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Abstract 

Background:  Evidence of changing in biting and resting behaviour of the main malaria vectors has been mount-
ing up in recent years as a result of selective pressure by the widespread and long-term use of insecticide-treated 
bed nets (ITNs), and indoor residual spraying. The impact of resistance behaviour on malaria intervention efficacy has 
important implications for the epidemiology and malaria control programmes. In this context, a theoretical frame-
work is presented to understand the mechanisms determining the evolution of feeding behaviour under the pressure 
of use of ITNs.

Methods:  An agent-based stochastic model simulates the impact of insecticide-treated bed nets on mosquito fit-
ness by reducing the biting rates, as well as increasing mortality rates. The model also incorporates a heritability func-
tion that provides the necessary genetic plasticity upon which natural selection would act to maximize the fitness 
under the pressure of the control strategy.

Results:  The asymptotic equilibrium distribution of mosquito population versus biting time is shown for several daily 
uses of ITNs, and the expected disruptive selection on this mosquito trait is observed in the simulations. The relative 
fitness of strains that bite at much earlier time with respect to the wild strains, when a threshold of about 50% of 
ITNs coverage highlights the hypothesis of a behaviour selection. A sensitivity analysis has shown that the top three 
parameters that play a dominant role on the mosquito fitness are the proportion of individuals using bed nets and its 
effectiveness, the impact of bed nets on mosquito oviposition, and the mosquito genetic plasticity related to chang-
ing in biting time.

Conclusion:  By taking the evolutionary aspect into account, the model was able to show that the long-term use 
of ITNs, although representing an undisputed success in reducing malaria incidence and mortality in many affected 
areas, is not free of undesirable side effects. From the evolutionary point of view of the parasite virulence, it should be 
expected that plasmodium parasites would be under pressure to reduce their virulence. This speculative hypothesis 
can eventually be demonstrated in the medium to long-term use of ITNs.
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Background
Malaria continues to be responsible for between 16 and 
24% of total child deaths in sub-Saharan Africa, which 
represents between 100,000 and 500,000 deaths per year 
[1]. The upper limit of these figures means 1 child less 

than 5 years of age dying every minute [2]. These figures, 
however, are 25% lower than those observed before the 
successful intervention by entities such as the Global 
Fund to Fight AIDS, Tuberculosis and Malaria, and the 
Bill and Melinda Gates Foundation [3]. These initia-
tives are responsible for the majority of global funding 
for malaria intervention programmes and have distrib-
uted hundreds of millions of insecticide-treated bed nets 
(ITNs) since the beginning of the last decade [1]. The 
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impact of these measures on malaria mortality has been 
throughly reported [2]. In some African countries such as 
Ghana [5] under-five mortality among children who sleep 
under treated bed nets is about 18.8% lower than among 
children who do not sleep under treated bed nets.

The current strategy of malaria control, therefore, is 
mainly relying on indoor residual insecticide spraying 
and the distribution of ITNs. The combination of these 
two strategies has proved to be very effective against the 
main malaria vectors in Africa, Anopheles gambiae and 
Anopheles funestus [2], both mosquitoes which bite and 
rest indoors at night, which is the period that people are 
sleeping [4, 5]. These mosquitoes show intense anthopo-
philic and endophilic behaviour, which make them very 
competent vectors of malaria [4]. The night-biting pref-
erence of these mosquitoes explains the efficacy of ITNs 
in Africa due to the double effects of ITNs in reducing 
the biting rates—they provide a physical barrier against 
bites [6]—and repelling or killing mosquitoes (or both)—
the insecticide that impregnates the nets has a powerful 
knock-down and killing effect [7]. This, together with the 
programmes of indoor spraying of insecticide, have been 
the most important factors in reducing malaria incidence 
and mortality observed in the last decade [8].

Mosquitoes, however, are not a passive and static spe-
cies and have been adopting survival and reproductive 
strategies, for example increasing their resistance against 
insecticides, shifting their biting habits to earlier hours 
and changing to outdoor biting behaviour [2]. It should, 
therefore, have been expected that endophilic malaria 
vectors, such as A. gambiae and A. funestus would grad-
ually change their feeding and resting behaviour as a 
reaction against the current strategies of indoor spread-
ing of insecticides and the distribution of ITNs. In fact, 
evidence of changes in biting and resting behaviour of 
malaria vectors, have been mounting up in recent years 
[9–13]. The presence of outdoor-activity, early-biting 
malaria vectors have been reported in many countries in 
Africa, such as Benin [14], Tanzania [15], Kenya [16–18], 
Nigeria [19], Uganda [20], Gambia [21], Ghana [22] and 
Rwanda [23], amongst others.

In this paper a stochastic model is proposed to simu-
late the evolution of biting behaviour change of mosqui-
toes due to the use of ITNs, based on the theoretically 
expected reduction in biting rates and knock-down, 
killing effects, or both, provided by the physical barrier 
and insecticide effects of ITNs [24, 25]. The model uses 
ad hoc functions to reproduce the impact of ITNs on the 
fitness of mosquitoes by reducing the biting rates and 
increasing mortality rates. In addition, the model incor-
porates a heritability function that provides the necessary 
genetic plasticity to the population of mosquitoes, upon 

which natural selection would act to maximize the fitness 
under the pressure of the control strategy [13, 26].

The model is not intended to provide a public health 
tool to help decision-makers in guiding their malaria 
control strategies but rather present a theoretical frame-
work on which experiments can be carried out to better 
understand the mechanisms determining the evolution of 
feeding behaviour under the pressure of the use of ITNs. 
Moreover, the model does not deal with insecticide resist-
ance but rather concentrates on the effects of ITNs on the 
feeding and resting behaviour of malaria mosquitoes. This 
paper is organized as follows: After this brief introduc-
tion, the details of the model are presented in the methods 
section. The results of the numerical simulations are pre-
sented in a specific section on results and the final com-
ments and conclusions presented in “Discussion” section.

Methods
An individual based simulation model was used to con-
struct a population of n female mosquitoes that survive 
during both phases of their lifecycle, immature and adult, 
taking blood meals to produce viable female offspring 
to form the next generation. Non-overlapping genera-
tions were considered, and a time step was defined as 
the update of the n individuals in the population. At 
each time step the mosquito population achieved its car-
rying capacity C. The carrying capacity was assumed to 
be a monotonic decreasing function of k, since carrying 
capacity is determined by food availability, according to 
the equation

where k is the product of the maximum proportion of 
individuals using bed nets and effectiveness of bed nets, 
and M represents the carrying capacity of the environ-
ment for mosquitoes when bed nets are not used. As 
k ∈ [0, 1], C varies between M  /  e and M which means 
that when k = 1 bed nets can reduce the mosquito pop-
ulation by up to 63%. In [25] a reduction of 64–92% in 
mosquito biting when ITNs are used is reported. Notice 
that to achieve a 20% reduction in C, k ≈ 0.47 is needed. 
At the beginning of a simulation each individual mos-
quito i, i ∈ 1, 2, . . . n, is assigned a biting time parameter 
hi ∈ [0, 24[ hours according to a Gaussian distribution 
corresponding to the number of hours after 12:00 p.m. 
at which the mosquito bites, so for example a mosquito 
assigned a number 5.00 will always bite at 17:00 p.m. This 
parameter is genetically determined and corresponds to 
the time of day or night at which the mosquito bites.

For each individual mosquito the impact of the use of 
bed nets by humans is represented by the parameter zi 
according to

(1)C = Me−k2
,
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where hm represents the time in hours measured from 
12:00 p.m. where the bed net usage is greatest and σ1 is a 
constant time representing the variability of the bed net 
usage over a night about its maximum.

For mosquito i the parameter µi ∈ [0, 1] represents the 
probability that that particular mosquito dies. µi is given 
by the equation

where µN represents a natural probability of death, and 
α1 > 0 is an arbitrary constant. As α1 increases, the 
impact of the use of bed nets on the mosquito mortality 
probability decreases.

The oviposition (birth) probability φi is given by

In the absence of bed nets zi = 0, φi is highest for a 
mosquito that bites at time hm because most people are 
asleep, so the mosquito will get a better blood meal. 
Again σ2 is a constant time representing the variability 
over a night of the number of available hosts about its 
maximum value, α2 measures the impact of bed net use 
on oviposition probability, and ǫ is the maximum value of 
this probability.

Other functions can be used to simulate the impact 
of ITNs on the mosquito population, the ones proposed 
here were inspired by field experiments that relate host 
availability and mosquito captures inside and outside 
houses during the daytime [27, 28]. Observe that bed net 
impact on the carrying capacity is supposed to be multi-
plicative as the available blood meal is reduced by a frac-
tion of the initial one when bed nets are not used (k = 0 ), 
and additive in the case of mortality (or oviposition) rate, 
since natural and induced mortality are independent 
events. Furthermore, the effect of bed nets on mosquito 
mortality and oviposition (by feeding inhibition) is not 
the same [7, 25]. For example, the risk difference obtained 
comparing mosquito mortality risk and blood feeding 
risk when ITNs or untreated bed nets (UTNs) are used 
can be −0.66 to −0.27 for blood feeding and 0.74 to 0.39 
for mosquito mortality; the variation in both is explained 
by the degree of resistance of the mosquitoes [25].

When the simulation is updated, first of all the individ-
ual mosquito survival probabilities are applied. For this, 
a mosquito is chosen, say with biting time hi, at random 
and ask if it will survive comparing a randomly generated 
number from a Uniform distribution with its survival 

(2)
zi = ke

−(hi−hm)2

2σ2
1

(3)µi = µN +
zi

zi + α1
,

(4)φi = max

(

ǫe

−(hi−hm)2

2σ2
2 − α2zi, 0

)

.

probability µi. Then, the second step is, if it survives, it 
can produce a daughter with probability φi. Again, a ran-
domly generated number obtained from a Uniform dis-
tribution is compared with φi to decide if the mosquito 
will produce a daughter. This process is repeated until 
the total mosquito population size given by the carrying 
capacity is reached. Overall, one mosquito can produce 
more than one offspring depending on its mortality and 
oviposition probabilities. At the start of the next simula-
tion step, that corresponds to a new mosquito population 
generation, each daughter mosquito is assumed to have 
reached full adult maturity.

When a mosquito assigned a biting parameter hi repro-
duces, her offspring is assigned a biting rate parameter 
which follows a Uniform distribution in

where g is a model parameter. The larger g is the greater 
the possible difference between the biting time of a 
mother mosquito and her daughter. This corresponds to 
a genetic plasticity so the offspring have the potential to 
adapt to the use of bed nets to maximize their survival 
and reproductive potential [13]. Observe that the bit-
ing time of a daughter depends on the biting time of her 
mother. Figure 1 shows the algorithm proposed.

The curve of mosquito population distribution versus 
biting time can be characterized by several quantities 
such as the number of maxima and minima, the position 
of the maxima and minima, the population size at these 
points, the variance of each peak, and the area under 
this curve. In particular, the positions of the maxima and 
minima, and the variance of each peak are measured by 
taking the first and second derivative of the distribution 
of the mosquito population biting time.

Finally, the relative fitness of the individuals in the pop-
ulation that bite at a specific time hi is evaluated as

where Ni is the number of individuals biting at time hi, 
and C is the carrying capacity.

A sensitivity analysis is performed to assess the 
strength of the relationship between each one of the 
model parameters and the population fitness. For this, 
the space of the input values is first sampled using a Latin 
Hypercube Sampling (LHS) with µN ∼ Unif (0.05, 0.15), 
σ1 ∼ Unif (10, 20) (h),  σ2 ∼ Unif (250, 350) (h),  
α1 ∼ Unif (10, 20), α2 ∼ Unif (0, 0.1), ǫ ∼ Unif (0.4, 0.8) 
g ∼ Unif (0.1, 1) (hours), and k ∼ Unif (0, 0.8) where 
Unif means a Uniform probability distribution. LHS is 
a stratified sampling without replacement technique 
that ensures that the entire range for each parameter is 
explored. The Monte Carlo simulation is done by drawing 

(5)[hi − g , hi + g],

(6)Fi =
Ni

C
,
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a set of L independent parameters from the Uniform dis-
tribution and evaluating F =

∑

Fi. The sum is done in a 
chosen interval of biting time. For this, L = 2000 and the 
period of 13–14 for the interval of biting time are used, 
i.e., the fitness of the individuals that bite around 1:30 
a.m. is evaluated. Assuming that the relation between 
output and input is linear, a regression model can be used 
to assess the sensitivity of F to each model parameter. 
The standardized regression coefficients (SRCs) can be 
used for sensitivity analysis provided that the model coef-
ficient of determination R2 is 0.7 or higher [29, 30]. Some 
parameter values and their ranges for the sensitivity anal-
ysis are inspired by the literature (for example µN , ǫ, hm, 
and σ1) and others are reasonably chosen (e.g. σ2 >> σ1 ) 
[31, 32].

Results
In all simulations σ 2

1 = 15 h, σ 2
2 = 300 h, α1 = 15, 

α2 = 0.05, ǫ = 0.6, µN = 0.1, hm = 14.5 hours (which 
means 2:30 a.m.), and M = 10, 000 were used. The results 
are the mean values obtained from 200 simulations. Each 
simulation is run 1500 times to guarantee that a stable 
equilibrium distribution of the mosquito population bit-
ing time profile is achieved.

Figure 2 shows the oviposition and mortality probabili-
ties versus mosquito biting time given by Eqs. (3) and (4). 
In general, the use of bed nets increases the mosquito 
mortality probability and decreases the mosquito ovipo-
sition probability, affecting mostly the individuals that 
bite around 2:30 a.m. when bed net use is at its maxi-
mum. In [31] the authors argue that in most countries 
more than 75% of anopheline bites would be prevented 
by bed nets because biting rhythm and the times when 
most people go to bed coincide (from 22:00 to 05:00 h in 
rural areas). The data shown are from mosquito captures 
up to the year 2004.

Figures  3 and 4 show the long-term asymptotic equi-
librium mosquito population distribution as a function of 
the biting time. The results are obtained using g = 0.3 h. 
It can be seen in Figs. 3 and 4 that without the use of bed 
nets this distribution has its maximum at hm hours, and 
mosquitoes bite preferentially from 24:00 p.m until 4:00 
a.m. As the use of bed nets increases, initially the maxi-
mum value of this distribution decreases and its variance 
increases. Then at k = 0.6 a split of the mosquito biting 
time distribution into two peaks, one centered at 22:00 
p.m. and the other at 06:00 a.m., is observed. These two 
figures are generated using different initial conditions: in 
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Fig. 2  Oviposition and mortality of mosquitoes. Oviposition and mortality probabilities versus mosquito biting time for different proportions of 
individuals using bed nets, k. In a k increases from top to bottom and in b it increases from bottom to top. Each curve was obtained for the specific 
value of k adressed in the figure. The others parameters are σ1 = 15 h,  σ2 = 300 h,  ǫ = 0.6,α1 = 15, α2 = 0.05 and µN = 0.1
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Fig. 3 a Gaussian function centered at 14.5, N(14.5, 4) is 
used, and in Fig.  4 the Gaussian function is centered at 
13.5, N(13.5,  4). As a result, a symmetric and an asym-
metric distribution for the stable equilibrium mosquito 
distribution population profile were obtained, respec-
tively. Overall, the appearence of the two peaks repre-
sents an adaption of this population due to the selection 
pressure of the bed net use which selects individual mos-
quitoes which are able to have their blood meals at those 
times of day when humans are awake and not using bed 
nets.

Figure  5 shows the evolution in time of the mosquito 
biting time distribution using g = 0.3 and k = 0.6. It 
can be seen that the stable equilibrium distribution is 
achieved at t ≈ 500. Starting from a Gaussian distri-
bution of biting time the mosquito population evolves 
to achieve a specific profile of biting time distribu-
tion that results from the selection pressure of bed net 
use that selects individuals more adapted to this new 
environment.

Figure 6 shows how the mosquito biting time distribu-
tion depends on the proportion of individuals using bed 
nets, k, and on the plasticity parameter, g. Fixing k and 
increasing g, a transition that marks the appearance of 
a unique peak, characterized by a large variance can be 
seen. The same occurs when g is fixed and k is increased. 
The sudden diminution of the variance is a signal of the 
appearance of two peaks in the mosquito population 
distribution.

Figure 7 shows the relative fitness of the population as 
a function of bed net use for three different biting times. 
At low levels of coverage, the relative fitness of the resi-
dent population is biggest as a result of the abundance of 
blood hosts. As the use of bed nets increases, the protec-
tive barrier around sleeping humans increases mosquito 
mortality and makes it difficult for them to access a blood 
meal promoting the emergence of a “mutant” popula-
tion characterized by a distinct biting time. Because the 
stable equilibrium distribution of the mosquito popula-
tion biting time profile depends on k, this new “mutant 
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Fig. 3  Population biting time profile of mosquitoes. Stable equilibrium distribution of the mosquito population biting time profile for different 
proportions of individuals using bed nets. The initial condition is given by a Gaussian function N(14.5, 4). The results are the mean values of 200 
simulations with g = 0.3 h,  σ1 = 15 h, σ2 = 300 h,  ǫ = 0.6, α1 = 15, α2 = 0.05 and µN = 0.1.
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population” can coexist with another one or displace it 
depending on the shape of the oviposition and mortal-
ity probability. This behaviour change of the population 
characterizes a response to the new environmental con-
ditions imposed by the intense use of ITNs.

Figures  8 and 9 show the standard regression coeffi-
cients (SRCs) obtained from the sensitivity analysis. The 
model coefficient of determination is R2 = 0.84. The sen-
sitivity based on the SRC can capture 100% of the vari-
ation in F. The parameter k accounts for 69% (0.832) of 
this variation. An increase in k promotes a decrease in 
F. Another parameter that plays an important role on 
the population fitness is α2. It accounts for 16% of the 
variation in F. The other parameters together explain 
just 15% of the variation in the population fitness. Over-
all, increases in σ2, g, α2, k, and µN decrease F, while 
increases in σ1, α1 and ǫ increase F. Finally, the order of 
importance of the parameters of the model on the fitness 
is k ,α2, g , σ2, σ1,α1, ǫ and µN .

Discussion
In this paper an agent-based simulation model is pro-
posed to test the hypothesis that due to long-term use 
of insecticide impregnated bed nets to control malaria 
transmission, change in the biting time behaviour of mos-
quitoes is likely to be observed. This reasoning is based 
on the assumption that both the physical barrier pro-
vided by the nets and the insecticide effect would reduce 
the biting rate and increase the repellent effect or mortal-
ity rate of the mosquitoes. This combined effect, which 
is the ultimate aim of the use of insecticide-impregnated 
bed nets in malaria control, is expected to force the dis-
ruptive or directional evolution of biting time, shifting 
the wild range of nocturnal habits of Anopheles mosqui-
toes towards daytime. The model reproduces the theo-
retical evolutionary effects that would be expected due 
to the selective pressure represented by the long-term 
use of ITNs. By including functions that reproduce the 
impact of ITNs on the carrying capacity of mosquitoes 
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(Eq. 1), the individual impact on the biting time of each 
mosquito as a function of the use of ITNs (Eq.  2), the 
mortality rate (Eq. 3), and the oviposition rate (Eq. 4), the 
expected disruptive selection on the biting time of mos-
quitoes is observed in the simulations. Figure  2 shows 
how the oviposition rate decreases and the mortality rate 
increases as a function of the proportion of people using 
ITNs. The shift in biting time away from the wild average 
towards both earlier and later times is clearly observed in 
Figs. 3 and 4. In addition, there is clear increase in the rel-
ative fitness of strains that bite at much earlier time with 
respect to the wild strains, when a threshold of about 
50% of use of ITNs is reached, above which the mutant 
strains overwhelm the wild strain (Fig. 7).

The impact of ITNs on behaviour of mosquitoes has 
been addressed previously [13, 25, 26] but the current 
model, by taking the evolutionary aspect into account 
[27], was able to demonstrate that the long-term use 
of ITNs, although representing an undisputed success 
in reducing malaria incidence and mortality in many 
affected areas, is not free of undesirable side effects.

If, on the one hand, the long-term use of ITNs may 
eventually induce important changes in the biting 
behaviour of mosquitoes, shifting their average biting 
time from nocturnal to daylight, remarkably reducing 

the efficacy of ITNs, on the other hand, from the evolu-
tionary point of view of the parasite virulence [33, 34], it 
should be expected that Plasmodium parasites would be 
pressed to reduce their virulence. This reasoning is based 
on the so-called “Ewald hypothesis” [33, 34], accord-
ing to which it should be in the evolutionary interest of 
the pathogen to keep a high virulence when circulating 
among an unprotected host population but reduce it 
when some control measure changes the natural cycle of 
the disease. In an unprotected population, Plasmodium 
strains that keep the host very ill, if possible laying in 
bed and unreactive against the mosquito bites, should 
cause a serious disease. As the use of ITNs presses the 
mosquitoes to change their biting habits towards day-
time, it would be in the evolutionary interest of those 
parasites to cause a less severe disease. This however, is 
only a speculative hypothesis that could possibly eventu-
ally be demonstrated in the medium to long-term of use 
of ITNs.

Finally, one aspect not considered in this study, but 
which may have important repercussions on the efficacy 
of ITNs in malaria control, is the possibility of evolution 
of resistance against the insecticide by the mosquitoes. 
This effect has been observed in areas with particularly 
high pyrethroid resistance [35].
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As mentioned in the introduction, the current study 
is not intended to provide a public health tool to help 
decision-makers in guiding their malaria control strate-
gies but rather represents only a theoretical framework 
on which hypotheses can be tested and experiments 
can be carried out to better understand the mechanisms 
determining the evolution of feeding behaviour under the 
pressure of the use of ITNs.
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