
culture system [32], were used to determine the role, if
any, of these microneme proteins in the transformation of
ookinetes into oocysts. Ookinetes were cultured in the
presence or absence of a basal lamina substitute. The
results show that neither microneme protein is essential
for transformation as ookinetes from both parasite null
mutants are able to transform into oocysts via the transi-
tional took stage recently described by Carter et al [32].

Methods
Parasites and ookinete cultures
Experiments were performed using approved protocols in
accordance with the UK. Animals (Scientific Procedures)
Act 1986. Male CD mice were treated with phenylhydra-
zine two days prior to infection with either P. berghei
ANKA (clone 2.34; wild-type), P. berghei CTRP-KO [14],
or P. berghei SOAP-KO [12] by the inoculation of parasites
obtained from a donor mouse between the 2nd and 6th

passage from cryopreserved stock.

Blood from infected mice was collected by cardiac punc-
ture into a heparinized syringe two days post-infection,
after the confirmation of an infection by Giemsa staining
of thin blood smears. Blood was diluted 1:10 into RPMI-
1640 medium containing 10% foetal calf serum (FCS),
14.7 mM sodium bicarbonate, 0.367 mM hypoxanthine,
1000 U/ml penicillin, and 1 mg/ml streptomycin (pH
8.4) prior to incubation for 18 h at 19°C as detailed in
[33,34].

Ookinetes were harvested using a MidiMacs LS magnetic
column as described previously [32,35]. Briefly, following
centrifugation at 648 g for 5 min all but 20% of the
medium was removed and the blood mixture was passed
through a magnetic column. Following several column
washes, ookinetes were eluted with 3 ml of oocyst
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medium (supplemented Schneider's insect cell culture
medium).

Plasmodium berghei wild-type (WT), PbCTRP-KO or
PbSOAP-KO ookinetes were immediately seeded into 8-
well LabTek™ chamber slides at a density of approxi-
mately 1 × 104 in 400 μl of oocyst medium (see [32] for
medium details). For each experiment, ookinetes were
seeded in chamber slides either previously coated with 80
μl Matrigel™ or with no coating. In order to minimize par-
asite loss from the wells, medium was not removed during
culture. However, to counter the effect of evaporation,
100 μl of fresh medium was added to each well every 48
or 72 h post-culture. Triplicate wells were assessed at each
time point and the experiment was repeated three times.

Demonstration of morphological changes during 
transformation
The presence of a transitional stage between ookinete and
oocyst in P. berghei ANKA WT, called the took, was recently
reported [32]. To demonstrate clearly the presence of a
took stage during the development of oocysts of the null
mutants, cultures were collected 21 h post-culture in
oocyst medium. Parasites were fixed in 1:1 methanol: ace-
tone, washed and labelled with an anti-P28 monoclonal
antibody derived from a hybridoma cell line maintained
in the laboratory. Following a 30 min incubation the
slides were washed and incubated for 30 min with a goat
anti-mouse fluorescein isothiocyanate-conjugated sec-
ondary antibody [32]. The slides were washed and
mounted in VectaShield (Vector Laboratories) containing
4', 6-diamidino-2-phenyl indole (DAPI) before viewing
samples with a Leica DM IRB Fluorescence Microscope
(DAPI excitation/emission: 340–380 nm/425 nm; FITC:
450–490 nm/535 nm). Appropriate controls were
included for each experiment.

Assessment of parasite transformation and growth
Ookinetes have a propensity to clump together in culture,
so well contents were mixed vigorously by pipetting to
ensure even distribution within the well prior to counting
ookinetes/oocysts. Measurements and counts were con-
ducted on days 1, 3 and 5 post-culture for wells that were
not coated and day 1 for wells coated in Matrigel. Parasites
were counted in alternate fields of view along a cross rep-
resenting two diameters of the well, at a magnification of
630×, viewed under phase contrast. In all, 30 fields of
view were examined per well (3.58% of the whole well).
In order to assess transformation of ookinetes to oocysts,
the proportion of P. berghei WT, PbCTRP-KO or PbSOAP-
KO ookinetes, tooks and oocysts was calculated for each
culture condition at each time point. Only parasites that
were fully rounded, translucent, with pigment visible and
a diameter greater than 5 micrometers were regarded as
having transformed into oocysts [32].

Oocyst viability
Parasites were collected by centrifugation for 1.5 min at
2,000 g. The pellet was resuspended in 5 μl of PBS to
which 5 μl of 0.1% Erythrosin B was added to assess par-
asite viability. This was immediately spotted onto a micro-
scope slide, a coverslip applied and a minimum of 100
oocysts and any remaining ookinetes and tooks were
examined at magnification of 400× and scored as viable or
having a compromised membrane. Three repeat experi-
ments were performed in which triplicate wells were
assessed on each of the days chosen for observation.

Injection of Anopheles gambiae mosquitoes with P. 
berghei CTRP KO ookinetes
Unlike PbSOAP-KO, for which it has been reported that
between 15–40% of ookinetes transform into oocysts in
vivo [12], no PbCTRP-KO oocysts have been observed in
vivo [14,16,19]. In order to confirm the lack of a role of
CTRP in transformation, in vitro ookinete cultures were
injected into the haemocoel of 4 day old An. gambiae KIL
mosquitoes. The preparation and injection protocols were
adapted from Paskewtiz and Shi [36]. Briefly, PbCTRP-KO
ookinetes were cultured for 18 h at 19°C in ookinete
medium. Cultures were centrifuged at 648 g for 5 min at
4°C. The majority of red blood cells were removed by
resuspending the culture pellet in 20 volumes of 0.17 M
ammonium chloride and incubating for 10 min on ice. All
subsequent steps were performed at 4°C. An equal vol-
ume of PBS was added to stop red blood cell lysis and cul-
tures were immediately centrifuged. The pellet was
washed once in 40 volumes of PBS, resuspended in 1 ml
of PBS and counted on a haemocytometer.

Fifty ookinetes in 69 nl of PBS were injected per mosquito
with a Nanoject II automatic nanoliter injector (Drum-
mond Scientific Company, USA). A total of 50 mosqui-
toes were injected and maintained at 20°C for seven days
prior to dissection. Mosquitoes were dissected in PBS and
the contents of the abdomen were immediately stained in
0.05% mercurochrome. Tissue was viewed on a Leica DM
IRB inverted microscope and images were acquired with a
Leica DC 300F digital camera (Leica Microsystems, Ger-
many).

Statistical analysis
All data sets were analysed using the statistical software
package Minitab® Release 14 (Minitab, Inc.). Where neces-
sary, data were normalized with an arcsine transformation
prior to analysis with a General Linear Model (GLM).

Results and discussion
Transformation of CTRP- and SOAP-KO ookinetes to 
oocysts
It has been proposed that SOAP and CTRP may play a role
in ookinete-to-oocyst transformation in vivo as the null
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mutants for either gene produce very few, or no oocysts
respectively [12,14,19]. Moreover, both of these mole-
cules have been reported to bind to laminin and it has
been proposed that interactions between SOAP and/or
CTRP with the basal lamina, and laminin in particular,
may trigger transformation [12,30]. However, it was
found that when P. berghei CTRP- and SOAP-KO ooki-
netes were cultured in vitro, plus or minus Matrigel (a
source of laminin), the same proportion transformed to
oocysts as did the wild-type. Furthermore, transformation
proceeded via a took stage (Figure 1) as recently described
by Carter et al [32].

The percentage of transformed ookinetes (i.e. oocysts)
was calculated on days 1, 3, and 5 post-culture after count-
ing the number of ookinetes, tooks and oocysts per well.
Over all conditions, a mean of 93% (SE ± 1.33) of ooki-
netes had transformed into oocysts by day 1. There was no
significant difference in the percentage of ookinete to
oocyst transformations between parasites lines (GLM,
F(2,1,2,2) = 1.64, P = 0.213) or the presence or absence of a
basal lamina substitute (GLM, F(2,1,2,2) = 0.60, P = 0.446)
(Table 1). As the majority of parasites had transformed by
day 1 and no differences were observed between culture
conditions, data for day 3 and 5 was only collected from
wells that were not coated with Matrigel. For all parasite
genotypes, nearly 100% of ookinetes had transformed by
day 5 (Table 1).

The large percentage of ookinete-to-oocyst conversion in
these experiments was surprising as it has previously been
reported that over 30% of ookinetes cultured in vitro are
dying by an apoptosis-like mechanism by 24 h post-cul-
ture [37]. This suggests that ookinetes harvested at 18 h
post-culture and immediately placed in oocyst medium,
which supports transformation and growth (see [32]),
may be rescued from triggers that induce cell death. It was
previously observed that the proportion of ookinetes dis-

playing markers typical of apoptotic cells was under 10%
after 12 h in culture [37]. Current findings confirm this
observation, but also show that the proportion of dying or
dead ookinetes varies considerably between cultures, pos-
sibly as a result of factors from the murine host (Hurd, Ali
and Arambage, personal observations).

Of the 50 mosquitoes injected with P. berghei CTRP-KO
ookinetes only four survived to day 7 post-injection. P.
berghei CTRP-KO oocysts were observed in all four mos-
quitoes. Thus PbCTRP-KO ookinetes are able to transform
into oocysts when injected into the haemocoel of 4-day
old female An. gambiae KIL mosquitoes. Qualitative obser-
vations were made of the infections as it is difficult to
quantify oocysts as they can develop anywhere in the
haemocoel [36]. Upon dissection the majority of oocysts
recovered were observed to be floating in the haemol-
ymph. However, oocysts were also found bound to the
midgut (Figure 2) and the Malpighian tubules.

These findings confirmed suggestions that both PbCTRP
and PbSOAP null mutants have retained their full poten-

Transformation of P. berghei CTRP-KO ookinetes via a took stageFigure 1
Transformation of P. berghei CTRP-KO ookinetes via a took stage. Ookinetes were cultured in oocyst medium for 21 
h and labelled for the major ookinete surface protein, P28, by indirect immunofluoresence assay. A) mature ookinete; (B, C) 
tooks; (D) oocyst.

Table 1: Ookinete to oocyst transformation of P. berghei WT, 
PbCTRP-KO, and PbSOAP-KO parasites.

Mean % transformation

Day 1 Day 3 Day 5

WT -MAT 92.68 (± 1.51) 99.73 (± 0.17) 99.94 (± 0.06)
WT +MAT 96.27 (± 0.86)
CTRP-KO -MAT 96.76 (± 0.78) 99.70 (± 0.22) 100.00 (± 0.00)
CTRP-KO +MAT 98.85 (± 0.45)
SOAP-KO -MAT 87.05 (± 5.38) 99.13 (± 0.43) 100.00 (± 0.00)
SOAP-KO +MAT 89.21 (± 4.89)

Ookinetes from each of the clones were seeded in the absence of 
Matrigel (-MAT) or with Matrigel (+MAT). Transformation was 
assessed on days 1, 3, and 5 post-culture. The figures show the mean 
percentage of transformed ookinetes (± standard error of the mean).
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tial to develop into oocysts. Both microneme proteins
have been implicated in ookinete motility
[12,14,16,19,27,38] and findings presented here suggest
that the barrier to further development in vivo must be
caused by the necessity to migrate out of the blood bolus,
traverse the peritrophic matrix and invade the midgut epi-
thelium. Dessens et al [12] also observed the transforma-
tion of PbSOAP-KO parasites in vitro, but surprisingly, in
their system ookinetes invaded and developed inside
Aedes aegypti Mos20 cells. The axenic culture system used
here also shows that cell invasion is not a prerequisite for
transformation. Interestingly, Hirai et al [23] recently
reported that disruption of the gene encoding PbGCβ also
resulted in normal ookinetes that do not produce oocysts
in vivo. Here too these transgenic ookinetes transformed
into oocysts in an in vitro system based on Al-Olayan et al
[37] and ookinete motility was shown to be defective.

Interactions with the basal lamina
Transformation rates of null mutants and wild-type P.
berghei were the same in the presence or absence of
Matrigel in this study (Table 1). These results suggest that
the binding of either one of these micronemal proteins to
basal lamina components is not a requirement for trans-
formation. Indeed, the study also confirms that interac-
tions between basal lamina components and any
ookinete molecule are unnecessary to initiate conversion
to oocysts [32]. It has been suggested that the mosquito

midgut basal lamina plays an essential role in the devel-
opment of Plasmodium oocysts [39]. Gene silencing tech-
nology resulting in the depletion of mosquito laminin
greatly reduced oocyst numbers developing in vivo [39]
and interactions between laminin and microneme and/or
surface proteins support this suggestion [12,29]. If this
idea is correct then, as it is clearly not involved in trigger-
ing transformation or supporting very early growth, it may
perform a function as a protective coat, disguising the
oocyst from the mosquito defence system [39,40] or just
serve to bind the ookinete in place between the midgut
basolateral plasma membrane and the basal lamina, thus
preventing the ookinetes from migrating into the haemo-
coel, as do most insect parasites.

The identification of the molecular composition of the
mosquito midgut is rapidly advancing. The major compo-
nents of the basal lamina, collagen IV and laminin, have
been characterized in An. gambiae [41,42], as has beta
integrin, a receptor for laminin and collagen IV[43]. The
latter has been implicated in ookinete invasion of the
midgut and may have a role in facilitating putative inter-
actions between ookinetes and laminin or vice versa [43].
However, it now appears that these molecules are more
likely to be involved in later phases of oocyst develop-
ment such as growth, maturation, and sporozoites forma-
tion.

Growth and viability
In addition to transforming into oocysts, PbCRTP-KO and
PbSOAP-KO parasites were able to grow in culture at a
comparable rate to P. berghei WT and, here too, no signif-
icant differences were found between the presence and
absence of the basal lamina substitute (Figure 3). Over the
five day period there were significant increases in parasite
sizes. Tukey's pairwise comparison day 1 vs day 3 (T =
4.946, P < 0.001), and day 3 and 5 (T = 3.195, P < 0.01)
(Figure 3). However a significant decrease in the number
of viable oocysts between each of the time points was
observed (GLM: F(2,1,2,2) = 117.32, P < 0.001), but with no
significant difference between parasite genotype (GLM:
F(2,1,2,2) = 0.70, P = 0.497) or the presence or absence of
Matrigel (GLM: F(2,1,2,2) = 1.85, P = 0.175) (Figure 4).
Although not statistically significant, fewer parasites were
viable when incubated with Matrigel at day 5. This could
be caused by additional gentamycin, present in Matrigel
as well as in the oocyst culture medium.

Conclusion
The microneme proteins SOAP and CTRP are not
involved in ookinete to oocyst transformation or early
growth in vitro. Furthermore, by by-passing the need to
invade the midgut, PbCTRP-KO ookinetes are capable of
transforming into oocysts in the haemocoel of An. gam-
biae mosquitoes. These results suggest that the role of

Transformation of PbCTRP-KO ookinetes in Anopheles gam-biaeFigure 2
Transformation of PbCTRP-KO ookinetes in Anophe-
les gambiae. Phase contrast image of a PbCTRP-KO oocyst 
(arrow) attached to the midgut of An. gambiae KIL mosquito. 
The trachea (arrow heads) and Malpighian tubules (MT) are 
also shown. Plasmodium berghei CTRP-KO ookinetes were 
injected 18 h post-culture into the haemocoel of 4-day old 
An. gambiae KIL females and allowed to develop for 7 days 
prior to mosquito dissection.
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The effect of basal lamina components on the growth of P. berghei wild-type, PbCTRP-KO, and PbSOAP-KO oocystsFigure 3
The effect of basal lamina components on the growth of P. berghei wild-type, PbCTRP-KO, and PbSOAP-KO 
oocysts. Three clones of Plasmodium berghei were cultured in the presence or absence of Matrigel. -MAT = no Matrigel; 
+MAT = with Matrigel; WT = P. berghei ANKA clone 2.34; CTRP-KO = P. berghei CTRP-KO; SOAP-KO = P. berghei SOAP-
KO. No differences were observed in the mean size of oocysts cultured in the presence or absence of Matrigel or between 
parasite clones.

The effect of basal lamina components on the viability of P. berghei wild-type, PbCTRP-KO, and PbSOAP-KO oocystsFigure 4
The effect of basal lamina components on the viability of P. berghei wild-type, PbCTRP-KO, and PbSOAP-KO 
oocysts. Three clones of Plasmodium berghei were cultured in the presence or absence of Matrigel. -MAT = no Matrigel; 
+MAT = with Matrigel; WT = P. berghei ANKA clone 2.34; CTRP-KO = P. berghei CTRP-KO; SOAP-KO = P. berghei SOAP-
KO. There was a significant reduction in the number of viable oocysts with increasing time of culture (GLM: F(2,1,2,2) = 117.32, P 
< 0.001).
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these micronemal proteins may be restricted to motility
and/or invasion.

In order to find adequate targets for transmission blocking
strategies it is necessary to gain a better understanding of
the proteins expressed during the malaria parasite sporo-
gonic stages and their influence on parasite development.
The technique of gene disruption is an extremely useful
tool in this quest and it is suggested that, in additional to
in vivo studies to determine gene function, an in vitro cul-
ture system will facilitate these investigations.
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