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Abstract
Background: Clinical malaria has proven an elusive burden to enumerate. Many cases go
undetected by routine disease recording systems. Epidemiologists have, therefore, frequently
defaulted to actively measuring malaria in population cohorts through time. Measuring the clinical
incidence of malaria longitudinally is labour-intensive and impossible to undertake universally.
There is a need, therefore, to define a relationship between clinical incidence and the easier and
more commonly measured index of infection prevalence: the "parasite rate". This relationship can
help provide an informed basis to define malaria burdens in areas where health statistics are
inadequate.

Methods: Formal literature searches were conducted for Plasmodium falciparum malaria incidence
surveys undertaken prospectively through active case detection at least every 14 days. The data
were abstracted, standardized and geo-referenced. Incidence surveys were time-space matched
with modelled estimates of infection prevalence derived from a larger database of parasite
prevalence surveys and modelling procedures developed for a global malaria endemicity map.
Several potential relationships between clinical incidence and infection prevalence were then
specified in a non-parametric Gaussian process model with minimal, biologically informed, prior
constraints. Bayesian inference was then used to choose between the candidate models.

Results: The suggested relationships with credible intervals are shown for the Africa and a
combined America and Central and South East Asia regions. In both regions clinical incidence
increased slowly and smoothly as a function of infection prevalence. In Africa, when infection
prevalence exceeded 40%, clinical incidence reached a plateau of 500 cases per thousand of the
population per annum. In the combined America and Central and South East Asia regions, this
plateau was reached at 250 cases per thousand of the population per annum. A temporal volatility
model was also incorporated to facilitate a closer description of the variance in the observed data.
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Conclusion: It was possible to model a relationship between clinical incidence and P. falciparum
infection prevalence but the best-fit models were very noisy reflecting the large variance within the
observed opportunistic data sample. This continuous quantification allows for estimates of the
clinical burden of P. falciparum of known confidence from wherever an estimate of P. falciparum
prevalence is available.

Background
Measuring the clinical burden posed by Plasmodium falci-
parum infection has been a long-standing challenge for
epidemiologists [1-11]. In the absence of complete and
accurate health information systems [12], malaria disease
burdens have often been modelled from a presumed rela-
tionship between infection risk and clinical outcome,
extrapolated over mapped proxies of infection risk [4-
6,8,9]. These approaches summarize the infection risk
and clinical outcome relationship by infection risk classes
and thus develop categorical estimates of disease burden.
For example, the relationship between Plasmodium falci-
parum malaria prevalence and incidence was used with a
categorical global map of malaria endemicity (modified
from its historical form [13]) to estimate the clinical bur-

den of malaria globally [10]. The paired prevalence and
incidence estimates were grouped for each of the standard
endemicity classes [14] (hypoendemic, mesoendemic and
hyperendemic and holoendemic combined, see Figure 1)
and the median and inter-quartile range used to define the
incidence and its error-bounds for each class. When com-
bined with the relevant population surface this procedure
provided an estimate of 515 (range 300–660) million
clinical episodes of P. falciparum malaria in 2002 [10].

A new global map of P. falciparum malaria endemicity for
2007 has now been published [15]. This provides a con-
tinuous prediction of prevalence (P. falciparum parasite
rate in the two up to ten year age group, PfPR2–10, between
0–100%) for every 5 × 5 km pixel within the stable limits
of P. falciparum malaria transmission [16]. This map over-
comes some of the problems of modified versions of the
map created by Lysenko [10]: it is a contemporary meas-
ure of global malaria endemicity, based on evidence from
a huge repository of parasite rate surveys [17] and imple-
mented in a Bayesian model-based geostatistical frame-
work [18], so that the uncertainty in predictions is
represented explicitly [15]. This map therefore, provides a
substantially improved spatial platform for future revi-
sion of clinical malaria burden estimates.

Since the map now provides estimates of endemicity as a
continuous variable [10], in contrast to the historical cat-
egorical map [13], it becomes important to investigate the
relationship between P. falciparum malaria prevalence and
incidence. Here, a revised data assembly is presented to
better define the continuous relationship between clinical
incidence and parasite prevalence. Importantly, the uncer-
tainty in this relationship is modelled and can, therefore,
be quantified in future "cartographic" burden estimation
initiatives [19,20].

Methods
Data assembly
Formal literature searches for data were conducted on
PubMed [21] with the search term: "Malaria" [Mesh] AND
("Incidence" [Mesh] OR "Epidemiology" [Mesh] OR "epi-
demiology" [Subheading]) AND (("1985/01/01"
[PDat]:"2008/12/01" [PDat])). These searches were run
for the final time on 31 December 2008. These lists were
augmented with the results of previous searches [10] and
various additional search strategies intended to identify

Annual clinical incidence of P. falciparum per 1,000 population in hypoendemic, mesoendemic and combined hyperendemic and holoendemic prevalence conditions [10]Figure 1
Annual clinical incidence of P. falciparum per 1,000 
population in hypoendemic, mesoendemic and com-
bined hyperendemic and holoendemic prevalence 
conditions [10]. The box indicates the inter-quartile range 
(25% and 75%) and the thick line within the box represents 
the median. The whiskers represent the 2.5% and 97.5% cen-
tiles and outliers are plotted as circles outside this range. The 
numbers of observations in each class are shown.
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informal literature, including direct approaches to
authors. The aim was to identify all active fever surveil-
lance surveys undertaken and reported on since 01 Janu-
ary 1985.

All studies were required to meet the following criteria for
inclusion: (i) the study was undertaken since 1985 and
thus coincidental with malaria prevalence data used in the
global maps of P. falciparum endemicity [15]; (ii) surveys
were longitudinal and community-based involving pro-
spective active case detection (ACD) of fever cases; (iii)
ACD was undertaken at a minimum frequency of fort-
nightly; (iv) results were presented in a way that allowed
the computation of the number of cases and person years
of observation; (v) all fever cases were examined for the
presence of P. falciparum parasites in the peripheral blood;
(vi) surveys covered all age groups in the sampled popu-
lation from birth to adulthood; and (vii) surveys were
undertaken over at least one complete 12 month period to
account for seasonal variation, or were within a defined
(by vector surveillance) period of transmission. A mini-
mum definition of "clinical malaria" was defined as the
presence of self-reported or measured fever in a subject
who had coincidental P. falciparum infection of any para-
site density.

Single cross-sectional surveys and surveys where commu-
nities were visited monthly and thus likely to miss disease
events were not included. Daily surveys were also
excluded because these extremely intensive investigations
of populations were difficult to separate from the studies'
direct influence on local malaria incidence. The frequency
of active case detection (ACD) in included studies, there-
fore, varied between two days and two weeks.

The literature search for data and additional correspond-
ence identified 103 publications and reports with poten-
tial data that were reviewed. Data from these studies were
extracted and coded according to the method of case
ascertainment (ACD, repeat cross-sectional surveys with
or without PCD); the frequency of case detection; the case
definition used for each study and the number of P. falci-
parum cases identified; the study period and duration and
the size of the population studied. From the 103 identi-
fied sources, 61 reports fulfilled the combined inclusion
criteria (See Additional File 1). Three were excluded
because the survey report provided insufficient details on
how the survey was conducted, a further nine were
excluded because they were not undertaken across a com-
plete calendar year, another sixteen because they were
daily, monthly or cross-sectional reports, ten studies
because they involved PCD only and four studies for a
selection of other reasons. Fourteen surveys were included
despite only providing limited details of the surveillance
methods, where an informed estimate could be obtained

on the frequency of surveillance from parallel literature
from the same area or same author (these are indicated in
the footnotes in Additional File 1).

Reports capturing more than one village population were
disaggregated to represent separate observations where
possible. All observations were then geo-positioned using
standard techniques outlined elsewhere [17]. In those
cases where incidence could be presented for several years,
every year of follow up was reported separately. The
results of the data abstractions (n = 141 observations) for
these epidemiological surveillance studies of P. falciparum
clinical incidence are shown in Additional File 1. The data
are grouped by region, country and location.

Matching to infection prevalence
A contemporary estimate of PfPR was included with, or
obtained through personal communication for, 91 of the
141 clinical incidence observations (Africa+ 16, America
14 and CSE Asia 61). These data are shown in Additional
File 1 (column PfPR). Where it was not possible to use the
same report to match a congruent estimate of PfPR, the
Malaria Atlas Project database [17] was used to search for
surveys that were matched as close as possible in time
(within five years) and space (within 20 km) to the esti-
mates of clinical incidence. This yielded 23 further
matches (Africa+ 4, America 6 and CSE Asia 13). Where
this was not possible, the prevalence was predicted using
the same database and procedures used to generate a glo-
bal map of P. falciparum endemicity for 2007 [15]. This
applied to 27 further points (Africa+ 5, America 0 and CSE
Asia 22). These procedures are described in detail else-
where [15] but, briefly, a Bayesian geostatistical model
was constructed that could predict prevalence continu-
ously through space and time by defining a spatio-tempo-
ral random field parameterized by a space-time
covariance function that included a seasonality compo-
nent and a mean function that incorporated long-term
temporal trends in endemicity and covariates such as the
influence of urban and rural areas. The model also incor-
porated a Bayesian standardization for the age range over
which PfPR surveys were conducted allowing all predic-
tions to be made for a common 2–10 year age window.
Infection prevalence estimates were therefore provided for
this study that matched both the spatial location of each
clinical incidence survey and the time period over which
it was collected. These data are all shown in Additional
File 1 (column PfPR2–10). These prevalence predictions
were also generated for all incidence studies (Africa+ 25,
America 20 and CSE Asia 96) for comparison and are
shown in column "PfPR2–10 predicted". All subsequent
modelling was carried out using three alternative sources
of matched infection prevalence values: those from preva-
lence observations made during, or close in space and
time to the incidence surveys only; those resulting from
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the geostatistical model only; or a combination of the two
where the geostatistical predictions were used where suit-
able observations were not available.

Experimental approach
The algebraic form of the relationship between average
parasite rate and average clinical incidence for P. falci-
parum malaria is not known. However, prior knowledge
based on epidemiological evidence does allow certain
constraints to be placed on the form of plausible relation-
ships [22]. For example, the relationship must start at the
origin (when incidence is zero, prevalence must also be
zero), should be relatively smooth (because it is under-
pinned by a biological mechanism) and its rate of increase
should slow and possibly become negative at the highest
parasite rates (as the individuals that constitute the popu-
lation at high endemic levels develop an immunity which
enables them to manage the clinical manifestations of
infection [22]).

Faced with this partial knowledge, a typical approach
would be to choose between a collection of parametric
models, possibly derived using mechanistic considera-
tions (for example [23]), using an information criterion
statistic [24]. A key limitation of this approach is that the
choice of the model set is ad-hoc and can affect substan-
tially the results. In these analyses, an alternative
approach was adopted that avoided choosing an arbitrary
parametric model. A single, flexible model was defined
that could take, or approximate, most reasonable model
forms whilst incorporating the basic prior epidemiologi-
cal constraints. This was achieved with a nonparametric
model based on a Gaussian process [25,26]. Standard
Bayesian inference was then used to choose between the
candidate models when compared to the data. Figure 2
illustrates some examples of possible forms of the parasite
rate versus incidence relationship that this model sup-
ports. It is important to note that a simple algebraic form
cannot be defined for any of them.

It is known that opportunistic retrospective assemblies of
epidemiological data will display substantial noise, or
apparently random variation (See Additional File 1). In
the current setting, for a fixed, known value of parasite
rate, the noise in the data was attributed to two separate
sources: randomness due to the sampling process (clinical
incidence estimates recorded over a small survey group
will be more uncertain than those from larger surveys)
and temporal volatility in incidence (population-wide
levels of clinical incidence will naturally fluctuate through
time). Temporal volatility is expected to be more severe in
areas of low than high endemicity [27]. To incorporate
these separate sources of noise and their respective charac-
teristics, a simple sub-model for the unobserved time-
series of incidence rates was developed, which was then

summed over the surveillance periods to obtain a model
for the noise in the observations. This sub-model for the
noise can be thought of as an epidemiologically more
plausible replacement for the standard negative binomial
regression [28]. Examples of the model's behaviour in
"endemic" and "epidemic" regions [29] are illustrated
schematically in Figure 3.

Experimental implementation
Expected incidence f(p) was modelled as a function of age-
adjusted parasite rate p using a Gaussian process, a very
flexible probability distribution for functions. By using a
Gaussian process, the overall shape of f was constrained to
incorporate the prior epidemiological knowledge without
imposing any particular parametric model form. A Gaus-
sian process in this context has two components: a mean
function (controlling the central tendency of the function
at a given value of p) and a covariance (controlling the sec-
ond-order characteristics of the function, such as its
smoothness).

The Gaussian covariance model [26] was used to ensure
that f was infinitely differentiable, meaning not rough.
This smoothness was considered desirable because the
biological mechanisms causing these relationships and
those forms chosen by most parametric models would
also be smooth. The mean function of f was modelled
using the simple parametric model E[f(p)] = a(1 - exp(-
bp)) where a and b are unknown and assigned uniform
priors between 0 and 100, and 0.1 and 100, respectively.
The Gaussian process distribution was conditioned so

Draws from the prior of the parasite rate verses clinical inci-dence relationshipFigure 2
Draws from the prior of the parasite rate verses clin-
ical incidence relationship. These curves provide a small 
yet representative sample of the possible relationships sup-
ported by the model. The colours help differentiate the 
curves.
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Typical time-series of annual incidence specified by the temporal volatility modelFigure 3
Typical time-series of annual incidence specified by the temporal volatility model. The dashed line is the expected 
incidence (per 1,000 individuals per annum (p.a.)) and the horizontal bars are the observed incidence. The left panel illustrates 
an "endemic" region of high parasite rate. The incidence in any month is close to the long-term mean, which is relatively high. 
The right panel shows an "epidemic" region of low parasite rate. The incidence in most months is well below the long-term 
mean, but occasionally is much greater. The long-term mean in the low parasite rate region is lower than in the high parasite 
rate region but monthly incidence in the former can occasionally exceed that in the latter.

Possible shapes for the relationship between parasite rate and expected incidenceFigure 4
Possible shapes for the relationship between parasite rate and expected incidence. The relationship between 
expected incidence per 1000 individuals per annum (p.a.) and prevalence was constrained to be concave down at a parasite 
rate of 1 and to have at most one inflection point. The curves in the left-hand panel are examples of allowable relationships by 
these criteria, and the curves in the right-hand panel are examples of relationships that are not allowed.
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that f(0) = 0, in other words incidence was constrained to
be zero when parasite rate was zero. Values of 0.6 and 1
were chosen a priori for the range and sill parameters of f.
It would have been preferable to infer them with the other
parameters, but this more flexible model was prohibi-
tively difficult to fit. These values were chosen because
they produced a range of curve shapes for f that were
judged to be reasonable.

Three prior constraints were imposed on f. Firstly, f was
constrained to be concave down at x = 1, i.e. f" (1) < 0.
This ensured the rate of increase in incidence would even-
tually slow or reverse with increasing prevalence. Sec-
ondly, f was constrained to have at most one inflection
point between 0 and 1, that is, f" could change sign only
once. This ensured a relatively simple model form without
multiple peaks and troughs. Thirdly, f was constrained to
be positive on the interval (0, 1]. The effects of these series
of constraints are illustrated in Figure 4.

Temporal volatility in incidence was modelled using a
gamma process [18]. Heuristically, this is a stochastic
process that produces intermittent "spikes" punctuating
periods of quiescence. In high parasite rate (PR) areas inci-
dence fluctuates little between years, whilst in low-PR
areas incidence is highly volatile, with a background of
low incidence punctuated by sporadic high incidence
events (occasional outbreaks/epidemics) [30,31]. These
characteristics of temporal volatility were modelled as fol-
lows. Firstly, the amount of volatility r was modelled as a
quadratic function of prevalence:

When r is low, volatility will be high and vice versa. Unin-
formative priors were used for the parameters of r subject
to the constraint that r' ≥ 0 on (0, 1]. Secondly, a theoret-
ical time series of incidence a was modeled using a gamma
process [32] parameterized by the volatility r and the
mean incidence f(pj):

Given the time series of incidence aj, observed cases were
modelled as outcomes of a Poisson process [32]. For-
mally, in location j, the times of infections τ for each indi-
vidual i were modelled as:

These three statements (equations 1 to 3) together formed
an explicit model for the timings of individual clinical
events. However, this model can easily be aggregated to
obtain a model for the total number of cases observed by
each study.

The influence of observation frequency on fever detection
has been described elsewhere [33], so the time intervals of
surveys were standardized to approximate weekly surveil-
lance where required. When ACD incidence was described
without accompanying passive case detection (PCD), fre-
quency was scaled to every seven days by multiplying tj by
the appropriate factor: fortnightly surveillance by 2.000
and surveillance conducted every ten, three and two days
by 1.4002, 0.429, 0.286 respectively. For studies that were
conducted alongside PCD, tj was unadjusted assuming
missed cases would be detected passively.

It was assumed that P. falciparum infections will tend to
clear within a week, so that weekly active surveillance will
catch essentially all cases whereas fortnightly active sur-
veillance will catch cases with probability 0.5. Passive sur-
veillance, however, was assumed to catch all cases even if
the interval of surveillance is greater than fortnightly. It
was also assumed that surveillance that is more frequent
than weekly will double-count some cases.

For surveillance program j, which involves nj individuals,
lasts tj years and surveys at intervals of dj days, the model
for total cases yj obtained by aggregating models (1–3)
was:

This likelihood model and the Gaussian process model
for f, together with uniform priors for the scalar parame-
ters with appropriate constraints (such as positivity),
formed a Bayesian probability model for the data. The
model was fitted using Markov chain Monte Carlo [34]
using the open-source Bayesian analysis package PyMC
[35]. The code is freely available upon request.

Spatial dependence
If the prevalence and incidence relationship varied spa-
tially within a given region, then the use of a single model
for all areas in that region would lead to worse model fit
in some areas than others. This, in turn, would be mani-
fested as spatial dependence in the model residuals
[18,36,37]. To investigate this possibility, sample semi-
variograms of the mean deviance residuals in each were
examined.
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Results
Comparison of results of the predicted prevalence and
incidence relationship obtained using the three alterna-
tive sources of matched PfPR prevalence values (observed
contemporarily to the incidence surveys, predicted with
the geostatistical model, or a combination of the two)
revealed very little difference. The decision was made,
therefore, to use prevalence values predicted by the
geostatistical model as the matched value for all incidence
surveys, regardless of whether they had an observed prev-
alence value available, and these are the results presented
here. The geostatistical model was preferred because prev-

alence values were matched to incidence surveys exactly in
space and time and were age-standardized. An additional
advantage was that these modelled prevalences will form
the basis for future burden estimates so their use in this
study provides a consistency with future work. The results
obtained using the alternative matched prevalence values
are available on request.

The initial intention was to model each biogeographi-
cally, entomologically and epidemiologically distinct [38-
40] global region (the Americas, Africa+ (Africa, Yemen
and Saudi Arabia) and CSE Asia (Central and South East

Relationship between parasite rate and incidenceFigure 5
Relationship between parasite rate and incidence. Left: the posterior distribution of expected population-wide inci-
dence (per 1000 individuals per annum (p.a.)) against prevalence. This relationship would describe the observed incidence if 
surveillance were conducted for a very long time. Right: the predictive distribution of actual population-wide incidence per 
1000 individuals in any given year. The right-hand panels take temporal volatility into account, therefore, whereas the left-hand 
panels average it out. The top row shows the Africa+ region (n = 25) and the bottom the CSE Asia and the Americas regions 
combined (n = 116). The data points are the red dots, the black line is the median and the 0.25, 0.5 and 0.95 credible intervals 
centred on the median are shown in shades of progressively lighter grey.
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Asia) independently. There were so few data for the Amer-
icas, however, that they were merged with those from CSE
Asia, assuming that the epidemiology of P. falciparum was
relatively more similar between these regions than
between the Americas and the Africa+ region. The results
are shown in Figure 5.

The left-hand panels show the posterior distribution of f,
the expected incidence. The right-hand panels show the
predictive distribution of observed incidence y for a hypo-
thetical future survey that would sample 1000 individuals
weekly for two years. These "predictive panels" are a better
indication of the credible intervals that would be used in
burden estimation in a small area because the "posterior
panels" do not incorporate temporal volatility. The "pos-
terior panels" predict the average incidence in a region
over a period of many years, rather than in any particular
year. In other words, they average out the natural tempo-
ral variation that is regularly observed from year to year in
malaria incidence, whereas the "predictive panels" incor-
porate this variation. These considerations are explored
further in the discussion.

In each region, incidence increased slowly and smoothly
as a function of prevalence; reaching about 250 and 500
cases per thousand of the population per annum at parasite
prevalences above 40% in the Americas and CSE Asia
combined region and the Africa+ region respectively. As
expected, incidence is highly variable for any given preva-
lence. In the Africa+ region, for example, the predicted

95% credible interval for the number of observed clinical
attacks, given that 1000 individuals from a population
with a parasite rate of 30% will be sampled weekly for two
years, extends from less than 20 to about 1500. This range
may seem huge, but it is not unrepresentative of the data:
the four observations for which PR is between 10% and
25% had scaled incidences of 127.7, 53.8, 43.1 and 975.6.
In addition, the scarcity of data in the Africa+ region
causes relatively large parameter uncertainty. In CSE Asia
and the Americas, the analogous interval extends from
about 50 to more than 700. While many more data points
are available in this region, they are clearly very noisy.
Scaled incidence for points with parasite rates between
10% and 25% ranged from about 3 to 750.

There was some evidence of weak structure in the com-
bined CSE Asia and Americas semivariograms plots (Fig-
ure 6) but this was not statistically significant and hence
not of a level that would necessitate correcting the credible
interval defined here. No spatial dependence could be
determined in the noisy variograms from the Africa+
region.

Discussion
This study provides the first example of a nonparametric
Bayesian inference of a functional relationship in epide-
miology, although Munch et al [41] used a similar
approach in a comparable model selection problem in
fishery science. Moreover, this work also models for the

Spatial semivariograms of model residualsFigure 6
Spatial semivariograms of model residuals. Sample semivariograms of deviance residuals estimated at discrete lags (cir-
cles) and compared to a Monte Carlo null envelope (dashed lines) representing the range of values expected by chance in the 
absence of spatial autocorrelation. An estimated value falling outside the null envelope is indicative of significant spatial struc-
ture in the residuals at that lag. Shown are plots for the Africa+ region (left) and the combined Central and South East Asia and 
Americas regions (right).
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first time the continuous relationship between paired
prevalence and incidence in communities.

Regional variation
In each region, incidence increased gradually and
smoothly (as specified by the model) as a function of
prevalence, but was highly variable for any given preva-
lence. These relationships had similar forms in the Africa+
and the combined America and CSE Asia regions. The rate
of increase in prevalence in the Africa+ region was higher
however, reaching levels of around 500 cases per thou-
sand of the population per annum at prevalences above
40% compared to approximately 250 cases per thousand
of the population per annum in the combined America
and CSE Asia data.

There are many potential reasons as to why these relation-
ships may show regional variation, including: differences
in the dominant vector species [39,42], the impact of drug
resistance on recrudescent clinical attacks [43], the possi-
ble modification of P. falciparum clinical outcomes in
areas of Plasmodium vivax co-infection [44,45] and the
genetic contribution to disease risks as part of regionally
defined inherited blood disorders [46].

Effect of the time period modelled on credible intervals
A critical component of the modelling approach outlined
is the incorporation of temporal volatility in incidence
rate: its natural tendency to fluctuate independently of
changes in prevalence. An important implication of this
mechanism is illustrated in Figure 5 in which the left pan-
els show the average incidence if a population were held
at a constant parasite rate for a very long time, and the
right panels show the average incidence over a year.
Although it is tempting to consider the left-hand panels as
illustrating the "underlying" relationship that remains
after the noise in the data has been filtered out, the right-
hand panels are the correct ones to associate with predic-
tions for a given year in a single population. Intuitively,
this can also be understood because the credible intervals
of the right-hand panels (Figure 5) match more closely the
range of the observed data. The noisy predictions reflect
the empirical fact that the situation at any given time in a
region may deviate significantly from any "typical" trans-
mission pattern that conventional wisdom dictates there.

Caveats
In a departure from standard epidemiological practice, the
credible intervals derived capture uncertainty in the long-
term relationship, as well as uncertainty expected in future
observations due to temporal volatility. Rather than con-
sidering the randomness in the data to be a nuisance that
obscures the true malaria dynamics, it has been modelled
as an essential component of the predictive statistical
method.

In addition to assumptions about the relationship
between parasite rate and expected incidence, these results
depend on assumptions about the temporal volatility.
Firstly, it was assumed that volatility decreased with
increasing average parasite rate. Examination of the poste-
rior distribution of the volatility function r suggested that
this constraint did not restrict artificially the values fitted
by the model (this was not shown). Secondly, it was
assumed that factors such as age and immunity that affect
individuals' probability of a clinical episode independ-
ently from prevalence did not differ systematically
between communities.

The model also assumed that, given average parasite rate,
incidence at different times and places was independent.
In other words, all spatiotemporal correlation in inci-
dence was driven by that in the underlying parasite rate.
This assumption is likely to have implications for predic-
tions of burden over extended spatiotemporal regions and
should be carefully examined when more relevant data
are available. Furthermore, we have not considered the
possible influence on the prevalence-incidence relation-
ship of morbidity from other sources such as co-infection
[47]. The absence of clear spatial autocorrelation in the
model residuals suggests that, if any such effects were
induced by a secondary spatially varying condition, these
effects were weak.

Future work
This study has focussed on describing an empirical rela-
tionship to support burden estimation initiatives but
there is clearly a significant opportunity for extending
mathematical modelling work [23,48,49] in this area to
help guide thinking about plausible biological mecha-
nisms. This study has been reliant on a series of surveys
conducted by a range of authors, in a range of countries
with very different objectives. It is not inconceivable that
a series of planned systematic prospective studies, for
example a stratified sample of new paired incidence and
prevalence measures along a gradient of transmission in
each continent, would reduce substantially the uncer-
tainty associated with this relationship.

This work is informative about the nature of the relation-
ship between incidence and prevalence but also provides
an important step in enabling revisions of the global clin-
ical burden of P. falciparum malaria. The Malaria Atlas
Project [19,20] is currently developing the computational
tools needed to draw samples from the joint predictive
distribution of the global endemicity surface (also known
as "conditional simulations") [15]. The statistical model
presented here was developed specifically for the purpose
of converting these samples to corresponding samples of
the global incidence surface, and thence to samples from
Page 9 of 11
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the predictive distribution of burden in any geographical
area.

It is hard to anticipate how these results might affect esti-
mates of the global burden of malaria and so we conclude
with three observations that might be illustrative of the
direction and influences. First, if the summaries of these
incidence data are conducted in the same way as previous
burden estimates [10], the median incidences described
for each endemicity class are very similar (compare Figure
1 and Figure 7), but the variance around these estimates,
described by the inter-quartile ranges, much less. Second,
much of the contemporary endemicity in the world [15]
is described by much lower prevalence than would be sug-
gested by inspecting historical maps [13], with median
prevalence values for the America, Africa and CSE Asia
regions of approximately 2, 33 and 10% respectively. This
lower contemporary description of endemicity would sug-
gest a concurrent lowering in the morbidity estimate com-
pared to earlier attempts. Moreover, large areas of each
region are at predicted prevalence levels where the credi-
ble intervals for clinical incidence are relatively small,
which augurs well for improving the uncertainty in future
burden estimates. Third, independent of these changes,

population growth [50,51] will have continued apace
since the last estimates in 2002 and therefore increase
population denominators included in the burden calcula-
tions. Ongoing efforts are focussed on resolving these
interacting influences and providing revised "carto-
graphic" clinical burden estimates for 2007.
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