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Abstract 

Background:  Scale-up of malaria prevention and treatment needs to continue but national strategies and budget 
allocations are not always evidence-based. This article presents a new modelling tool projecting malaria infection, 
cases and deaths to support impact evaluation, target setting and strategic planning.

Methods:  Nested in the Spectrum suite of programme planning tools, the model includes historic estimates of case 
incidence and deaths in groups aged up to 4, 5–14, and 15+ years, and prevalence of Plasmodium falciparum infec-
tion (PfPR) among children 2–9 years, for 43 sub-Saharan African countries and their 602 provinces, from the WHO and 
malaria atlas project. Impacts over 2016–2030 are projected for insecticide-treated nets (ITNs), indoor residual spray-
ing (IRS), seasonal malaria chemoprevention (SMC), and effective management of uncomplicated cases (CMU) and 
severe cases (CMS), using statistical functions fitted to proportional burden reductions simulated in the P. falciparum 
dynamic transmission model OpenMalaria.

Results:  In projections for Nigeria, ITNs, IRS, CMU, and CMS scale-up reduced health burdens in all age groups, with 
largest proportional and especially absolute reductions in children up to 4 years old. Impacts increased from 8 to 10 
years following scale-up, reflecting dynamic effects. For scale-up of each intervention to 80% effective coverage, CMU 
had the largest impacts across all health outcomes, followed by ITNs and IRS; CMS and SMC conferred additional small 
but rapid mortality impacts.

Discussion:  Spectrum-Malaria’s user-friendly interface and intuitive display of baseline data and scenario projections 
holds promise to facilitate capacity building and policy dialogue in malaria programme prioritization. The module’s 
linking to the OneHealth Tool for costing will support use of the software for strategic budget allocation. In settings 
with moderately low coverage levels, such as Nigeria, improving case management and achieving universal coverage 
with ITNs could achieve considerable burden reductions. Projections remain to be refined and validated with local 
expert input data and actual policy scenarios.
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Background
Effective malaria prevention and treatment interven-
tions have been scaled-up substantially with increas-
ing national and donor funding since the early 2000s. 
Between 2000 and 2015, malaria incidence rates fell 37% 
globally, and malaria mortality rates by 60%, with even 
greater declines in Africa, the highest-burden region [1]. 
This was likely a combined result of improved malaria 
control and improving socio-economic factors [2, 3].

To sustain these improvements, the World Health 
Organization (WHO) global technical strategy for 
malaria recommends further scale-up to universal cover-
age with suitable preventive and curative interventions 
[4]. Funding for malaria has now plateau-ed however, 
placing more emphasis on prioritizing interventions with 
the most impact. While most countries focus on WHO-
recommended proven effective interventions, national 
strategies and plans vary considerably in budget alloca-
tions across interventions, and rationales for mixes of 
interventions are often not explicit [5].

For many health areas, strategic decision-making is 
supported by simple, user-friendly programme plan-
ning tools that project impacts and costs of user-defined 
scale-up scenarios. One such tool is the Spectrum suite 
of policy models, used by over 120 low- and middle-
income countries for estimating burdens, trends, service 
needs, and programme impact for family planning, HIV/
AIDS, tuberculosis, and/or maternal and child health ser-
vices [6–10]. As of 2015, Spectrum did not have a malaria 
module, although a simple linear, coverage-impact func-
tion included in the lives saved tool (LiST) projects 
impacts of selected malaria interventions on under-five 
mortality [11–13].

To extend and complement malaria projections avail-
able through LiST, a malaria impact module was devel-
oped in Spectrum, with the following refined features:

• • Impact projections reflect population-dynamic 
effects over short- and long-term, including shifts 
in endemicity, acquired immunity and cohort effects 
resulting when interventions lower malaria transmis-
sion;

• • Health outcomes include malaria mortality and case 
incidence, each in children aged up to 4 years old, 
5–14 years and adults 15+ years, as well as the prev-
alence of Plasmodium falciparum infection (PfPR) in 
children 2–9 years, as another common programme 
performance and impact indicator;

• • The model can be applied at national as well as at 
province levels, accounting for heterogeneity among 
provinces within a country in baseline endemicity 
and intervention coverages, and their implications 
for expected health impact.

This paper describes the conceptual approach, data 
inputs and assumptions of Spectrum-Malaria, and illus-
trates the tool’s functioning with scenario projections 
hypothesized for Nigeria. Results are discussed consid-
ering future refined applications as are being initiated 
with national programme planners, and expectations 
for evidence-based programme planning articulated by 
national policy makers, international technical advisors 
and donors.

Methods
Conceptual design and modelling approach
Spectrum-Malaria was designed for application in 43 sub-
Saharan African countries with stable transmission of P. 
falciparum as the predominant species. Health effects of 
intervention scale-up in Spectrum are based on statisti-
cal functions fitted to simulations done in the OpenMa-
laria dynamic transmission model in the version Schema 
32 [14] calibrated for P. falciparum [15]. Simulations and 
multivariate regression functions included as endemicity-
related impact determinants: the annual entomological 
inoculation rate (EIR), the PfPR at 2000–2002, and the 
seasonality in malaria transmission. Simulated impacts for 
user-specified scale-up were statistically summarized for 
usage of insecticide-treated nets (ITNs), indoor residual 
spraying (IRS), seasonal malaria chemoprevention (SMC), 
and effective management of uncomplicated cases (CMU) 
and severe cases (CMS), as detailed in [16].

Spectrum applies these functions to first administra-
tive level (Admin1) units (i.e., states or provinces) in 
a country [17], using Admin1-level endemicity, base-
line burden rates and baseline coverage values available 
from the WHO and malaria atlas project (MAP) [2, 18, 
19], in turn for a scenario of user-specified, intervention 
scale-up and a counterfactual of constant coverage. Pro-
portional burden reductions associated with the user-
specified scale-up are then aggregated across Admin1 
units, and summarized as population-weighed, national 
proportional burden reductions, separately for two 
time horizons of interest (2016–2021 and 2022–2030). 
Next, burdens are projected over 2016–2030 for country 
populations defined in Spectrum’s module DemProj, by 
applying the relevant statistically predicted proportional 
burden reduction (separately for each age group, horizon 
and health outcome) to expected future counterfactual 
burdens for a scenario of constant coverage (Fig. 1).

The software package can be downloaded for free [20], 
with a user manual about installation and application 
available [21].

Country data
For 602 Admin1 units of 43 countries in sub-Saharan 
Africa, Spectrum was pre-populated with annual data 
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over 2000–2015, described below and summarized in 
Table 1.

Case incidence
Country estimates [as opposed to National Malaria Pro-
gramme (NMP) and health management information 
system (HMIS) reports of cases and deaths, which in 
most countries under-state population-level burdens] 
were obtained from WHO’s Global Malaria Programme, 
for malaria case incidence (comprising uncomplicated 
and severe cases) and malaria-attributable deaths [1].

For most sub-Saharan African countries with stable fal-
ciparum malaria, WHO’s case and death estimates were 
based on an epidemiological model that projects case 
incidence from parasite prevalence measured through 
household surveys [2]. For 12 mostly lower-endemic 
countries, WHO estimates are based on NMP-reported 
clinical cases, with adjustment for (public) clinic coverage 
and reporting completeness, which sometimes resulted 
in case incidence trends over time that were at variance 
with those estimated by MAP (see below), and/or with 
WHO’s mortality trend estimates (giving fluctuating or 
eccentric case fatality rates). To avoid inconsistencies 
within Spectrum’s display of historic (pre-projection) 

burden trends for these 12 countries, Spectrum took 
WHO-based 2015 case incidence estimate and derived 
numbers and rates for 2000–2014 by applying the his-
toric trend in case incidence from MAP, assuming either 
a same fixed difference in annual case numbers over 
2000–2014 as in 2015, or a proportional scaling (Addi-
tional file 1).

WHO’s all-age-aggregated national case numbers were 
allocated across three age groups and Admin1 units, 
using annual age- and Admin1-specific case incidence 
estimates from MAP, who combined a spatial–temporal 
statistical description of PfPR (see below) with a statisti-
cal model of the PfPR-case incidence relationship, fitted 
to simulations from OpenMalaria and two other trans-
mission models and accounting for local history of expo-
sure and treatment coverage [18].

Malaria‑attributable deaths
WHO’s death estimates are available for up to 4 vs 5 years 
and above. Spectrum applied a 5–14 vs 15+ years break-
down, as for case incidence in MAP’s 2015 estimates 
[18]. This produced case fatality rates consistent with 
epidemiological meta-analyses [22], with 90% of values 
across the 602 Admin1 units ranging from 0.13 to 0.54% 

Fig. 1  Design of the Spectrum-Malaria impact module
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for children up to 4  years, and 0.04–0.36% for children 
5–14 years and adults.

Plasmodium falciparum infection (PfPR)
Plasmodium falciparum infection in children 2–9 years, 
the core malaria indicator used by MAP, was used as an 
endemicity/transmission intensity indicator. Admin1-
level PfPR in children 2–9 years was derived from MAP’s 
time-dynamic maps, at 5  ×  5 sq km pixel resolution. 
MAP generated these spatio-temporal ‘cubes’ via statis-
tical modelling, informed by geo-positioned prevalence 
surveys, intervention coverages and treatment-seeking 
behaviour, plus a bespoke suite of high-resolution spatial 
and temporally dynamic predictor variables tracing envi-
ronmental and sociodemographic determinants [23]. For 
Spectrum, pixels within the limits of stable transmission 
were aggregated to give Admin1 population-weighted 
totals and averages using an Admin1 shape file of 2013 
[17]. Across the 43 countries, the average number of 
Admin1 units was 14, ranging from 6 (Djibouti) to 37 
(Nigeria).

Statistical impact functions used, as the key predictor 
variable indicating endemicity, the OpenMalaria-simu-
lated PfPR averaged over 2000–2002, i.e., largely before 
intervention scale-up started to reduce PfPR [16].

Seasonality
As an additional endemicity-related impact modifier, 
Spectrum considers seasonality in malaria transmission, 
estimated by MAP of a mono-modal yearly pattern based 
on daily rainfall data over 1980–2010 [24, 25] (Additional 
file 2). The MAP seasonality index (MAPSI) is a continu-
ous variable. A value of 1 represents an EIR time series 
that, when log-transformed, is sinusoidal with a semi-
amplitude of 2.5, while year-round constant EIR gets a 
MAPSI of 0. The index is capped at 1; for Africa, pixel 
values ranged from 0 to just below 1 (Additional file 2).

Coverage of case management, uncomplicated cases
Available estimates that resemble the definition of effec-
tive CMU coverage simulated in OpenMalaria were 
based on caregiver-reported treatment of fevers in chil-
dren up to 4 years old with artemisinin-based combina-
tion therapy (ACT), as periodically measured in national 
household surveys in most African countries [26]. 
National coverage estimates for the year 2015 were taken 
as Spectrum’s coverage at 2014 and 2015 for all Admin1 
units in a country, and were applied to all age groups, 
because data for older people are generally unavailable.

Coverage of case management, severe cases
In the absence of reliable country data, this was fixed at 
48% at 2014–2015 for all countries and Admin1 units, 

the proportion of severe episodes receiving inpatient care 
used previously in various models of falciparum malaria 
epidemiology in Africa, including OpenMalaria [27–30].

ITN coverage
Spectrum-Malaria uses as ITN coverage indicator the 
proportion of people of all ages who slept under an ITN, 
as estimated by MAP and WHO over space and time in a 
Bayesian compartmental discrete-time model that trian-
gulated: (a) historical ITN production and delivery from 
manufacturers, by country and year; (b) national ITN 
distributions reported by NMPs; and, (c) household ITN 
ownership and usage reported in nationally representa-
tive household surveys. From these data, the compart-
ment model inferred functional representations of ITN 
retention rates, decay, loss and allocation patterns across 
and within households, which were subsequently applied 
to ITN ownership and usage in geographical dis-aggrega-
tions provided by the household surveys [31, 32].

IRS coverage
The proportion of people protected by IRS was calculated 
from WHO-reported people protected by IRS, based 
on annual reports by NMPs. The latest available data 
(from 2014, or 2013 if not reported in 2014) were applied 
to give the coverage proportion for 2014 and 2015. If a 
country reported no IRS since 2011 or before, coverage 
was set at 0 for all years until 2015.

Lacking standardized multi-country data of sub-
national IRS allocations, Spectrum allocated national 
IRS coverages across Admin1 units with >0 PfPR at 2015, 
each with an IRS probability inversely proportional to 
its ITN coverage in 2015 (Table  2). For each ‘selected’ 
Admin1, coverage is set at 90% of the resident popula-
tion; only the last Admin1 unit that gets IRS allocated 
has a below 90% IRS coverage, so as to match the national 
number of people protected. If two Admin1 units have 
the same ITN coverage, IRS gets allocated to the unit 
with lowest current IRS coverage; if this is equal between 
two Admin1 units, IRS is allocated to the unit with high-
est PfPR at 2015. The resulting minimal overlap between 
IRS and ITNs reflects recommendations of WHO’s 2015 
global technical strategy for malaria [4].

SMC coverage
As default, SMC coverage was set at 0% for all countries 
and Admin1s throughout 2015. User-specified, national-
level, SMC coverage targets are allocated uniformly 
across all Admin1s with PfPR >0.

Severe case incidence
For severe case incidence there are no official WHO or 
MAP estimates. Therefore, severe case burdens were 



Page 6 of 15Hamilton et al. Malar J  (2017) 16:68 

estimated within Spectrum, based on ratios of severe-to-
total case incidence from OpenMalaria simulations that 
informed Spectrum’s coverage-impact functions, through 
separate statistical functions that used the same predic-
tor variables as for coverage-impact functions. Severe-
to-total case incidence ratios were logit-transformed for 
regression analysis.

Incidence of severe disease in OpenMalaria depends on 
parasite density rates when otherwise uncomplicated epi-
sodes coincide with co-morbidities (modelled in OpenMa-
laria as an age-dependent risk), and on maternal immunity 
that partially protects infants from malaria. Model calibra-
tion used routine hospital, community-based surveillance, 
and demographic data from various African sites [30, 33, 34].

Table 2  Allocation of national-level people protected by IRS, to Admin1 units: Nigeria 2015

The Spectrum algorithm for sub-national IRS allocation first excludes all Admin1 units with 0 PfPR (if any, not applicable in Nigeria). Among Admin1s with >0 PfPR, 
IRS gets allocated according the highest complement of ITN coverage (=100% − ITN coverage), at 90% IRS coverage (of the population living at PfPR>) for each 
successive Admin1 unit, until the total people protected across selected Admin1 units saturates to the national total number of people protected. The last Admin1 
unit allocated IRS gets a <90% IRS coverage (for Nigeria at 2015: Kano state, with 2.5% IRS coverage), to exactly meet the national total number

Admin1/state Population PfPR % 2–9 years ITN coverage % Probability of IRS People pro-tected by IRS IRS coverage %

Abia 3,680,378 37 27 73%

Adamawa 3,914,499 31 18 82%

Akwa Ibom 4,859,492 40 33 67%

Anambra 5,642,911 14 24 76%

Bauchi 5,816,387 30 19 81%

Bayelsa 1,938,009 19 35 65%

Benue 5,545,269 28 31 69%

Borno 5,409,746 19 17 83%

Cross River 3,696,053 28 39 61%

Delta 5,109,252 13 25 75%

Ebonyi 2,673,883 26 38 62%

Edo 4,583,326 20 23 77%

Ekiti 3,056,399 43 30 70%

Enugu 4,238,001 14 28 72%

FCT - Abuja 1,569,832 33 27 73%

Gombe 2,996,780 29 19 81%

Imo 5,025,285 34 27 73%

Jigawa 5,648,410 19 26 74%

Kaduna 7,933,232 46 21 79%

Kano 12,733,799 23 16 84% 316,255 2.5

Katsina 7,692,509 25 25 75%

Kebbi 4,196,653 41 30 70%

Kogi 4,107,085 28 30 70%

Kwara 3,223,696 42 30 70%

Lagos 14,316,546 5 22 78%

Nassarawa 2,332,988 32 26 74%

Niger 5,207,649 41 26 74%

Ogun 4,248,558 21 36 64%

Ondo 4,551,442 35 32 68%

Osun 4,830,341 40 26 74%

Oyo 7,588,162 33 31 69%

Plateau 4,071,155 27 25 75%

Rivers 6,195,103 19 30 70%

Sokoto 4,607,886 22 19 81%

Taraba 2,761,408 33 21 79%

Yobe 3,067,612 20 21 79%

Zamfara 4,501,061 32 18 82%

Nigeria national 183,570,791 27 25 316,255 0.17
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In OpenMalaria simulations and Spectrum’s corre-
sponding statistical functions, severe-to-total case inci-
dence ratios were highest in children up to 4 years old, 
and lowest in adults. The statistical fit (R2) of predicted 
relative to simulated ratios was 98% for 15+  years, 96% 
for 5 to 14 years and 80% for up to 4 years, at the 2016–
2018 horizon (Additional file  3). Using these statistical 
functions, Spectrum calculates severe-to-total case inci-
dence ratios for three age groups in each Admin1, as a 
function of the Admin1’s endemicity and intervention 
coverages at 2015. Resulting Admin1-specific, age-spe-
cific ratios are then applied every year throughout the 
projection, to derive severe case incidence rates from 
total case incidence rates.

Projection model
Spectrum-Malaria interacts with two other modules 
within Spectrum: ‘DemProj’ and the AIDS incidence 
model (AIM). Demographic projections are done at 
country level in DemProj, which interacts with AIM to 
add HIV/AIDS-related deaths. For the current version of 
Spectrum-Malaria, mortality reductions caused by malaria 
control are not fed into DemProj, i.e., malaria mortality or 
control is assumed to not influence demography.

National coverage targets, and allocation to Admin1 units
Users must specify targets for effective coverage at 
national level, up to a maximum of 90% judged to be the 
maximum feasible coverage. For ITNs, the user-spec-
ified (post-)2016 coverage is allocated to Admin1 units, 
assuming a fixed proportional increase (or decrease) 
for each Admin1 (Table  2). If any Admin1 gets capped 
at 90% target coverage, in order to still reproduce the 
national-level target, the remaining ITNs are re-allo-
cated to another Admin1 with next-highest (but  <90%) 
ITN coverage. IRS coverage targets get allocated to suc-
cessive Admin1  s with PfPR  >0 and lowest concurrent 
ITN coverage, at 90% each except for the last Admin1 
where <90% coverage is fitted to match the national total.

Impact projection: ITNs, IRS, CMU, and SMC
Spectrum applies statistical impact functions as propor-
tional burden reductions, rather than absolute predicted 
post-scale-up burden levels, because OpenMalaria simu-
lations and the corresponding statistical functions were 
not calibrated on the WHO and MAP 2015 burden esti-
mates that constitute Spectrum’s baseline data.

In impact functions [16], proportional impacts were 
generally smaller over the initial (2016–2018) hori-
zon than over an intermediate (2019–2021) and long-
est (2023–2025) horizons, for scale-up of IRS, ITNs 
and CMU and their combinations, reflecting that full 
health impacts are realized from around 3–5 years after 

reaching high coverage. A translation step was needed in 
Spectrum to apply these time-varying impacts, based on 
simulations and predictions for one-off immediate cover-
age changes (always at 2016), for programme scenarios 
with multiple interventions scaled-up over different time 
periods. Requirements were:

1.	 The algorithm calculates impact over time of multi-
ple interventions scaling-up over successive years, 
possibly for each intervention in a different time pat-
tern;

2.	 Projected impacts reflect relevant dynamics over 
time including partial rebounds due to changing 
transmission and immunity, as in OpenMalaria and 
in the statistical functions for three successive 3-year 
periods following scale-up;

3.	 For the counterfactual scenario of no change in cov-
erage, burden rates are constant (and absolute num-
bers of cases and death increase proportionally with 
population growth);

4.	 Burden levels in the long-term reflect the final cover-
ages specified, and (as in OpenMalaria and statistical 
functions) are independent of whether scale-up was 
at-once, front-loaded, linear, or back-loaded.

5.	 So as to not overestimate impact in the first and 
second year of user-specified short-term coverage 
targets, the impact of any coverage change applies 
with a 1-year lag (e.g., for ITN scale-up starting at 
2016, impact starts in 2017), where the 2016 projec-
tion reflects the coverage increase from 2014 to 2015 
according to MAP and WHO data.

Spectrum uses statistical impact models of outcomes 
at one to three years after intervention scale-up through-
out the first six projection years (2016–2021), and for 
2022–2030 switches to statistical functions for outcomes 
at 8–10 years after scale-up. This is operationalized as:

where X denotes the outcome projected (cases, deaths, 
or PfPR), and impact(. . . , . . .) returns a statistically pre-
dicted burden, as a function of changes in coverages 
over a specified period between an initial and a target 
year. The ratio of two statistically predicted burdens, for 
the scenario of user-specified scale-up relative to the 
scenario of constant coverages, gives an impact ratio 
that Spectrum then applies, by updating X(t) relative to 
X(2015), starting from t0 = 2014 for the impact in 2016.

After the combined impact of IRS, ITN, CMU and 
SMC coverage trends has thus been projected, the trend 
in malaria mortality is adjusted to reflect the additional 
impact of CMS coverage, as:

X(t) = X(2015) ∗
impact(Cov(t0),Cov(t − 1))

impact(Cov(t0),Cov(t0))
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which is applied for each Admin1 unit, using Admin1-
specific endemicity and baseline coverages, for all t from 
2016 through the end of the projection. Finally, national-
level outcomes for each age group are produced by aggre-
gation across Admin1 units.

Impact projection: malaria mortality
Spectrum-Malaria aligns with the one-death-one-cause 
framework of LiST and the mortality estimates of the 
United Nations Child Health Epidemiology Reference 
Group (CHERG), WHO and global burden of disease 
project [1]. Malaria mortality represents deaths directly 
attributable to malaria, without additional indirect 
malaria-related deaths to which malaria contributes when 
concurrent with or preceding another disease. However, 
especially in young children, indirect malaria-related 
mortality adds a considerable burden, estimated to dou-
ble overall malaria-related mortality [34], as illustrated 
by cluster-randomized ITN trials in endemic Kenya and 
Ghana, where ITN scale-up reduced all-cause under-five 
mortality almost as much as malaria-attributed mortality 
[35–38]. In order to not understate the mortality impacts 
possible through malaria control, yet respect the one-
death-one-cause framework, the lives-saved models used 
by CHERG, LiST, WHO, and the global burden of dis-
ease estimated a proportional malaria-related mortality 
reduction that they apply to direct malaria-attributable 
deaths (e.g., in LiST: a 55% reduction, at 90% ITN owner-
ship or 60% child ITN usage [12, 13]), which corresponds 
to the observed 17% reduction in all-cause under-five 
mortality reductions observed in the ITN trials [38]. 
While the OpenMalaria simulations that informed Spec-
trum’s impact functions simulated direct malaria-attrib-
utable and indirect malaria-related mortality separately, 
statistically predicted reductions in direct malaria-attrib-
utable deaths in up to 4 years old children were in line 
with CHERG-estimated reductions for malaria-related 
mortality used in LiST [16]. Therefore, Spectrum uses the 
OpenMalaria-based proportional reductions for direct 
malaria-attributable deaths.

Impact projection: severe case management
For CMS, Spectrum projects an impact on malaria mor-
tality rates in the three age groups, without dynamic 
impacts on any of the other burden indicators, or on 
mortality in years beyond that of coverage shift con-
cerned. Up to 2015, coverage of CMS is assumed to be 
a fixed 48% across age groups and Admin1 units, as in 
OpenMalaria [30]. The effect of increasing CMS cov-
erage to a user-specified target is calculated based on 

DeathsAdj(t) = Deaths(t) ∗
1− SevereCM(t)

1− SevereCM(2015)

an assumed threefold relative risk of mortality between 
severe cases effectively treated and severe cases not effec-
tively treated, based on corresponding odds ratios of 2.1 
assumed in OpenMalaria [30] and 5 in LiST (consider-
ing that intravenous quinine reduces malaria mortality in 
children 1–59 months by 82% compared to no treatment 
[39]). Spectrum’s threefold relative risk, with a baseline 
CMS coverage of 48%, translated into a maximum 41% 
reduction in malaria mortality when CMS is scaled-up to 
the maximum coverage of 90%. Corresponding propor-
tional mortality reductions are interpolated linearly for 
more moderate scale-up.

This calculation is repeated for each age group and 
year, at country-level since CMS coverage and effective-
ness assumptions do not differ among Admin1s within a 
country), starting from the severe case incidence rate and 
malaria mortality rate for that age group and year as pro-
jected based on target coverages of ITN, IRS, CMU, and 
SMC.

In contrast to the four other interventions for which 
impacts include onward dynamic long-term transmission 
effects (based on OpenMalaria dynamic simulations), 
projected impact is immediate for CMS within the year 
of coverage change.

Results
Projections were performed for Nigeria, using the default 
data pre-loaded in Spectrum (Table  1; Fig.  2). Table  2 
illustrates Spectrum’s allocation of WHO-reported 
national IRS coverage into Admin1-level coverages at 
2015 in Nigeria, provided as default, for users to subse-
quently refine with locally informed updates.

Impacts were projected for scale-up of ITNs, IRS, 
CMU, CMS in turn, each to 80% national coverage by 
2020, in linear scale-up from their 2015 baseline levels 
(Fig.  3a), relative to a projection with constant cover-
ages for all interventions. A fifth scenario projected SMC 
scaled-up to 80% by 2020 in the states Kebbi, Sokoto, 
Zamfara, Katsina, Kano, Jigawa, Yobe, and Borno, and 
to 40% in Bauchi (to represent this state’s northern half ), 
in line with WHO recommendations on the geographi-
cal applicability of the intervention [40]. A final projec-
tion halved the coverage of ITNs, IRS, CMU, and CMS, 
all four at once from 2016.

ITNs, IRS and CMU each reduced PfPR and case inci-
dence and malaria mortality in all age groups, with the 
largest impacts (for scaling to 80% coverage) for CMU, 
followed by ITNs and IRS (Fig. 3b–d). CMS (scaled from 
48 to 80%) reduced malaria mortality (but not PfPR or 
case incidence) by a smaller extent, but starting a year 
earlier. SMC (reaching 18% coverage nation-wide, from 
scale-up in 8.5 states) had negligible impact on PfPR and 
case incidence in adults, but reduced under-five deaths.
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Fig. 2  Malaria health burdens at 2015 baseline and at 2030 after scale-up of ITN coverage to 80% usage from 2020 onwards, in Admin1 units of 
Nigeria. a, b PfPR in children 2–9 years; c, d malaria case incidence rate in adults 15+ years; e, f malaria deaths in children 0–4 years
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Although the coverage increase assumed for Nige-
ria was larger for IRS (from 0.17 to 80%) than for ITNs 
(from 25 to 80%), projected impacts were slightly larger 
for ITNs. This is in part because the incremental impact 
of IRS is constrained by the pre-existing moderately 
high (25%) ITN coverage, as the statistical impact func-
tions include a saturation effect [16], whereby the scale-
up of IRS and ITN combined in an Admin1 result in a 
relatively smaller incremental impact than the sum of 
individual intervention scale-ups, in line with the latest 
insights and recommendations for vector control by the 
WHO [41].

Proportional case and death reductions were largest 
for children up to 4 years (Table 3) but also considerable 
for children 5–14 years and adults 15 years and above for 
each intervention (Table 3); only SMC impact was limited 
to cases and deaths in up to 4 years and PfPR 2–9 years. 
Corresponding reductions in absolute numbers of infec-
tions and deaths averted were much larger in children 
under 5 years old, reflecting their higher baseline burden.

For all interventions and health outcomes projected 
for Nigeria, impacts were enhanced at the 2022–2030 
horizon relative to the 2016–2021 horizon, reflecting the 
typical temporal dynamics in intermediate-endemicity 
settings, such as Nigeria. Halving the coverage of all inter-
ventions resulted in a near doubling of case incidence and 
PfPR, and a more than doubling of malaria mortality, also 
with effects most pronounced in the longer term.

Projected reductions in severe case incidence were larger 
than that in overall case incidence (a lower rate ratio, sec-
ond-last column of Table  3), despite Spectrum’s applica-
tion of time-constant ratios of severe-to-total cases. This 
shift reflects that interventions reduced case incidence 
proportionally more so in Admin1 units with high severe 
case rates, i.e., Admin1 units with lower endemicity.

In the long term, intervention scale-up reduced mortal-
ity rates slightly less than case incidence rates, increasing 
the case fatality, from around 0.37–0.41% in children up 
to 4 years, and from 0.04 to 0.05% in children and adults 
5 years and older (Table 3).

Fig. 3  Spectrum-projected impacts of malaria intervention scale-up in Nigeria, on selected health outcomes. a Coverage scale-up; b PfPR in 
children 2–9 years; c malaria case incidence rate in adults 15+ years; d malaria deaths in children 0–4 years. Coverage definitions as specified in 
“Methods” and Table 1. For SMC, coverage was scaled-up to 80% in eight northernmost states and to 40% in Bauchi state, yielding a nationwide 
coverage of about 18% from 2020
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Discussion
Spectrum-Malaria presents a new evidence- and con-
sensus-based approach to predict morbidity and mortal-
ity impact of malaria intervention scale-up in adults and 
children, and to inform strategic programme planning 
in African countries. The tool’s key input and output 
measures align with monitoring indicators commonly 
used in programme and grant performance frameworks; 
its graphical, menu-driven interface embedded in Spec-
trum’s demographic platform facilitates relatively quick 
comparison of programme scenarios, to stimulate local 
capacity building in surveillance and policy evalua-
tion and stakeholder dialogue. The anchoring on WHO 
and MAP baseline data ensures relevance for progress 
evaluation for national plans, global targets such as 
the sustainable development goals (SDGs), and donor 
grant performance frameworks, as well as comparabil-
ity across countries. These features come at the price of 
user flexibility: users cannot modify baseline burdens and 
coverages, or the expected future burden trends for coun-
terfactual, constant-coverage scenarios. If users wanted 
to change country baseline data, the process would be via 
a country government’s official update for the next year’s 
World Malaria Report coordinated by the WHO, being 
reflected in Spectrum-Malaria the year after.

In projections for Nigeria (as well as for other large 
and highly malaria-endemic countries, presented else-
where [42]), malaria prevention and treatment reduce 
health burdens in all age groups, with slightly larger pro-
portional impacts in children under-five, and the larg-
est absolute number of cases and deaths averted in this 
vulnerable group. For Nigeria, given high ITN coverage 
but low effective case management coverage in 2015, 
case management is the intervention for which scale-up 
to near-universal coverage could have most additional 
impact by 2030. However, it is often easier to achieve 
high-level coverage for vector control interventions 
(often delivered through vertical programmes, as cam-
paigns) than for effective CMU (through complex multi-
layer health systems), so this ranking does not imply that 
CMU is necessarily a more cost-effective investment than 
vector control. In fact, over 2000–2015, scale-up of ITNs, 
which reached higher coverage levels than CMU, has 
been estimated to have had the larger actual impact to 
date [2]. Programmatic inputs and resources to achieve 
further scale-up of ITNs, IRS and/or CMU, and the 
resulting cost-benefit relationships can be assessed using 
the OneHealth Tool which is linked to Spectrum, as in 
investment case analyses for other health areas [9, 43], 
thus enabling evaluation of impacts and costs of malaria 
interventions alongside, with their trade-offs in short and 
longer term.

Strengths and weaknesses
Spectrum-Malaria presents important refinements 
compared to existing malaria programme planning and 
impact evaluation tools, including dynamics over time, 
morbidity outcomes, outcomes in adults, and saturation 
and synergies across interventions through endemicity 
effects. As with any model, results are only as valid as the 
input data and assumptions. Notable limitations in data 
include baseline rates of severe case incidence, and CMU 
and CMS coverage, with scale-up targets for CMU and 
CMS also difficult to define. Estimates of CMU coverage 
could be improved considering variations sub-nationally 
and possibly by age, and considering patient compliance, 
timeliness and dosage [26, 44, 45].

Spectrum-Malaria extrapolates the age pattern in 
malaria mortality between 5 and 14  years and 15  years 
and older from MAP-estimated age patterns in case inci-
dence, which implicitly assumes that coverage and effec-
tiveness of CMS and CMU are constant throughout the 
above-5 years population. If in reality CMU and/or CMS 
had better coverage in adults than in school-age children, 
then Spectrum may overestimate mortality, and under-
estimate future possible treatment impacts on mortality, 
in adults compared to school-age children. A new refined 
map of CMU coverage in Africa over 2000–2015, used 
to generate corresponding age-specific malaria mortality 
estimates at 5 ×  5 sq km resolution, recently produced 
by MAP [46] after the current design of Spectrum, will 
be integrated into the baseline database of Spectrum-
Malaria at its next annual data update.

Spectrum’s effectiveness estimates for ITN and IRS 
impact were calibrated on results of three ITN trials; for 
child mortality, these align with international consen-
sus and estimates used by CHERG, WHO, the Global 
Fund to fight AIDS, Tuberculosis and Malaria, and the 
global burden of disease [12, 13, 38, 47, 48]. However, the 
spread of insecticide resistance threatens to reduce effec-
tiveness, even if resistance indicators available routinely 
from National Malaria Programmes do not, as yet, allow 
a meaningful resistance adjustment in Spectrum-Malaria 
[49]. For CMU and CMS, effectiveness estimates are even 
less certain, lacking randomized trials in the first place.

A structural limitation in the tool is the assumed time 
pattern in impact following intervention scale-up, drawn 
in a simple way from results of schematized, one-time 
coverage increases and decreases simulated in OpenMa-
laria. The assumed 1-year lag from coverage increase to 
start of impact may be conservative compared to other 
planning tools that project impacts to start immediately, 
however, for strategic planning purposes and evaluations 
over a multi-year horizon this should result, if anything, 
in more robust and realistic longer term impacts since 
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statistically predicted reductions were averaged in 3-year 
intervals following scale-up. The use of statistical func-
tions for outcomes at 1–3 years and 8–10 years follow-
ing OpenMalaria-simulated scale-up is also conservative, 
because OpenMalaria-simulated burden reductions were 
largest at 4–6 years following scale-up [16]. Neverthe-
less, Spectrum-projected impacts were well-aligned with 
those for under-five mortality by LiST [42], which was in 
turn validated against impacts observed in vector control 
studies in four African countries [50], and with empiri-
cally based ecological analyses of historic impacts on 
PfPR and case incidence due to ITN, IRS and CMU scale-
up over 2000–2015 [2], with if anything, slightly larger 
long-term impacts reflecting the dynamics of reduced 
transmission.

Spectrum’s switch from short-term (1–3 years) to long-
term (8–10 years) impact functions at 2022 for all policy 
scenarios, regardless of the setting-specific time pattern 
of scale-up, should produce valid impacts over time for 
typical scenarios where interventions are scaled-up grad-
ually from 2016 until a final coverage target achieved 
no earlier than 2019. However, for scenarios with much 
earlier or later scale-up, impacts might be more reliably 
predicted by dynamic simulations for the specific user-
specified time pattern of scale-up (using OpenMalaria or 
other transmission dynamic models [51]), and the valid-
ity of Spectrum-Malaria remains unconfirmed.

For counterfactual projections, Spectrum by default 
assumes that if coverage is unchanged, so is burden, 
in contrast to empirical analyses suggesting a secular 
decline over 2000–2015, for a hypothetical zero ITN, 
IRS and CMU coverage scenario used in MAP’s recent 
impact evaluation for the millennium development goals 
[2]. If this trend, thought to reflect changes in urbani-
zation, housing quality, land-use, nutrition, and other 
socio-demographical factors, is real and continuing after 
2015, Spectrum may overestimate future malaria burdens 
preventable by malaria control, although it would remain 
accurate for proportional burden reductions.

Finally, while projected impacts include a reduction in 
PfPR among children aged 2–9 years, Spectrum assumes 
no change after 2015 in proportions of the popula-
tion exposed and not exposed to malaria transmission. 
This simplification could cause Spectrum to underesti-
mate health impacts and overestimate commodities and 
resources needed for malaria control, especially in the 
longer term, if successful control reduces the areas of 
ongoing malaria transmission.

Collectively, these limitations and uncertainties point 
to the need for ongoing further validation of the tool. 
While impact predictions were adequately calibrated on 
observations from ITN trials, and on a range of predic-
tions in the underlying OpenMalaria model (which in 

turn was previously calibrated by comparison and align-
ment with extensive programme field data on age and 
exposure patterns of malaria infection prevalence and 
disease, including effects of intervention scale-up, in sub-
Saharan African settings with stable endemic malaria 
[15, 52]), it is essential to further compare and where 
necessary adjust Spectrum-Malaria’s impact projections 
against longitudinal, multi-year data from large (province 
or national-level) programmes that achieved high cover-
age of one or more interventions, and have a good record 
of baseline (pre-intervention) health burden levels and/or 
health burden measurements in a comparison (no-inter-
vention) area. The team is planning to undertake such 
validations as opportunities will allow. Meanwhile model 
applications to support NMPs in strategic planning, 
target setting and prediction of expected future health 
impacts will be carried out with due caution to inevita-
ble uncertainties in results. A next version of Spectrum-
Malaria will, therefore, imperatively include uncertainty 
ranges on projection outcomes, generated by combining 
error margins in WHO- and MAP-estimated burden and 
coverage numbers with confidence bounds on statisti-
cal impact predictions, to underscore the uncertainty (as 
with any model) in numerical outcomes.

Conclusion
The above-stated limitations of Spectrum-Malaria sug-
gest several desired refinements, and more to be expected 
based on users’ feedback, as the tool gets applied across 
divergent settings in terms of epidemiology and policy 
debate. For Nigeria, projections are expected to change 
once local experts validate and update the assumptions 
and input data. After on-site validation with Nigeria and 
the Democratic Republic of the Congo, where a pilot 
was completed, Spectrum-Malaria could potentially be 
applied to evaluate the feasibility of, and progress toward 
the ambitious global targets set by the WHO, Roll Back 
Malaria and SDGs to reduce case incidence and mortality 
by 80% by 2025 and by 90% by 2030 [4].

To allow cost-effectiveness and investment case analy-
sis, Spectrum-Malaria links to the OneHealth Tool that 
projects resource and commodity needs for user-spec-
ified programme and impact scenarios [9]. Articulating 
the cascade of service inputs and activities required to 
achieve certain effective coverage levels in a OneHealth 
Tool-supported malaria costing should help users to set 
realistic rather than over-ambitious targets. For example, 
effective CMU requires health care access, diagnosis and 
treatment; effective ITN usage requires ITN distribution 
as well as community-based education.

The current Spectrum-Malaria is applicable only 
for countries with stable endemic falciparum malaria, 
i.e., most of sub-Saharan Africa (and Haiti, if country 
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baseline indicator data became available in MAP-like 
format). Within sub-Saharan Africa the full range of low 
to high endemicities was modelled, down to EIRs as low 
as one infectious bite per adult per year and PfPR 0.1%; 
intervention scenarios simulated include several nearly 
achieving elimination. Low-endemicity sites and near-
elimination scenarios will become increasingly relevant 
for strategic planners over next years, as programmes 
successfully reduce malaria transmission. As malaria 
control advances, a Spectrum version for settings with 
predominantly non-falciparum and epidemic malaria will 
be envisioned, which could build on an OpenMalaria var-
iant for P. vivax malaria being developed.
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