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Abstract

Background: Malaria risk maps play an increasingly important role in disease control planning, implementation,
and evaluation. The construction of these maps using modern geospatial techniques relies on covariate grids:
continuous surfaces quantifying environmental factors that partially explain spatial heterogeneity in malaria
endemicity. Although crucial, past variable selection processes for this purpose have often been subjective and
ad-hoc, with many covariates used in modeling with little quantitative justification.

Methods: This research consists of an extensive covariate construction and selection process for predicting Plasmodium
falciparum parasite rates (PfPR) in Africa for years 2000-2012. First, a literature review was conducted to establish a
comprehensive list of covariates used for malaria mapping. Second, a library of covariate data was assembled to
reflect this list, a process that included the construction of multiple, temporally dynamic datasets. Third, the resulting
set of covariates was leveraged to create more than 50 million possible covariate terms via factorial combinations
of different spatial and temporal aggregations, transformations, and pairwise interactions. Fourth, the expanded
set of covariates was reduced via successive selection criteria to yield a robust covariate subset that was assessed
using an out-of-sample validation approach.

Results: The final covariate subset included predominately dynamic covariates and it substantially out-performed earlier
sets used by the Malaria Atlas Project (MAP) for creating global malaria risk maps, with the pseudo-R2 value for
the out-of-sample validation increasing from 0.43 to 0.52. Dynamic covariates improved the model, with 17 of the
20 new covariates consisting of monthly or annual products, but the selected covariates were typically interaction
terms that included both dynamic and synoptic datasets. Thus the interplay between normal (i.e., long-term averages)
and immediate conditions may be key for characterizing environmental controls on parasite rate.

Conclusions: This analysis represents the first effort to systematically audit covariate utility for malaria mapping and
then derive an objective, empirically based set of environmental covariates for modeling PfPR. The new covariates
produce more reliable representations of malaria risk patterns and how they are changing through time, and these
covariates will be used to characterize spatially and temporally varying environmental conditions affecting PfPR within
a geostatistical-modeling framework, thus building upon previous research by MAP that produced global malaria maps
for 2007 and 2010.
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Background
Malaria risk maps play an increasingly important role in
disease control planning, implementation, and evalu-
ation, at scales ranging from local to global. Initial mal-
aria mapping efforts resulted in manually drafted maps
based largely on the expertise of a malariologist and the
skill of an associated cartographer [1]. In more recent
years, however, the production of malaria risk maps has
been revolutionized through (i) the application of geo-
graphic information systems (GIS); (ii) the development
of analytical techniques that extend statistical method-
ology into the spatial domain [2]; (iii) the evolution of
spatial data products (i.e., covariates) that characterize
natural and anthropogenic phenomena in a spatially expli-
cit manner; and (iv) the proliferation of large-scale survey
efforts that include measurements of malaria infection
prevalence in geolocated communities [3]. Together these
developments provide the tools and datasets necessary for
producing malaria maps, including global products [4-6]
that have a demonstrated utility within the malaria policy
sphere [7].
Malaria mapping is an evolving research topic that is

poised to expand in scope via studies that extend cross-
sectional mapping methods into the temporal domain,
thus allowing analysis of changing patterns of risk though
time in an era of intensive control activity [8]. Increasing
demand for more reliable and elaborate characterization
of malaria risk patterns has fostered substantial innovation
in spatiotemporal statistical methodology to improve pre-
dictive accuracy and provide robust characterizations of
uncertainty [2,5,9,10]. Similarly, the quality, volume, and
geographic coverage of data on malaria infection preva-
lence continue to increase, spearheaded by major inter-
national survey initiatives, such as the Demographic and
Health Survey (DHS) program. In contrast to these ad-
vances, the covariate datasets selected for malaria map-
ping endeavors have received comparatively little
concerted research attention. Although covariates often
form the most important component of a geospatial
malaria model when deriving predictions far from loca-
tions with observed data, the criteria for identifying and
including particular covariates in a given study are
often ill defined, with analysts relying on subjective a
priori decisions about factors believed to be important,
or simply selecting from a standard set of well-known
variables based largely on their availability and conveni-
ence. Early examples of the use of environmental covar-
iates in malaria risk mapping began appearing in the
1980s [11] and their inclusion in modern mapping ef-
forts is now ubiquitous. Despite the increasing number
of published malaria maps, a thorough meta-analysis of
the spatial covariates utilized has not been undertaken.
In this context, the goals of this research were to (i)

audit the universe of covariates that have been used in
malaria risk maps; (ii) generate additional covariates where
necessary, with a particular emphasis on the production of
temporally dynamic datasets (i.e., covariates that vary
through time); and (iii) develop an objective procedure to
identify a robust covariate subset that will contribute the
maximum predictive accuracy when incorporated in a
spatio-temporal mapping exercise. This research fits into
the broader research objectives of the Malaria Atlas Pro-
ject (MAP) as it will (i) support spatio-temporal modeling
of PfPR in Africa and (ii) increase the accuracy of the PfPR
outputs for Africa, which in turn will improve results from
downstream applications such as the modeling of clinical
incidence and mortality. Furthermore, this research repre-
sents the due diligence necessary when transitioning from
modeling only spatial heterogeneity in PfPR for single time
periods (i.e., the previous iterations of the MAP global
products [4,5]) to producing outputs that characterize
PfPR through space and time.

Methods
Literature review of covariates used in malaria risk mapping
The initial step in this research was to conduct a com-
prehensive review of peer-reviewed publications to de-
fine and quantify the covariates that have been used in
past malaria mapping endeavors. A Web of Knowledge
search using the broad search terms ‘malaria’ and ‘map’
yielded 2,237 potential publications. These were screened
manually and included only if they presented a map of
malaria endemicity or risk that was generated using actual
malaria infection response data or a related metric of
transmission (such as entomological inoculation rate), and
used at least one spatial covariate. To limit the scope of
the analysis, the focus was only on the use of environ-
mental covariates for mapping malaria, however such
covariates have also been used as confounders in re-
search designed to assess, for example, intervention ex-
posures [12].
From the resulting 113 studies (see Additional file 1),

all covariates included in modeling were identified and
summarized, and details such as the spatial resolution
and underlying source of each covariate were recorded.
The final map provided within each publication was also
categorized by study extent (i.e., multinational, national,
or subnational) and by continent of focus. The covariates
were then grouped into logical categories, based on the
covariates used and reasons for their selection, and tabu-
lated to produce Figure 1.
The results of the meta-analysis demonstrate that cli-

matic datasets quantifying temperature and precipitation
are the most commonly used covariates for malaria
mapping (>50% of studies), with metrics characterizing
landscape properties (e.g., land cover type, vegetation in-
dices, and metrics related to surface moisture and/or
mosquito breeding sites) also being used extensively



Figure 1 Covariate use in malaria mapping. Summarized results from research from 113 published studies.
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(>40%). Other covariate categories used are (in order of
prevalence) elevation, humidity, products derived from
digital elevation models (DEM), spatial limits of malaria
(i.e., geospatial masks), distance from services, spatial co-
ordinates (latitude and longitude), wind speed, time, and
land surface reflectivity.
In many respects the consistency in the covariates

used across malaria mapping endeavors is to be ex-
pected, as both the development of new spatial data
products and the widespread adoption of these products
in the malaria research community are slow processes.
In general, the meta-analysis showed that the spatial
scale of the mapping endeavor was an important influ-
ence on the variables used as some covariates (e.g., de-
tailed maps of mosquito breeding sites) are available
only for fine-scale studies due to the high computational
and/or labor cost required to derive them. In contrast,
the coarse scale of other covariates (e.g., global climatic
datasets) may render them effectively useless for fine-
scale analyses if, for example, all the response points fall
within just a few grid cells.
Among the previous malaria mapping projects, the

one that placed the greatest scrutiny on covariates was
the MAP global malaria endemicity map for 2010 [5].
This research did an extensive exploration of many en-
vironmental covariates and ultimately selected the final
set of covariates via an exhaustive test that compared all
possible 10 and 20 term models. This project was lim-
ited, however, by a lack of dynamic covariates, no testing
for non-linear relationships with malaria response data,
and no exploration of interaction terms. This paper aims
to improve upon the earlier MAP variable selection ap-
proach, which will be used as the benchmark for judging
the results of the research presented.

Plasmodium falciparum infection prevalence data
The geographic region, scale of analysis, time period,
and parasite selected for this study were, respectively,
Africa, 5 × 5 km pixels, 2000-2012, and Plasmodium fal-
ciparum. Response data consisted of observations of P.
falciparum infection prevalence (termed parasite rate,
abbreviated hereafter to PfPR), each describing the num-
ber of individuals tested and found positive within a de-
fined cluster represented geographically by a latitude
and longitude coordinate attributed to each cluster cen-
troid. The geographic coordinates for the cluster cen-
troids were spatially offset in most cases, but the typical
spatial offset (e.g., DHS offsets points by up to 5 km in
rural areas) relative to the 5 × 5 km pixel size was such
that cluster points would fall at most one pixel away
from their correct location. Due to this limited offset of
the points within the context of the raster analysis
framework, no correction factor was applied to the clus-
ter locations for this analysis. Each survey cluster is also
associated with a survey date that allows the PfPR to be
temporally linked to dynamic covariates. These survey
dates present two known limitations for this research: (i)
the surveys often span multiple months and thus there
is some uncertainty associated with the samples’ dates,
and (2) positive diagnoses of malaria identified via the
survey are not necessarily linked with the timing of in-
fection, as the initial malaria infections may have oc-
curred months or even years prior to the survey date.
The initial dataset consisted of 16,289 for years 2000-

2012 [3], of which 10,903 were derived using micros-
copy, 5160 were derived using RDT, 122 were from RDT
and confirmed by microscopy, and 104 were from RDT
and confirmed by PCR. The data sources for the data
are as follows: 5313 from DHS, 3195 from published lit-
erature, 1619 from other household surveys, 5900 from
personal communication, and 262 from other sources.
The majority of clusters (n = 9231) contained individuals
above five years old, which necessitated an age adjust-
ment to standardize the ages to years 2 through 10,
which was done following Smith et al. [13]. The full set
of points was trimmed to 16,253 clusters by removing
all clusters with errors and/or an n of zero (i.e., all clus-
ters with one or more individuals were used in this ana-
lysis), and then further reduced to 13,680 when points
with matching spatial and temporal information (i.e.,
points falling within the same grid cell and collected
during the same month and year) were aggregated. For
validation purposes, 3,000 of 13,680 points were selected
at random and reserved for out-of-sample validation, leav-
ing a training dataset of 10,680 points. Figure 2 illustrates
the distribution of survey points across space and time.

Assembled covariate datasets
The datasets selected for this research were chosen to
span the categories identified in the background litera-
ture review and to test the utility of including dynamic
variables capable of characterizing inter- and intra-
annual change in PfPR. Key considerations when select-
ing variables were the spatial and temporal resolutions
and extents of the datasets, which will be synchronized
to the timing of the response variable collection time(s),
thus supporting a robust spatio-temporal modeling ap-
proach. Wherever possible, dynamic datasets were used
as the direct or proximate sources for the covariates.
Such dynamic datasets represented a potentially import-
ant shift from synoptic datasets (i.e., single layers repre-
senting mean annual conditions) to covariates that
accounted for changing landscape conditions through
time (e.g., monthly, seasonal, or annual products). As
well as addressing change, the inclusion of dynamic
datasets presented new opportunities that dramatically
increased the range of potential predictor variables that
could be derived by assessing, for example, multiple



Figure 2 Map of household clusters by year. These survey points constitute the dependent variable for this research, with the training points
used to parameterize the model, and the reserve points used for out-of-sample model validation.
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temporal lags, spatial and temporal summarization ap-
proaches, and deviation from normal conditions (i.e.,
temporal anomalies). However, in some instances (e.g.,
elevation) this was obviously unnecessary, while other
covariates (e.g., precipitation – see below) lacked the
requisite data quality and/or fidelity at the spatial and
temporal resolutions required in this study. In such
cases, synoptic datasets were used instead. For dynamic
covariates, values attributed to the malaria survey points
were linked in both space and time, and included all de-
sired lagged dates preceding the survey period.

Temperature
The importance of temperature on mosquito survival,
breeding, and biting rates has been well established
[14,15] and, accordingly, temperature-related covariates
are the most commonly used predictor variables in mal-
aria mapping research. Spatio-temporal temperature pat-
terns can be characterized in different ways and using
different products. For this research four different
temperature metrics were selected, each of which was
derived from MODIS land surface temperature (LST)
data [16] that were first gap-filled to remove missing
values [17] and then aggregated to a monthly temporal
resolution. The resulting datasets were (i) daytime LST;
(ii) night-time LST; (iii) delta LST (i.e., daytime LST
minus night-time LST); and (iv) temperature suitability
for P. falciparum transmission [18]. Using remotely
sensed data for characterizing temperature is advanta-
geous as the LST values are directly attributable to each
grid cell. As such, even in cases where an empirical
model was used to fill a missing cell value, LST values
are more representative of an in situ measurement than
modeled datasets derived using measurements collected
at widely dispersed meteorological base stations.
Precipitation
Precipitation is associated with malaria risk directly, as it
affects the availability of standing water utilized by mos-
quito larvae, and indirectly, by its influence in determin-
ing habitat types. Unlike temperature there are no
readily available, remotely sensed precipitation datasets
with the spatial and temporal resolutions and extents re-
quired for this analysis. As such, the global precipitation
dataset produced by the WorldClim project [19] was
used, after summarizing this dataset using Fourier ana-
lysis to create grids quantifying four amplitude metrics
(the first of which is the mean precipitation value) and
three phase metrics [20]. The resulting Fourier metrics
characterized aspects of precipitation including the mag-
nitude, variability, and seasonal rate of change for each
grid cell. By summarizing many years of data into just a
few, synoptic products, problematic aspects associated
with modeling a contiguous raster dataset from sparsely
distributed precipitation measurement stations were re-
duced. The downside of the Fourier summarization ap-
proach, however, was that long-term spatio-temporal
trends (e.g., desertification) and other between-year vari-
ations were not retained in these datasets.

Land cover
Land cover datasets characterize the spatial distribution
and arrangement of land cover types, which impact mal-
aria endemicity because vector mosquito species occupy
distinct ecological niches (e.g., Anopheles species prefer
dense forest cover). Land cover datasets are typically
produced by classifying remotely sensed imagery to cre-
ate categorical outputs, wherein each pre-defined land
cover type is codified using a single value. The categor-
ical nature of land cover data can add complexity to a
modeling process, but by acquiring land cover data of a
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higher spatial resolution than the analysis resolution, the
categorical land cover can be converted into a set of
continuous covariates, with one raster produced for each
land cover class for each time period. For this analysis the
International Geosphere-Biosphere Programme (IGBP)
land cover classification available within the MODIS
MCD12Q1 dataset [21] was utilized as it provided a dy-
namic (annual) land cover product for 2001-2012, with 17
classes (Table 1), and a 500-m spatial resolution. The cat-
egorical datasets were then summarized to produce 204
bands that quantified, for example, the fractional cover of
evergreen broadleaf forest within a 5 × 5 km cell for 2005.
To further test the utility of the land cover datasets, an
additional metric was created that quantified the percent-
age of like adjacencies within the higher spatial resolution
cells on a per-class basis, which is useful for characterizing
landscape structure (i.e., whether the 500 × 500 m cells of
a given class present within the 5 × 5 km output cell are
contiguous or disaggregated).

Surface moisture and vector breeding site information
Information characterizing the availability of standing
water is useful for assessing vector habitat quality as it
can differentiate comparatively wet and dry grid cells.
Candidate raster products for characterizing soil mois-
ture include DEM derivatives (see below) and remotely
sensed metrics designed to capture the moisture present
in pixels. Examples of the latter include the normalized
difference wetness index (NDWI) [22] and the tasseled
Table 1 IGBP land cover classes

Class number IGBP class

0 Water

1 Evergreen needleleaf forest

2 Evergreen broadleaf forest

3 Deciduous needleleaf forest

4 Deciduous broadleaf forest

5 Mixed forest

6 Closed shrublands

7 Open shrublands

8 Woody savannas

9 Savannas

10 Grasslands

11 Permanent wetlands

12 Croplands

13 Urban and built-up

14 Cropland/Natural vegetation mosaic

15 Snow and ice

16 Barren or sparsely vegetated

The International Geosphere-Biosphere Programme classification system utilized
within the MODIS land cover product.
cap wetness (TCW) approach [23] that has seen been
adapted for use with MODIS bidirectional reflectance
distribution function (BRDF) reflectance 16-Day com-
posite imagery (MCD43B4.A2) [24]. TCW was selected
for this analysis as previous research indicated it has a
stronger association with surface water present within a
pixel than NDWI [25]. Tasseled cap brightness (TCB)
was also calculated for use as a covariate pertaining to
moisture, as this metric will be high in areas with bare
soils and/or abundant senescent vegetation that may be
associated with dry seasonal phases. As with other
MODIS products used in this analysis, TCW and TCB are
dynamic products aggregated to a monthly temporal reso-
lution and subsequently tested using multiple temporal
lags. Lastly, the WorldClim potential evapotranspiration
(PET) and aridity index (AI) synoptic products [26] were
included to provide additional moisture-related covariates
based, at least partially, on precipitation data.

Vegetation indices
The density of vegetation cover is important for malaria
as a means of characterizing vector habitat quality given
the association between Anopheles mosquitoes and for-
ested landscapes [27]. Vegetation indices are also poten-
tially useful proxy datasets for precipitation, as datasets
characterizing vegetation vigor may be indicative of the
presence of standing water required for mosquito larval
development sites. Furthermore, vegetation indices may
be indicative of the topographic redistribution of water
(e.g., hilltops are dry in comparison to valley bottoms)
and thus further linked to standing water present in the
landscape. However, the relationship between vegetation
and available surface water is likely to be temporally
asynchronous as precipitation (and potentially standing
water) may precede the greening-up of vegetation as
seasons transition from dry to wet. Likewise, vegetation
may remain green for a period after seasonal precipita-
tion ends and ephemeral surface water bodies have evap-
orated. As such, it is important to consider temporal
lags when using vegetation cover as a potential proxy for
moisture, and doing so requires datasets that capture
intra-annual vegetation dynamics. Such vegetation dy-
namics are measurable using indices derived from multi-
spectral remotely sensed imagery collected at regular in-
tervals. For this research the enhanced vegetation index
(EVI) [28] was utilized to characterize vegetation dynam-
ics at a monthly temporal resolution for 2000-2012. As
with the LST, TCW, and TCB products, the EVI dataset
was produced using MODIS imagery that was gap-filled
using the Weiss et al. [17] algorithm.

Elevation
Elevation is used in malaria mapping primarily due to its
association with temperature and precipitation, and this
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variable is expected to add little additional information
to this analysis relative to high-quality climatic metrics.
In the interest of thoroughness, however, elevation was
included in this via an Africa-wide DEM created from
the Shuttle Radar Topography Mission (SRTM) dataset
[29], which had a native 90 m spatial resolution prior to
spatial summarization processing that produced 5 × 5 km
resolution products.

DEM derivatives
High spatial resolution DEMs can be used to model the
topographically controlled redistribution of water, thereby
quantifying the relative moisture of each cell given uni-
form precipitation. Specific variables useful in this context
include (i) slope angle, as water drains from steep slopes
more quickly than from gradual slopes; (ii) flow accumula-
tion, which sums the number of upslope grid cells that ul-
timately flow through cells located downslope and along
flow paths; and (iii) topographic wetness index (TWI) [30]
that combines slope and flow accumulation into a single
metric. For this research the SRTM elevation dataset was
converted into slope angle, flow accumulation, TWI, and
six slope angle threshold datasets that quantify the frac-
tion of the landscape with a slope less than one degree,
two degrees, three degrees, and so on.

Humidity
Humidity data were not directly included in this re-
search as gridded humidity products are not available at
the requisite spatial and temporal resolution necessary
for the analysis. However, EVI, TCW, and delta LST are all
potentially useful as proxies for humidity. EVI is related to
humidity as vegetation density and vigor (i.e., absorption
of photosynthetically active radiation) affect humidity due
to their association with transpiration. TCW affects hu-
midity as wet areas lose moisture via evaporation more
readily than dry ones (at comparable temperatures).
Diurnal differences in temperature are indicative of
humidity as atmospheric moisture insulates, retains
heat, and heat is released as humidity condenses into
dew, thus reducing diurnal temperature fluctuation.

Socio-economic
Several additional variables were included in this analysis
to account for anthropogenic factors associated with mal-
aria transmission. As the relationship between these vari-
ables and malaria risk has not been extensively tested,
several variants of each were included for exploratory pur-
poses. Population density surfaces were included to ac-
count for the decreased prevalence of malaria in densely
populated areas that results from poor habitat condi-
tions for Anopheles mosquitoes (e.g., cities with large
fractions of impervious surfaces, sparse vegetation, and
poor surface water quality [31]). Specific population
density surfaces tested were the AfriPop [32] and the
gridded population of the world (GPW) [33] datasets.
The AfriPop dataset was available at five-year intervals
from 2000 to 2015, and to more thoroughly assess the
relationship between PfPR and population within this
analysis, the dataset was converted into an annual
product using a per-cell linear interpolation. Night-time
lights data were included as a covariate due to the rela-
tionship between this variable and infrastructural devel-
opment (e.g., electrification) [34], which is also related
to urbanized areas likely to have lower PfPR infection
rates. Accessibility to cities with populations of more
than 50,000 [35] was included as remote areas are less
likely to have ready access to medical care useful for re-
ducing the endemic P. falciparum infection level. This
accessibility dataset consists of a cost-distance raster (i.e.,
a friction surface) derived by combining available trans-
portation infrastructure datasets (e.g., road networks and
airport locations) with nominal rates of travel using each
mode of transport.

Leveraging covariates
To increase the utility of the covariates, and to avoid a
priori assumptions about how the datasets are likely to
relate to PfPR, multiple techniques were applied to the
covariate datasets to create many variants of each. The
first of these techniques was spatial summarization. All
of the covariates had native spatial resolutions that were
higher than the 5 × 5 km analysis resolution and, as
such, descriptive statistics (mean, minimum, maximum,
range, standard deviation, and sum) (Figure 3) were cal-
culated when multiple cells were aggregated to 5 × 5 km
resolution. This procedure effectively increased the
number of covariates by a factor of up to six. As previ-
ously mentioned, the land cover and slope threshold
metrics were summarized using an approach that con-
verted the categorical data into fractional cover (i.e., the
proportion of the finer resolution cells meeting the clas-
sification criteria).
The dynamic nature of many of the covariates also

provided the opportunity to summarize the data tempor-
ally, thus producing synoptic products (i.e., temporal
means and standard deviations) using all dates in the co-
variate time-series and at both annual and monthly (e.g.,
the average conditions for all available months of March)
time steps (Figure 4). Note that, unlike the spatial
summarization approach, minimum, maximum, and range
were not calculated temporally since the monthly datasets
were already the products of averaging and/or composit-
ing and were thus unlikely to retain meaningful extreme
values. The creation of synoptic products then enabled
the derivation of anomaly products that characterized
how different cell values in dynamic datasets were relative
to synoptic values. Lastly, to account for environmental



Figure 3 Spatial summarization conceptual model. Multiple finer-resolution raster cells are summarized to create a variety outputs that
characterize intra-cell properties at the coarser-resolution.
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processes that have a lagged relationship with PfPR, mul-
tiple versions of the dynamic products (i.e., LST, TSI,
TCW, TCB, and EVI) were associated with each response
point at monthly lags ranging from one to four months.
Together the spatial and temporal summarization proce-
dures, the creation of anomaly covariates, and the use of
temporal lags increased the 33 base covariates to 922 vari-
ables associated with each response point (Table 2). The
covariates were linked to each survey point by extracting
values from raster datasets based at the spatial location of
the cluster and on the date of the survey (in cases where
the survey spanned multiple months, the first month was
used as the reference date). This procedure resulted in
a merged data array, and it was at this stage that the
table was split into the training and reserve datasets de-
scribed above.
The next step in the covariate leveraging process was

the consideration of potential non-linear relationships
between PfPR and the covariate datasets. As such, ten
transformations (Table 3) were selected to capture a
range of potential functional forms linking PfPR to the
covariates. Due to the use of log and square-root trans-
forms, some variables were rescaled prior to transform-
ation to eliminate values less than or equal to zero. The
use of transformations increased the set of covariates by
Figure 4 Temporal summarization conceptual overview. Summary stat
covariates and indirectly in the production of the anomaly covariates.
11-fold (i.e., the untransformed variable and ten trans-
formed versions), thereby establishing an effective covar-
iate set of 10,142.
In real-world settings, each biotic and abiotic factor in-

fluencing transmission acts not alone, but rather in con-
cert with all other such factors at a given location and
time. To capture these combinatorial effects in a statis-
tical model requires the inclusion of interaction terms
between individual covariates. As such, all possible inter-
actions from the set of 10,142 transformed covariates
were considered, which produced a final covariate set in
excess of 50 million possible variables (Figure 5).

Variable selection
The statistical technique underlying this research is the bi-
nomial generalized linear model (GLM), with a dependent
variable consisting of positive and negative P. falciparum
counts tabulated for each survey cluster, and the independ-
ent variables consisting of the covariates described above.
While the covariate leveraging process dramatically in-
creased the number of covariates, the remaining steps were
designed to reduce the number of the covariates and ultim-
ately produce a robust multivariate model of computation-
ally manageable size using an objective and rational
approach. All of the following phases were applied only to
istics are derived from multiple rasters that are used directly as



Table 2 The initial set of covariates

Variable Dynamic Synoptic Single Spatial summary Source Total variants

EVI Monthly Monthly 2000-2012 1 km to 5 km MODIS derivative 137

LST day Monthly Monthly 2000-2012 1 km to 5 km MODIS derivative 125

LST night Monthly Monthly 2000-2012 1 km to 5 km MODIS derivative 125

LST delta Monthly Monthly 2000-2012 1 km to 5 km MODIS derivative 52

TSI Monthly Monthly 2000-2012 1 km to 5 km Modeled [18] 125

TCW Monthly Monthly 2000-2012 1 km to 5 km MODIS derivative 125

TCB Monthly Monthly 2000-2012 1 km to 5 km MODIS derivative 125

Slope angle Static 90 m to 5 km SRTM derivative 6

IGBP landcover Annual 500 m to 5 km MODIS product [21] 17

IGBP landcover pattern Annual 500 m to 5 km MODIS derivative 17

Flow accumulation Static 90 m to 5 km SRTM derivative 6

Slope thresholds Static 90 m to 5 km SRTM derivative 6

Elevation Static 90 m to 5 km SRTM [29] 6

TWI Static 90 m to 5 km SRTM derivative 6

AfriPop population Annual 1 km to 5 km AfriPop [32] 1

Accessibility Static 1 km to 5 km Nelson [35] 6

WorldClim AI 1950-2000 1 km to 5 km WorldClim [26] 6

WorldClim PET 1950-2000 1 km to 5 km WorldClim [26] 6

Nighttime lights 2012 1 km to 5 km VIIRS 6

GRUMP 2010 1 km to 5 km GRUMP 2010 [33] 6

GPW 2010 1 km to 5 km GRUMP 2010 [33] 6

WorldClim preciptation 1950-2000 1 km to 5 km WorldClim [19] 7

Basic details of the untransformed covariates that were associated with each survey point for the final model.

Table 3 Transformations applied to the covariates

Name Equation

1) Untransformed X* = X

2) Normalize X� ¼ X−�Xð Þ=Xσ

3) Reciprocal X* = 1/X

4) Log Base 10 X� ¼ log10X

5) Natural Log X* = logeX

6) Inverse Hyperbolic Sine (IHS)a X* = loge(X + (X2 + 1)0.5

7) Square X* = X2

8) Square Root X* = X0.5

9) Cube Root X* = X1/3

10) BoxCox Power Transformation X* = Xλ

11) Absolute Normal X� ¼ X−�Xð Þ=Xσ

Where X is a vector of values for a given variable, X* is the resulting transformed
vector, �X is the mean of X, Xσ is the standard deviation of X , and λ is the optimal
univariate lambda for the BoxCox transformation calculated form the profile
likelihood function in a precursor step.
aIf the minimum value in the original data was zero, IHS was applied to the
unadjusted values. If the minimum value was negative IHS was applied to the
rescaled values.
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the training dataset, with the reserve (i.e., holdout) dataset
retained for out-of-sample validation of the final model.
Each successive selection phase was configured to reduce
the set of covariates by approximately an order of magni-
tude (Figure 5).
Phase one: strength of relationship
Phase one consisted of calculating GLM results for all
50 + million possible covariates (i.e., the bivariate GLM
relationship between each environmental covariate and
PfPR) and then ranking (i.e., sorting) the output based
on the Akaike Information Criteria (AIC, [36]) of the
models. The resulting set of variables was then trimmed
to retain only the best 10% of all models. Although the
choice of a 10% threshold is somewhat arbitrary, it was
guided by the rationale that poor predictor variables
need not be retained with such a vast number of better
predictors (i.e., more than five million) left to choose
from. Furthermore, the remaining variables still retained
multiple forms of all 33 base covariates alone or in com-
bination with other variables via an interaction term.



Figure 5 The number of covariates relative to the phase of analysis. The light grey points represent increasing covariates resulting from
leveraging procedures, while the dark grey points represent the reduction in covariates by processing phase.
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Phase two: reducing redundancy
Due to the use of transformations and the creation of
interaction terms, multiple variants of the same base co-
variate are present within the set of approximately five
million remaining variables. Because the variants (e.g.,
interaction terms consisting of the same two variables, but
with different transforms applied to each) are highly cor-
related it was unnecessary to retain more than one per co-
variate. To remove the redundant variants, the list of
covariates (sorted to prioritize binomial GLM models with
the lowest AIC values) was thinned to retain only the best
variant of each possible variable or interaction. This phase
reduced the set of covariates to approximately 137,000.

Phase three: stability
The remaining covariates were then subjected to a boot-
strapping procedure whereby a binomial GLM was run
for 1,000 random draws, each containing one-fifth of the
training dataset survey points (i.e., 2,136 points in each
draw). An identical randomization seed was used when
testing each covariate to ensure comparability of the re-
sults. The results of this phase were then ranked according
to the consistency of the AIC parameter across all the
draws, thus providing a means of characterizing which co-
variates were the most robust predictors of PfPR across a
wide range of potential subsets of survey clusters.

Phase four: spatial stationarity
This phase is conceptually similar to the assessment of
stability, but instead of taking random draws of the survey
clusters, the clusters were first grouped in subsets based
on their spatial location. Four separate spatial zonal
schemes were selected for this purpose, three of which
were simple grid-based approaches that used square re-
gions across Africa of widths two, four, and eight decimal
degrees (using WGS-1984 geographic coordinates). The
fourth zonal scheme utilized was The Nature Conservancy
ecoregion dataset [37] that categorizes areas based on
their biophysical and ecological properties. For each of the
four zonal datasets a binomial GLM was run using all
available points within each sub-region, and covariates
were tracked for their statistical significance across all
sub-regional models. The resulting tallies of significance
across all possible zones were then used to rank the covar-
iates based on their spatial stationarity. Unlike the analysis
of stability, the stationarity rank is also inherently a test of
spatial scale, as the highest ranked predictors were those
that were significantly related to PfPR variability at a var-
iety of scales.

Phase five: collinearity
The stability and stationarity ranks from the preceding
two phases were then combined to produce a composite
rank intended to preferentially select variables that were
the most consistent predictors of PfPR. The remaining
covariates were sorted using this composite rank, and
the resulting data table was thinned to remove highly
collinear variables (using a threshold of absolute correla-
tions in excess of 0.70 [38]). This process yielded a
thinned set of 1,887 covariates. The role of endogenous
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relationships was not considered beyond this test for
collinearity, as the ultimate (downstream) goal of this re-
search was to establish the best predictive PR map for
Africa rather than assessing the causal inference for indi-
vidual variables. Furthermore, given the scope of the
dataset, approaches suitable for assessing endogenous
relationships (e.g., regularization or the application of
structural equations) were computationally impractical.

Phase six: multivariate analysis
The final stage in the analysis was to produce a multi-
variate model of manageable size that was comparable
to the model used by MAP to create the 2010 global
PfPR map [5], which had 20 covariate terms. An adapted
version of the probabilistic variable selection approach
[39] was used for this purpose, as an exhaustive search
for 20 term models from a set of 1,887 covariates was
computationally prohibitive. This probabilistic variable
selection approach is predicated on selecting (initially)
random models and iteratively modifying the probability
of each term being included in the next quasi-random
draw based on that term’s impact upon previous models.
While the model that emerges from the probabilistic
variable selection procedure is not necessarily the optimum
model, this approach will produce a model that approaches
the maximum predictive capacity of the covariate dataset.

Evaluation of final covariate set performance
The final covariate model was tested for in- and out-of-
sample predictive accuracy using a variety of test met-
rics. For comparison, the same tests were performed
using the 20-covariate set from the earlier MAP study
[5]. The metrics used were (i) the AIC; (ii) root mean
squared error (RMSE); (iii) the squared correlation be-
tween the counts of actual and predicted positive P. fal-
ciparum individuals at each cluster; (iv) the squared
correlation between the measured and modeled PfPR;
and (v) the pseudo R2 value [40]. Multiple metrics were
used for comparing the multivariate models as no single
metric alone is ideal for the task. AIC is imperfect as it
is only applicable to the training dataset and it is a rela-
tive measure, so it is challenging to assess the degree of
improvement. RMSE is convenient because this metric
is in units of actual Pf positive individuals, but is also
heavily influenced by clusters with large sample sizes
where small errors in PfPR equate to many incorrectly
classified individuals, and thus disproportionally im-
pacts the mean error for all clusters. The R2 count
metric is also directly impacted by the number of indi-
viduals in the cluster, as large clusters will typically
have more individuals testing positive and vice versa. In
contrast, the R2 ratio metric ignores cluster size, which
penalizes the multi-phase variable selection process
that was optimized for binomial GLM models. In other
words, the model is designed to be the best predictor
for all individuals in all clusters while the R2 for the ra-
tios effectively weights all clusters equally, ignoring the
fact that the model will perform better in the larger
clusters. The pseudo R2 is a compromise metric that
overcomes the shortcomings of the other metrics (i.e.,
it takes clusters size into account effectively), and pro-
duces a value analogous to conventional R2, however
this metric is somewhat atypical within epidemiological
research. Lastly, to evaluate the relative performance of
the full 20-covariate model versus those with smaller
numbers of terms, the same suite of test metrics was
computed for the best-performing model of size 1,2,..20
covariates, for both the new covariate suite and that
from the earlier MAP study [5].

Results
The 20 terms selected in the final multivariate model are
listed in Table 4. All terms in this final model consisted
of interactions (i.e., the product of two covariates), which
is not surprising given the additional information gleaned
from combining variables. The 20 interaction terms were
created using 32 of the 10,142 univariate terms that were
evaluated, and several of these terms were used more than
once. Among the 32 terms used (Table 5), 15 were metrics
characterizing temperature, with daytime LST being used
five times, night-time LST and delta LST both being used
four times, and TSI being used twice. Among the other
metrics, EVI was used four times, land cover classes and
TCW were each used three times, slope thresholds and
precipitation metrics were each used twice, and PET, ele-
vation, and TCB were used once each.
Of the final 20 terms, 14 were fully dynamic, with each

month and year combination having a unique raster
layer, thus resulting in over 150 layers per covariate.
Four terms were dynamic at the monthly scale only,
meaning 12 raster layers constitute each covariate (e.g.,
all survey clusters collected in January being associated
with a single layer). One term was dynamic at the annual
scale, with one layer for each of the 13 years in the tem-
poral extent of this research. Lastly, just one term was
strictly synoptic and consisted of a single layer linked to
all survey clusters. Despite the prevalence of dynamic
covariates in the final multivariate model, only one was
the product of two fully dynamic covariates (i.e., only
one of the 20 final terms was formed as the interaction
between two covariates that each consisted of unique
layers for each month of all years).
Table 6 contains a direct comparison between the co-

variate dataset used to create the MAP 2010 global PfPR
map [5]. The new covariates out-perform the old set ac-
cording to all of the test metrics selected to evaluate the
multivariate models. As expected, the results derived
using the training data are generally superior to those



Table 4 The final set of malaria covariates

Variable Coefficient Std. Error Z value Term 1 Transform 1 Term 2 Transform 2

(Intercept) −5.83E + 00 6.33E-02 −92.1

v1 −3.07E-03 4.12E-05 −74.36 T17 7 T23 11

v2 −5.72E-01 7.31E-03 −78.19 T13 11 T5 7

v3 6.42E-01 2.10E-02 30.54 T11 10 T32 7

v4 1.71E + 00 2.12E-02 80.87 T3 8 T22 4

v5 3.70E-01 1.17E-02 31.65 T3 11 T10 3

v6 −7.44E-01 6.12E-02 −12.16 T2 9 T10 10

v7 9.84E-01 1.51E-02 65.4 T1 11 T10 3

v8 −1.43E-01 4.77E-03 −29.96 T27 3 T18 2

v9 1.55E-04 2.37E-06 65.65 T8 7 T26 6

v10 −6.78E-01 1.19E-02 −57.05 T9 6 T7 10

v11 2.59E-01 4.76E-03 54.32 T31 2 T21 2

v12 −1.36E-03 3.87E-05 −35.21 T19 7 T24 11

v13 7.60E-01 2.27E-02 33.4 T3 7 T32 10

v14 3.04E + 00 9.74E-02 31.24 T14 3 T7 10

v15 −6.75E-02 2.49E-03 −27.08 T20 1 T25 3

v16 −5.32E-01 2.38E-02 −22.35 T16 10 T29 3

v17 −1.04E + 00 2.22E-02 −46.79 T15 4 T28 2

v18 −8.20E-03 1.86E-04 −44.13 T12 10 T28 10

v19 2.02E + 01 5.96E-01 34 T4 4 T11 10

v20 2.94E-01 2.07E-02 14.22 T30 10 T6 3

The covariates remaining in the multivariate model, along with their transforms, coefficients, and z-scores. Note that in cases where transform three (i.e., the reciprocal)
was used the sign of the coefficient is typically the opposite of what would be expected. The terms are further explained in Table 5.
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achieved from the reserve dataset, but the similarity in
results from these models suggest that neither the old or
new covariates are overfit. Exploring the variables by se-
quentially adding them to the model further demon-
strates the utility of the new covariates, as the first three
new covariates alone are more effective at predicting
PfPR than the full set of 20 older covariates (Figure 6)
used to create the 2010 map.
The final model was further tested for potential system-

atic errors and geographic biases (Figures 7 and 8) using
only the reserve dataset. The map of residuals suggests
that the model slightly over predicts PfPR for most of
Africa, with the exception of Burkina Faso and Uganda
where the model has a more pronounced under predic-
tion. The histogram reveals that the model classifies
PfPR for clusters in which 74.6% the individuals in the
reserve dataset (n = 219,751) reside within +/- 0.15. The
model was then tested for potential issues related to the
use of dynamic covariates, as these inherently contain
temporal trends that function at various scales (e.g.,
inter-annually and seasonally). Thus it is conceivable
that long-term trends in the covariates, if present, could be
spuriously correlated with declines in malaria resulting
from ongoing intervention efforts, which have expanded
substantially since 2005. Given the potential for such an
issue to negatively impact downstream attempts to accur-
ately attribute declines in PfPR to specific intervention ef-
forts, it was necessary to test for such trends at this stage.
To do so the full temporal range of each of the 19 dynamic
covariates was intersected with 1,000 random points dis-
tributed throughout the Pf endemic areas of Africa. The
resulting dataset was then tested for temporal trends and it
was found that all covariates had slopes near zero.

Discussion
The variable selection approach developed in this re-
search represents an objective, data-driven methodology
that resulted in a set of covariates that are quantitatively
superior for predictive modeling of PfPR to those used
in previous MAP malaria mapping endeavors. A draw-
back of this approach, however, is a decrease in model
interpretability, as the final set of covariates is more
challenging to interpret than previous, conceptually sim-
pler, covariate sets. Model accuracy was prioritized over
model interpretability in this research as MAP products
are typically used as input layers by other researchers
with little regard to the relative importance of individual
covariates. As such, the focus of this research was on de-
veloping the best predictive model in lieu of one that is
easier to interpret, to maximize the accuracy of the



Table 5 The initial covariates used in the final multivariate model

Term
ID

Variable Spatial
summary

Temporal summary Temporal anomaly Temporal
lag

Multiple
use

T1 EVI Max Dynamic monthly Difference from synoptic
annual

3 months -

T2 EVI Max Dynamic monthly - 4 months -

T3 EVI Mean Dynamic monthly Difference from synoptic
annual

Varies 3

T4 EVI Min Dynamic monthly Difference from synoptic
monthly

0 months -

T5 Land cover class 12 - Croplands Fractional Dynamic annual - - -

T6 Land cover class 13 – Urban Fractional Dynamic annual - - -

T7 Land cover class 14 – Cropland/Natural
vegetation mosaic

Fractional Dynamic annual - - 2

T8 LST day Max Synoptic monthly mean - 0 months -

T9 LST day Mean Synoptic monthly standard
deviation

- 1 month -

T10 LST day Range Synoptic Monthly Mean - Varies 3

T11 LST day Standard
deviation

Synoptic Monthly Mean - 2 months -

T12 LST Day Standard
deviation

Synoptic monthly standard
deviation

- 3 months -

T13 LST night Mean Synoptic annual mean - - -

T14 LST night Mean Dynamic monthly Difference from synoptic
annual

0 months -

T15 LST night Min Synoptic monthly standard
deviation

- 4 months -

T16 LST night Range Synoptic monthly mean - 2 months -

T17 LST diurnal change Max Synoptic annual mean - - -

T18 LST diurnal change Max Dynamic monthly - 0 months -

T19 LST diurnal change Mean Dynamic monthly - 0 months -

T20 LST diurnal change Mean Synoptic monthly mean - 1 month -

T21 PET Mean Static - - -

T22 Precipitation (A0) Mean Static - - -

T23 Precipitation (A2) Mean Static - - -

T24 Slope less than 2 degrees Fractional Static - - -

T25 Slope less than 5 degrees Fractional Static - - -

T26 Elevation Max Static - - -

T27 TCB Range Synoptic monthly mean - 0 months -

T28 TCW Min Dynamic monthly - Varies 2

T29 TCW Range Synoptic monthly mean - 2 months 2

T30 TCW Standard
deviation

Dynamic monthly - 3 months -

T31 TSI Mean Synoptic monthly standard
Deviation

- 2 months -

T32 TSI Min Dynamic monthly - 3 months -

Each was utilized as one half of the interaction terms shown in Table 4.
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resulting PfPR maps and therefore limit downstream
modeling error. While the variable leveraging process
makes the relative influence of single covariates on PfPR
more challenging to discern, it should be noted that the
root datasets from which the covariates were derived are
well established as useful predictors of the spatial distribu-
tion of malaria endemicity. As such, the methodology rep-
resents an approach for greatly increasing the predictive



Table 6 Covariate comparison for modeling PfPR in Africa

Dataset Metric New Old

Training AIC 167553.4 208208.9

Training RMSE 18.315 21.928

Training R2(count) 0.7251 0.6088

Training R2(ratio) 0.3970 0.2309

Training Pseudo R2 0.5102 0.3739

Reserve RMSE 18.228 19.097

Reserve R2(count) 0.6266 0.5608

Reserve R2(ratio) 0.3633 0.2382

Reserve Pseudo R2 0.5174 0.4356

The comparison between the newly created covariates and the covariates used
to create the MAP 2010 global product. Statistics for the reserve dataset are
shown in italics.

Figure 6 Comparisons of model performance when using the old vs n
illustrate the model improvement relative to the number of terms in the m
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capacity of the final model without requiring the acquisi-
tion and use of additional, and potentially costly, covariate
datasets. It should also be noted that the methodology de-
veloped in this paper may have utility for other research
endeavors, but the full set of the covariate leveraging and
reduction phases need not be applied in all analyses. Using
a subset of the covariate leveraging and/or reducing steps,
in particular the exclusion of interaction terms, is also
likely to increase the interpretability of the results.
While this research was not designed for assessing

single covariates within the final model, it is possible to
investigate whether the covariates, as used in the model,
make sense biologically. For example, the covariate ‘V4’ is
the variable with the highest absolute z-score (i.e., +80.87)
found the final model. This variable is an interaction term
comprised of (i) mean annual precipitation and (ii) the dif-
ference between monthly EVI and the 13-year average
ew covariate sets. The panels A-E depict five different test metrics to
odel.



Figure 7 Map of the PfPR residual values associated with clusters within the reserve dataset. The residuals were calculated for each
reserve cluster (n = 3000) as the measured PfPR minus the modeled PfPR.
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EVI value (i.e., a monthly anomaly variable that reflects
seasonally changing vegetation vigor). Each term was
transformed prior to deriving their product, with a log
transform applied to the precipitation variable and a
square root transformation applied to the EVI anomaly
variable (after adding the minimum value of the raw EVI
anomaly term to all values in the dataset since a real root
cannot be derived for a negative number). No lag is associ-
ated with the EVI anomaly dataset for this covariate.
Within the multivariate model the resulting interaction
term (i.e., ‘V4’) has a positive coefficient, indicating that
PfPR is positively correlated with the combination of an-
nual precipitation and higher than normal EVI. The bio-
logical interpretation of this variable is that places with
above average EVI are likely indicating seasonal peaks in
precipitation that cannot be gleaned from the synoptic
precipitation layer (i.e., the monthly EVI anomaly pro-
duces a proxy for dynamic precipitation when linked with
the synoptic precipitation dataset). Thus the positive coef-
ficient associated with ‘V4’ makes sense as it indicates
that, for areas generally moist enough for malaria, sea-
sonal spikes in greenness are correlated with higher PfPR.
A limitation of this research relates to the subsequent

production of the raster datasets associated with the se-
lected covariates. While the analysis presented was based
on a simple data table, the actual creation of PfPR maps
first requires the production of covariate datasets that,
in the case of fully dynamic variables, amount to over
150 layers per covariate. The production time and data
storage requirements associated with such variables were
an important consideration when choosing to cap the
number of covariates at 20. However, exploratory ana-
lysis of models with more terms supports this decision,
as larger models did not substantially improve the ability
to predict PfPR in the reserve (i.e., validation) datasets.
This finding occurred despite the fact that test metrics
for in-sample validation of training models continued to
improve with the addition of more variables (e.g., with a
least angle regression approach the ‘optimized’ training
model contained several hundred covariates).



Figure 8 The histogram of PfPR residual values for clusters in the reserve dataset. Each cluster point was weighted by the number of
individuals residing in the cluster to reflect the results of a model based upon binomial GLMs.
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An important sub-question for this research relates to
discerning the value of dynamic covariates in compari-
son to synoptic products. The composition of the final
set of covariates, 95% of which were dynamic, suggests
that malaria mapping benefits from the use of dynamic
variables. However, the continued utility of synoptic var-
iables, often in combination with dynamic variables as
one half of an interaction term, suggests that using both
dynamic and synoptic variables is the optimum approach
for spatio-temporal malaria mapping. This finding is rea-
sonable, as long-term synoptic patterns and short-term
variability are both likely to be important drivers of
PfPR. Furthermore, this finding is potentially useful to
other researchers operating with resource limitations that
preclude such an ambitious variable selection process,
as it illustrates the continuing utility of synoptic vari-
ables (i.e., those more readily available) in the absence
of dynamic covariate sets.
The next stage in the malaria mapping process will be

to incorporate the outcomes of this research in a spatio-
temporal (Bayesian) geostatistical framework that will
further increase the predictive capacity of the new covar-
iates by taking advantage of residual spatial and tem-
poral structure present within the response dataset. For
example, the eventual application of this spatio-temporal
model will correct for the spatial heterogeneity in the
model residuals illustrated in Figure 7. The net result
will be a spatio-temporal ‘cube’ of PfPR whereby each
pixel will have an estimated rate for each of the 13 years
of the analysis. This dataset will then serve as a key
input to downstream applications such as the derivation
of incidence and mortality. While there is an argument
that such a spatio-temporal model should have been
used in the variable selection process presented here, the
computational efficiency of the simpler, GLM-based ap-
proach enabled a much more ambitious exploration of
the covariate space (i.e., over 50 million potential covari-
ates examined) than would have been possible with a full
spatio-temporal model. Furthermore, an ideal statistical
model for malaria mapping would not require a spatio-
temporal model at all, as the covariate datasets would
fully account for the spatial heterogeneity evident in the
response dataset, thus leaving no spatial or temporal
structure to exploit. For this reason, basing the variable
selection process on GLM models ensures that the influ-
ence of the covariates within the final geostatistical
model is prioritized over spatial and temporal structure
within the response dataset.

Conclusions
The variable leveraging and selection approach de-
scribed in this research produced a set of covariates
with much more predictive capacity than the set uti-
lized to create the 2010 MAP malaria map [5]. The im-
provement resulted from the utilization of spatial and
temporal summarizations of dynamic covariates, which
further enabled the production of covariates including
synoptic covariates, covariates accounting for tempor-
ally lagged relationships, and covariates characterizing
temporal anomalies (i.e., deviation from synoptic norms).
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The methodology developed in this research has potential
utility for researchers seeking to maximize the utility of a
rich set of environmental covariates while also limiting
subjective decisions within the variable selection process.
The improved covariates stand to significantly improve
the eventual PfPR mapping results generated by more so-
phisticated spatio-temporal modeling approaches, and
serve as a guide for researchers wishing to undertake mal-
aria mapping at a variety of scales worldwide. Lastly, the
selected set of covariates has been directly incorporated
within the current round of spatial-temporal PfPR model-
ing by MAP, the results of which were released in early
2015 as part of the WHO World Malaria Report.
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