
Page 2 of 9Coleman et al. Malar J  (2017) 16:86 

pyrethroids [4], as they have low mammalian toxicity and 
high insecticidal activity [5]. In 2013 nearly two thirds of 
IRS programmes world-wide also relied on pyrethroids. 
�is, along with pyrethroid use in agriculture, has 
resulted in a high selection pressure for pyrethroid resist-
ance [6–8]. �e pressure has been su�ciently severe that 
there is increasing evidence of pyrethroid failure, particu-
larly for IRS. Since 2015 the more expensive organophos-
phate pirimiphos methyl has largely replaced pyrethroids 
for IRS.

�e history of insecticide resistance detection has been 
reviewed elsewhere [6, 7], as have the tools and methods 
used in detecting resistance [9, 10]. Of greater concern 
are the increased reports on the ine�ectiveness of current 
malaria prevention tools [11–15]. Risk in public health 
is de�ned as; ‘the potential for realization of unwanted, 
adverse consequences to human life health, property or 
the environment’ [16]. Applying this here, insecticide 
resistance poses a serious risk to current malaria preven-
tion activities.

In 2012, WHO published the Global Plan for Insecti-
cide Resistance Management (GPIRM) [17] with the aim 
of raising awareness of insecticide resistance. �e goal 
is that this plan will be supplemented with guidelines, 
enabling control programmes to develop individually 
tailored insecticide resistance management strategies. 
One acute operational di�culty is the lack of nationally 
representative spatial and temporal comparable data that 
concurrently measures insecticide resistance and associ-
ated mechanisms. �is can be attributed to the shortfall 
of entomologists, lack of appropriate infrastructure and 
available funding [18].

To date information on the increase in insecticide 
resistance is rooted in national reporting systems, pre-
dominantly driven by the locality of researchers [1, 7]. 
Previously, two global insecticide resistance databases 
have been established, IR Mapper collated 4,084 sus-
ceptibility data points by 2014 [19] and VectorBase cur-
rently provides 5,656 corrected mortality values [20], and 
WHO has now created a third [21]. �ese databases all 
contain di�ering amounts of resistance data with infor-
mation, displayed as single points on maps. �e online 
tools provided by each database allow users to visual-
ise information about each data point, such as the spe-
cies tested or the sample size, but they do not attempt to 
take account of any of the potential confounding factors 
within these datasets or the sampling biases that are pre-
sent. �is, combined with under reporting, for example 
less than half of the malaria endemic countries reported 
any entomological data last year, highlights the need to 
take account of potential confounders and biases to pro-
duce robust, consistent and comprehensive estimates of 
resistance that �ll the current gaps in the data.

A new global mapping project
MAP-IR will �rst collate and assess the available �eld 
data on insecticide resistance, then develop a modelling 
framework to analyse spatiotemporal patterns of resist-
ance. Here the dataset collated so far from published 
and unpublished sources is described and assessed. �e 
strengths and weaknesses of the available data are dis-
cussed and an analytical plan is outlined that mitigates 
the issues associated with using collated data that was 
not generated from a single, systematic, global sampling 
design. �e ultimate aim of this work is to provide resist-
ance data that can be combined with information on 
vector species and disease prevalence to increase our 
understanding of the impact that resistance has on dis-
ease control. Future work based on the data and princi-
ples outlined here will generate the tools to help better 
target interventions and aid with the development of 
insecticide resistance management plans [21, 22] on a 
global scale.

Methods
Resistance data are obtained from three sources; through 
published articles, by contacting authors, and by contact-
ing the custodians of unpublished datasets. Published 
articles are identi�ed using the search terms “insecticide 
resistance” and “anopheles” in the Web of Science data-
base with no date or language restrictions. Currently all 
articles published up to the end of 2015 that could be 
obtained have been reviewed and 684 articles containing 
bioassay results identi�ed. Of the groups contacted, 15 
have so far provided unpublished data.

Where possible received data is disaggregated to single 
sites and collection periods to provide a �ne resolution 
spatial and temporal dataset. Records reporting less than 
100% mortality in the susceptible strain were excluded 
as were records with control mortality above 20% and 
results from samples that had been through more than 
one generation in the laboratory. �e data �elds extracted 
cover: mosquito collection methods; mosquito identi�-
cation methods; bioassay conditions including protocol 
followed, insecticide concentration, exposure period, 
mosquito generation tested (wild caught, F1 or mixed), 
and whether a synergist was used; information about the 
collection site, and information about the data source. 
Further details on the exact data �elds recorded are 
given in Additional �le�1. Sites covering an area less than 
25�km2 are assigned coordinates in digital degrees using 
either the coordinates provided with the data, or using 
contextual information provided about the site to locate 
it in online gazetteers such as GeoNames and Google 
Maps. If mosquitoes from multiple sites were pooled for 
the bioassay, each site is recorded in the database. If an 
area greater than 25� km2 is given and it is not possible 
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to disaggregate this further, the borders of the area are 
de�ned using GIS software such as ArcMap or QGIS. In 
circumstances where the area given is an administrative 
unit then the borders are taken from the FAO’s Global 
Administrative Unit Layers [23]. In addition, when resist-
ance mechanism data are provided, such as kdr allele fre-
quencies and P450/mixed function oxidase (MFO) test 
results, this information is linked to the mosquito collec-
tion �elds and when relevant also to the bioassay �elds.

Site coordinates linked to each dataset are checked 
using GIS software to ensure the coordinates fall on land, 
in the right country, and that the location of sites matches 
the description given by the data source. All other �elds 
are checked to ensure each value falls within the expected 
range and to identify any missing data, which are then 
requested from the data source.

�is data collation is still in process but data has been 
extracted from all available articles published up to the 
end of 2015 that met the inclusion criteria. �e current 
dataset has been assessed to inform the next stage of the 
planned analyses.

In order to visualise apparent trends for the most 
important class of insecticides, the full dataset was �l-
tered to extract all bioassay records that used a pyrethroid 
insecticide. �e current dataset was examined over three 
time periods which were chosen based on data avail-
ability and the introduction of pyrethroids in agriculture 
and public health. Each location linked to these bioas-
says was assigned to the �rst order administrative divi-
sion, as de�ned by the Global Administrative Units Layer 
for 2013, that the coordinates or polygon fell within. Any 
locations that spanned more than one administrative unit 
were excluded. Where the collection date was missing, 
the date was assumed to be two years before the article 
publication year, based on the trend seen for records that 
have a collection date. For the purposes of this exercise, 
if the number of mosquitoes tested was missing then the 
number was assumed to be 60, which is the lower quar-
tile value from the full set of records that did report the 
number tested.

Data from each �rst order administrative unit for each 
of the three time periods was then combined to obtain 
the �rst and last years that mosquitoes were collected in, 

the total number of bioassay records (each record repre-
sents a unique collection site and period from a unique 
study), the total number of mosquitoes tested, and the 
average reported mortality across all of the records. �e 
average mortality was then plotted on a map, and the full 
data �elds are given in Additional �le�2.

Results
Data availability for�standard metrics linked to�insecticide 
resistance
�e full current dataset as of October 2016 is sum-
marized in Table�1 and includes insecticide resistance 
data from 1955 from 71 malaria endemic countries and 
74 anopheline species or species complexes. �e data 
includes 1018 survey locations reporting carbamate 
resistance, 1655 reporting organochlorine resistance, 
1056 locations reporting organophosphate resistance 
and 3127 reporting pyrethroid resistance. �ese data also 
cover di�erent insecticides within each class, speci�cally 
three carbamates, �ve organochlorines, eight organo-
phosphates and eight pyrethroids. �e methods used to 
generate these data included CDC bottle assays and ten 
versions of the WHO bioassay. Figure�1 shows that the 
data for each of the major insecticide classes are highly 
clustered, indicating that any analysis of this data needs 
to account of the clear biases in the location sampled. 
Temporal bias can also be seen with more data available 
in more recent years for each class of insecticide.

Mapping of�pyrethroid resistance over�time
�e apparent trends of pyrethroid resistance (Fig.�2) were 
mapped. �e base map layers used show malaria ende-
micity for each time period. Speci�cally, the 1980–99 map 
used the 1990 data from the Malaria Elimination Initia-
tive’s time series [24], the 2000–07 map used the WHO’s 
2004 data [25] and the 2008–15 map used the 2011 data 
from the WHO’s 2012 world malaria report [26].

�e purpose of the map presented in Fig.�2 was to 
assess whether there are apparent trends of potential 
interest that justify a full analysis. �e data visualiza-
tion presented in Fig.�2 should be treated with caution. 
�is map simply displays the raw data without any cor-
rection for spatial bias within administrative divisions or 

Table 1 The number of�records collated to-date

A record is de�ned as either susceptibility to a speci�c insecticide or the results of a test for a speci�c mechanism of resistance, linked to a �eld-collected species or 
complex from a de�ned place and time

Data type No. records No. point locations No. polygons

Insecticide resistance data from bioassays 14,951 2057 333

kdr allele frequencies 1475 882 25

P450 enzyme activity and gene expression 104 34 1

Esterase enzyme activity 222 123 4
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temporal bias within each time period. �e values shown 
also combine data from multiple species, insecticides and 
protocols as noted above. �e trend of increased report-
ing of resistance to pyrethroids over the last 25�years is 
evident, with areas of Africa that traditionally had no 
data now reporting.

It is important to note that although the colour scale 
used in Fig.�2 highlights the thresholds de�ned by the 

WHO, the full range of mortality values from 0 to 100% 
are available for the proposed analyses.

Data availability for�the mechanisms of�resistance
In addition to bioassay data, mechanism data linked to 
�eld collections were also extracted. �e target site for 
pyrethroid insecticides is the sodium channel and modi-
�cation of this, known as kdr, can lead to resistance [27]. 

Fig. 1 Distribution of the 13,514 insecticide resistance mortality points collected and geopositioned to date
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�e full current dataset was �ltered to extract all records 
reporting kdr allele data including full genotype frequen-
cies (e.g. the number of homozygotes and heterozygotes), 
individual allele frequencies and resistant/susceptible 

allele frequencies. Studies that only provided allele fre-
quencies for a non-representative subset of the popula-
tion (e.g. bioassay survivors only) were excluded. If data 
for di�erent species were provided separately, these were 

Fig. 2 Apparent trends in pyrethroid resistance for the Anopheles
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combined to give a single value for that site and period. 
If data for bioassay survivors and dead were provided 
separately these were combined and weighted by the 
proportion that had died in the bioassay, to give a sin-
gle representative value for that site and period. Finally, 
the susceptible allele frequency was calculated for each 
record. All frequency values derived from less than 20 
mosquitoes tested were excluded. �e �nal dataset cur-
rent contains 1471 data points at 876 unique locations as 
shown in Fig.�3.

Mixed function oxidase is one of the key resistance 
mechanisms for pyrethroids [27] and has been associated 
with malaria programme failure [17]. �e full current 
dataset was �ltered for all records reporting evidence 
on cytochrome P450/MFO enzyme activity or gene 
expression. Each record was classi�ed as either show-
ing signi�cantly higher enzyme activity compared to an 
appropriate control, not showing signi�cantly higher 
activity, showing signi�cant overexpression of one or 
more relevant genes, or not showing overexpression. �e 
current dataset provides 331 P450/MFO data points. �e 
locations of each report of overexpression was then plot-
ted on a map layered on top of reports of high enzyme 
activity, on top of an absence of overexpression, on top of 
an absence of high activity. �at is, evidence for a ramp-
ing up of the P450/MFO enzymes was displayed prefer-
entially over a lack of evidence if both classes of evidence 
were found at the same location in Fig.�4. Unlike the data 
for insecticide susceptibility and for kdr alleles, it was not 
possible to derive a single metric for P450/MFO upregu-
lation. �e gene expression data covers multiple alleles 
and the enzyme activity data was recorded using a range 
of di�erent methods that are di�cult to compare.

Addressing the limitations of�the data
�e maps presented here allow us to visualize the avail-
ability of data and start to see apparent trends, however, 
an analysis that addresses multiple potential confound-
ing factors (Table�2) is required to elucidate real trends 
and relationships. It is clear that the only universal met-
ric with the high global data volumes needed to produce 
comprehensive maps of resistance is phenotypic sus-
ceptibility data from standard bioassays. �e bioassays 
methods used include CDC bottle assays [28] and WHO 
bioassays linked to ten protocol updates [29, 30] meaning 
any analysis of this dataset needs to incorporate the pro-
tocol used as a variable or standardize these data.

Data volumes available for kdr alleles are much lower 
and this factor is not strongly linked to the variable of 
most interest, the e�cacy of insecticides. Other mecha-
nisms such as P450/MFO upregulation are more strongly 
linked to insecticide e�cacy, or mosquito mortality, but 
the volumes of data are currently very low. It may be 
possible to analyse relationships between mechanism 
data and the spatiotemporal patterns generated using 
the bioassay data, especially as mechanism data volumes 
increase, but these data are insu�cient to form the main-
stay of the currently planned spatiotemporal analyses.

An initial assessment of the data reveals that spa-
tial variation appears to exist and, as expected, tempo-
ral trends are apparent. Sampling intensity is, however, 
biased in both time and space. To understand these 
trends it will be important to incorporate both spatial 
and temporal factors in the analysis to avoid one con-
founding the other. Insecticide resistance appears to be 
patchy in space. Spatial patchiness is also seen in malaria 
prevalence and geostatistical methods incorporating 

Fig. 3 Geographical distribution of kdr reports the susceptible allele frequencies
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spatial dependence have been shown to provide a robust 
approach to model these data [31]. �ese methods have 
been developed further to incorporate temporal trends 
and covariates [2], both of which it is expected will to 
play an important role in insecticide resistance. Speci�-
cally, potential drivers of selection such as ITN and IRS 
use, environmental variables and agricultural use of pes-
ticides will be used as covariates in the model proposed.

�e analysis is further complicated by the fact that 
large numbers of species are represented. Individual 
anopheline species di�er in the likelihood that resist-
ance mechanisms will arise and alleles spread within and 
between populations so species needs to be included as a 
factor in the spatiotemporal analyses. �e composition of 
malaria vector species globally forms distinct zones [32] 
and patterns of resistance may di�er among these zones. 
�e planned analysis will therefore consider insecticide 

resistance within each zone rather than treating this as a 
single global dataset. Current data volumes are adequate 
for India, Africa and the Mekong Basin but more data for 
these areas, particularly historical datasets, will improve 
the planned analysis and more data for other regions is 
needed before they can be considered for analysis.

Discussion
�e extent of global insecticide resistance reporting 
has improved over time (Fig.�1). However, there are still 
extensive malaria endemic areas for which there are 
no data yet these data are essential for the selection of 
appropriate tools for vector control and management of 
the limited number of insecticides available.

Pyrethroids are a key insecticide class in the �ght 
against malaria as they are still the only class recom-
mended for use on LLINs. �e expected impact of a high 

Fig. 4 Location of P450/MFO expression reports

Table 2 Potential confounders, factors and�covariates expected to�have the largest e�ect on�observed insecticide suscep -
tibility

Variable Notes

Sampling bias (spatial) The dataset was not generated using a single systematic sampling design; the data are highly clustered in geographical 
space

Sampling bias (temporal) The dataset did not come from a time series that sampled the same locations at regular intervals; each time period 
incorporates a di�erent set of sites and much higher data volumes are available for more recent years

Species The full dataset is linked to 74 malaria vector species and species complexes, however, over half of the bioassay records 
are linked to members of the An. gambiae species complex

Insecticide Within each insecticide class, di�erent insecticides were tested (6 carbamates, 5 organochlorines, 16 organophosphates, 
and 8 pyrethroids)

Protocol variation Corrected mortality values were derived from a mixture of WHO bioassays (using 9 updated protocols) and CDC bottle 
assays

Exposure dose and durationThe exposure dose and duration used in the bioassays varied although the majority of bioassays used standard doses 
and times

Generation tested Population samples were maintained in the laboratory for di�ering periods, however, only results from bioassays using 
F0 and F1 generations were included
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coverage of LLINs on malaria cases can be lost if e�cacy 
of treated nets on killing resistant mosquitoes is reduced 
[33]. It has already been noted that the introduction of 
pyrethroids into South Africa’s IRS control programme 
had a detrimental e�ect as pyrethroid resistant Anopheles 
funestus were reintroduced and malaria cases increased 
[14]. Whereas in the Bioko Island Malaria Control Pro-
gramme, an initial swap from pyrethroids to carbamates 
was reversed when it was shown that the kdr resistance 
mechanism alone was not having an operational impact 
and pyrethroids could still be used to control malaria 
[34]. �is trend is also being observed in LLINs, for 
example, in Burkina Faso, where local vectors are now 
1000 fold resistant to pyrethroids, the personal and com-
munity impact of ITNs has been lost [11].

Most programmes rely on a combination of vector con-
trol tools. However, countries are now reporting resist-
ance to two or more classes of insecticide with di�ering 
resistance mechanisms in di�erent vectors [35, 36]. �is 
makes the development of insecticide resistance manage-
ment plans challenging and there is a need to potentially 
target di�erent tools and insecticides to di�erent areas 
of a country, all of which requires spatial maps of vector 
species and their insecticide resistance pro�les at a gran-
ular scale.

Alteration of the pyrethroid target site, kdr, is widely 
distributed but has arisen multiple times in all the vector 
species tested, with the exception of An. funestus, where 
kdr has still to be recorded. �e 2000–07 data collected 
here shows that kdr is widespread and corresponds to the 
period shortly after the scale up of pyrethroid impreg-
nated LLINs, but resistance levels conferred are low. �e 
numbers of reports of kdr appear to be declining in recent 
years, but this is probably because it is less easy to get this 
information published rather than any evidence that kdr 
testing is declining. �is highlights the need for a reposi-
tory that is able to house both published and unpublished 
data. GPIRM [17] stresses that metabolic resistance to 
pyrethroids is probably more important in mosquitoes, 
however, Fig.�3 shows that this is less well studied. �is 
re�ects the di�culty in monitoring metabolic resistance 
directly in the �eld, when simple PCR based diagnostics 
are not available.

Map discussion
�is work has shown that the data volumes of insecticide 
susceptibility bioassay results are su�cient to allow an 
analysis of spatiotemporal trends that will yield regional 
maps and provide modelled predictions for all locations, 
at a high resolution. �e aim while compiling this dataset 
is to capture the potential confounding factors in addi-
tion to the core measures of resistance, linked to location 
and time data, in order to incorporate these factors into 

a robust analysis of spatiotemporal trends. �e planned 
Bayesian geostatistical method has been successfully 
used to model spatiotemporal variation in the preva-
lence of Plasmodium falciparum infections in malaria 
[2]. Modelling resistance across the vectors that transmit 
P. falciparum and the other human malaria parasites is 
potentially more complicated and the data requirements 
for a Bayesian geostatistical model are high. Progress in 
building a database to feed into this analysis is well under 
way as presented here but it is noticeable that not all 
regions are currently well represented and the decision 
on which regions to include in the model will depend on 
data availability.

Data sharing is a cornerstone of this work. MAP-IR and 
VectorBase regularly share non-con�dential datasets to 
maximize the content of both databases. MAP-IR data is 
also shared with the WHO providing either (i) the data 
have previously been published, or (ii) the data own-
ers have provided permission for the data to be shared. 
MAP-IR will utilize the MAP platform [37, 38], allowing 
users to obtain modelled insecticide resistance risk maps 
online. MAP-IR di�ers from previous attempts at map-
ping insecticide resistance as it is a global initiative that 
aims to share data from the outset and the largest dataset 
available is being assembled. In addition to the modelled 
maps and data, the database of input data (the bioassay 
and mechanism records described here) will be released 
into the public domain via the MAP platform. �e 
expected release date for the input data is 1st September 
2017, with data being continuously added post-release.

Conclusions
Insecticide resistance threatens the gains made in malaria 
control to date. �ere are currently neither the data nor 
the resources to generate the information required for 
control programmes to generate informed decisions 
regarding vector control policy and insecticide choice. 
�is project will �ll some of these gaps which will trans-
late into prolonging the life of old and new insecticides, 
reduce costs and maintain the gains made in reducing 
morbidity and mortality in malaria.

Additional �les

Additional �le�1. Database �elds for bioassay records; the data types 
extracted from each sources are given within a simpli�ed version of the 
database structure.

Additional �le�2. Pyrethroid resistance by subnational area for three time 
periods; the number of bioassay records for each �rst order administra-
tive division is given for 1980–1999, 2000–2007, and 2008–2015 together 
with the actual year range for which data are available in each instance, 
the number of mosquitoes assayed, and the average mortality as shown 
in Fig. 2.

http://dx.doi.org/10.1186/s12936-017-1733-z
http://dx.doi.org/10.1186/s12936-017-1733-z
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