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OPINION

Asymptomatic Plasmodium vivax 
parasitaemia in the low‑transmission 
setting: the role for a population‑based 
transmission‑blocking vaccine for malaria 
elimination
Thomas C. S. Martin and Joseph M. Vinetz* 

Abstract 

Plasmodium vivax remains an important cause of morbidity and mortality across the Americas, Horn of Africa, East 
and South East Asia. Control of transmission has been hampered by emergence of chloroquine resistance and several 
intrinsic characteristics of infection including asymptomatic carriage, challenges with diagnosis, difficulty eradicating 
the carrier state and early gametocyte appearance. Complex human-parasite-vector immunological interactions may 
facilitate onward infection of mosquitoes. Given these challenges, new therapies are being explored including the 
development of transmission to mosquito blocking vaccines. Herein, the case supporting the need for transmission-
blocking vaccines to augment control of P. vivax parasite transmission and explore factors that are limiting eradication 
efforts is discussed.
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Background
At a time when malaria eradication is advocated as the 
ultimate goal of malaria control strategies worldwide, 
the mechanisms by which malaria remains endemic in 
the low-transmission setting remain unclear, and hence 
novel approaches to regional malaria elimination are 
difficult to approach. The 2017 World Malaria Report 
notes that in the Americas, 12 of the 18 malaria-endemic 
countries are projected to reduce malaria case incidence 
by at least 40% by 2020, but that malaria cases increased 
in 4 (Nicaragua, Panama, Peru and Venezuela) in the 
period 2010–2016 [1]. Brazil and Venezuela accounted 
for about two-thirds of reported cases in the Americas, 
and the increase in Peruvian malaria cases after 2009 
has reversed gains since 2000 [1]. These trends yet again 

demonstrate the fragility of malaria control and elimina-
tion efforts that are subject to the vagaries of political and 
socio-demographic trends.

In areas of relatively low levels of transmission, such 
as the Amazon basin, Plasmodium vivax causes consid-
erable morbidity, similar to many other regions such as 
those in the Horn of Africa, south and southeast Asia 
[1]. The geographic range of P. vivax malaria is broader 
than that of Plasmodium falciparum malaria, yet both 
declined considerably during the 20th century, especially 
over the past decade. Given continued global population 
growth, the global population at risk for malaria now esti-
mated at 3.5 billion people [1]. The WHO estimates that 
from this pool the current number of new P. vivax infec-
tions is in the range 6.6–10.8 million cases per year with 
roughly 3000 deaths; however, previous studies have sug-
gested that this is a dramatic underestimate with annual 
global cases of vivax malaria possibly being as high as 391 
million [1, 2].
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To date the most effective approaches to malaria con-
trol have been through direct and indirect interven-
tions against the mosquito vector. Vector control in the 
20th century though improvements in sanitation and the 
introduction of dichlorodiphenyltrichloroethane (DDT) 
in the 1940s (but stopped in the 1970s–1980s in South 
America [3–5]), combined with effective chemotherapy 
and chemoprevention dramatically reduced the reach of 
P. vivax malaria. However, several key host and parasite 
characteristics of P. vivax malaria have enabled this para-
site to maintain endemicity, including the emergence of 
infectious gametocytes at the very onset of parasitaemia, 
the development of hypnozoites as latent liver infections 
in humans that later relapse, and asymptomatic parasi-
taemia [6–13]. Efforts to reduce the impact of endemic 
P. vivax have not established an effective way to man-
age ongoing transmission through relapsed infections 
and asymptomatic infections, especially as chloroquine-
resistant P. vivax has spread, particularly in the Asia–
Pacific region [10, 14]. Potential interventions to reduce 
transmission from both latently and subclinically low-
level parasitaemic individuals include mass drug admin-
istration or vaccination. Given these considerations new 
conceptual approaches and tools to advance malaria con-
trol measures from control to elimination must still be 
advanced. Here the parasite and host characteristics that 
underlie the maintenance of regional P. vivax hypoende-
micity, from which potential interventions, particularly 
transmission-blocking vaccine approaches, emerge as 
promising strategies are considered.

Plasmodium vivax life cycle with regard 
to transmission‑blocking vaccine development
Several aspects of the life cycle of P. vivax allow it to 
maintain endemicity but one of the most formidable is 
the ability to develop latent infection as hypnozoites [15]. 
Upon initial infection of humans, sporozoites migrate to 
the liver where they infect hepatocytes becoming either 
tissue schizonts (exoerythrocytic forms, EEFs), lead-
ing to blood stage malaria, or hypnozoites, a dormant 
form of the parasite that can reactivate weeks, months 
or years later [15, 16]. Parasite dormancy can lead to re-
emergence of active infections despite active population-
based vector control programmes. As the vast majority 
of P. vivax relapses are likely asymptomatic [17, 18], most 
do not come to medical attention and are consequently 
important potential sources to maintain endemicity and 
reintroduce P. vivax to human populations.

Once introduction of infection to a population occurs, 
diagnosis remains a challenge in some people. During 
the initial stages of infection, each EEF releases tens of 
thousands of merozoites into the blood stream, which 
preferentially infect reticulocytes over mature red cells. 

Hence infected people typically have lower parasite den-
sities than those infected by P. falciparum, which invades 
red cells of all ages. These low level parasitaemias with P. 
vivax can lead to infections being missed by routine light 
microscopy or rapid diagnostic tests. This in turn means 
some individuals do not receive timely treatment, thus 
permitting ongoing transmission.

In contrast to P. falciparum, P. vivax gametocytes are 
sensitive to blood schizonticides as evidenced by the 
rapid disappearance of all parasite stages after chloro-
quine treatment. But, infectious gametocytes of P. vivax 
appear early in the course of infection, simultaneously 
with asexual forms. As a result, transmission of infec-
tion to anopheline mosquitoes can occur before adequate 
gametocidal therapy can be initiated. Then, after inges-
tion of an infection blood meal, sporogony occurs within 
the mosquito in which development can occur at lower 
temperatures than for other Plasmodium species, explain-
ing its broader geographical spread and longer transmis-
sion seasons.

Current treatment of acute, symptomatic 
Plasmodium vivax malaria and radical cure
Acute P. vivax malaria is conventionally treated with 
a blood schizonticide (i.e. chloroquine, mefloquine, 
atovaquone/proguanil) followed by radical cure with the 
8-aminoquinoline, primaquine, initiated simultaneously. 
Challenges have arisen with treatment including clini-
cally significant chloroquine-resistant P. vivax that has 
emerged in Asia, the Brazilian Amazon and Oceania [10, 
19, 20]. In addition, despite treatment with primaquine, 
a substantial proportion of individuals (0–59% after 
4–6 months) undergo relapse and can act as an ongoing 
reservoir for transmission [21]. The relapse rate may in 
part be due to non-compliance with therapy, and some 
studies have demonstrated improved outcomes with 
directly observed therapy [21, 22]. Shorter courses have 
also been assessed which may improve adherence as 
the perceived benefit of treatment falls off as symptoms 
subside [22]. Recent studies have suggested that 7-day 
courses of primaquine may be as effective as a 14-days 
regimen [23, 24]. Tafenoquine, a novel 8-aminoquino-
line administered as a single dose, has demonstrated to 
be non-inferior to primaquine in clinical trials [25] and 
as of this writing has been submitted to the U.S. Food 
and Drug Administration for registration. While confir-
mation of radical cure is desirable, no methods in clinical 
use exist currently to confirm eradication of latent infec-
tion [26].

Studies of P. vivax relapse in endemic areas are often 
difficult to design and interpret because subsequent 
P. vivax infections of study subjects may result either 
from reinfection or relapse, which are difficult to 
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differentiate on a molecular basis. While highly similar 
or identical genotypes found in sequential infections 
(for example as determined by microsatellites) indicate 
likely relapse, finding a distinct genotype does not rule 
out relapse because of the possibility of relapse from 
a different hypnozoite clone acquired at a different 
time by an individual [27]. One such study came from 
Thailand where reinfection was considered unlikely 
due to low prevalence or impossible due to absence 
of transmission. Plasmodium vivax-infected subjects 
had been transported from malaria-endemic refu-
gee camps along the Thai border to the non-endemic 
region of Bangkok. The authors found that the major-
ity of relapses were characterised by genotypic strains 
distinct from the prior infection [28]. This observation 
was felt most likely to be due to inoculation of multiple 
different genotypes at the original infective event, with 
only a few parasites becoming detectable in the blood. 
Alternatively, different genotypes arose from hypno-
zoites reactivated over time that became detectable 
during follow up. In either case, these authors demon-
strated the inherent difficulty of establishing the cause 
of recurrent infection in areas with endemic transmis-
sion and consequently the difficulty of identifying the 
contribution of relapse to ongoing transmission.

In addition to relapse of liver-stage infection, evidence 
has accumulated that low level blood stage infection may 
contribute to ongoing transmission. Infections detectable 
via molecular techniques but not by light microscopy are 
defined as sub-patent. Studies from the Peruvian Ama-
zon have demonstrated that as many as 14% of individu-
als in a cross-sectional study were PCR positive for P. 
vivax with only a quarter of these exhibiting symptoms 
[8]. This compares to 2.9% of individuals having parasite 
detected by conventional microscopy [8]. These find-
ings are supported by other studies performed in South 
America suggesting that PCR detection of P. vivax is 
approximately 5–7 times more sensitive than micros-
copy with most individuals not reporting symptoms [6, 
8, 29]. But the question arises as to whether these sub-
patent infections are contributing to ongoing transmis-
sion. Alves et  al. took fifteen asymptomatic individuals 
who were PCR positive only for P. vivax infection and 
undertook direct feeding and membrane feeding experi-
ments with Anopheles darlingi with high parasitaemia 
symptomatic individuals as control. In total, only 1.2% 
of mosquitoes were infected by asymptomatic individu-
als compared to 22% of mosquitoes for the symptomatic 
carriers [7]. The authors concluded that while infection 
rates were lower, the much larger pool of patients and 
the likely longer duration of infection could mean that 
asymptomatic individuals represent a significant contri-
bution to ongoing transmission.

A later study in the Peruvian Amazon followed 51 indi-
viduals with P. vivax infection identified through active or 
passive case detection [18]. Monthly follow-up included 
light microscopy, PCR and anti-circumsporozoite pro-
tein (CSP) antibody detection for 1  year after directly 
observed primaquine treatment. Twenty-nine of the 51 
patients had 84 recurrent infections, of which only 26% 
were detectable by microscopy and just 21% reported 
symptoms. Sixteen of 29 patients with recurrent infec-
tion had more than one recurrence. Interestingly, about 
half of the 29 patients had recurrent infections that lasted 
2 or more consecutive months all of which were sub-pat-
ent and asymptomatic. In three, the sub-patent infection 
went on to become patent. Considering all 51 patients, 
the overall person-infected-months was 13 per 100 per-
son months of follow-up which equates to an average of 
1.6  months per patient over the 1  year follow-up. The 
results suggest that P. vivax results in a substantial num-
ber of individuals maintaining ongoing transmission.

Since Alves et  al. published landmark papers on the 
high prevalence of subclinical, subpatent P. vivax para-
sitaemia in Rôndonia State, Brazil [6], and the longi-
tudinal potential contribution of such individuals to 
malaria transmission [7], similar observations have been 
made elsewhere in Amazonia [30] including Acre, Brazil 
[13, 31], the Loreto Department of Peru [8, 11, 12] and 
Colombia [32, 33].

Asymptomatic Plasmodium vivax parasitaemic 
humans, the reservoir of endemic transmission, 
and mechanisms of premunition
Premunition in malaria—defined as protection against 
high parasitaemia and illness in the absence of com-
pletely eliminating infection—has long been known to 
occur [34, 35] despite what has been formally character-
ized as incomplete and “defective” immunity [36]; the 
natural history of malaria may lead to sterile immunity as 
well [37]. The major mechanism by which P. falciparum 
parasitaemia is controlled is widely thought to depend on 
the acquisition of polyclonal, protective antibodies, based 
on the classic study by Cohen in which the administra-
tion of immune gamma globulin was shown to lower but 
not eliminate P. falciparum parasitaemia [38].

Asymptomatic, parasitaemic individuals in endemic 
regions do not typically come to medical attention, hence 
they potentially remain infectious to mosquitoes. Asymp-
tomatic parasitaemic individuals may have either patent 
or subpatent parasitaemia, and parasitaemia likely fluc-
tuates over time and space. Hence asymptomatic parasi-
taemics likely move malaria parasites within the regions 
where they live and work [39]. The immunological 
mechanisms by which asymptomatic parasitaemia arises 
remain to be discovered, but generally speaking must 
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be related to suppression of innate immune responses 
in the face of acquired immunity. Little is known about 
such mechanisms in P. vivax [40], but may relate in part 
to acquired antibodies against specific P. vivax attach-
ment and invasion ligands (reviewed in refs. [15, 40]). 
Innate responses produce fever and other systemic mani-
festations of malaria—examples include TLR9-mediated 
responses to parasite DNA adsorbed to haemozoin [41] 
and parasite antigen-containing immune complexes [42] 
which produce inflammatory mediators (such as inter-
leukin-1 and tumour necrosis factor-1) via inflamma-
some activation [43].

State of malaria transmission‑blocking vaccines
Transmission-blocking immunity was first demonstrated 
in the 1970s with an avian model based on vaccinating 
chickens with Plasmodium gallinaceum gametes [44, 45]. 
The discovery of Pfs25 [46], Pfs48/45 [47] and Pfs230 [48, 
49] as major surface antigens of P. falciparum zygotes and 
ookinetes led to considerable efforts to develop recombi-
nant subunit transmission blocking vaccines (TBVs) [50], 
including early clinical trials [51, 52]. P. falciparum trans-
mission-blocking vaccine development continues [53].

On the basis of identifying the P. vivax orthologs of 
Pfs25, Pfs48/45 and Pfs230-C, TBVs based on these anti-
gens is feasible but development of such a P. vivax TBV 
lags that of a P. falciparum TBV. Additional potential 
antigen targets of P. vivax TBV development remains to 
be explored, although the ability to obtain sexual stages 
of P. vivax (zygotes and ookinetes) to discover novel 
potential TBV antigens is feasible [54].

A P. vivax TBV is particularly attractive both because 
of the propensity of relapse in hypnozoite carriers and 
because the prevalence of asymptomatic parasitaemia 
in endemic regions is high. An anti-P. vivax TBV would 
either have to have sustained levels of antibodies over the 
time of potential relapse or populations would have to be 
revaccinated.

Human infection by Plasmodium vivax 
and modulation of infectivity to mosquitoes
A key, unaddressed gap in our understanding of the 
natural history of P. vivax infection is the relationship of 
infection to transmissibility of parasites. The important 
observation that most P. vivax relapses are asymptomatic 
[18] is key to understanding how asymptomatically-
infected individuals may be key reservoirs of malaria 
transmission over space and time.

Experimental induction of antibodies against Plas-
modium gametes that reduce Plasmodium infectivity 
to mosquitoes has been known for decades, including 
those of P. vivax, [45, 55, 56]. Later work producing 

monoclonal antibodies to block transmission of P. vivax 
found that at lower concentrations, transmission of 
infection to mosquito may actually be enhanced [57]. 
The authors took monoclonal antibodies raised through 
inoculation of female gametes into mice and mixed 
the serum with the blood of patients with acute vivax 
infection. The authors showed that transmission was 
reduced to below 10% of control with a concentrated 
monoclonal antibody solution. With serial dilutions, 
however, the effect was reversed with enhancement of 
infectivity to approximately two–fourfold above con-
trol. The effect of serum taken from patients in con-
valescence demonstrated a similar effect. Among 40 
patients, 3 were found to have transmission enhance-
ment effects with one inducing a 13-fold greater than 
control transmission. Using convalescent serum, the 
authors also demonstrated a time-post-infection effect 
with some serum initially blocking transmission but 
later enhancing transmission as anti-gamete antibody 
titres declined. The authors postulate potential mecha-
nisms could include enhancement of fertilization or 
protection from antiparasitic factors in the mosquito 
blood meal. Using membrane feeding assays and direct 
feeds to experimentally infect laboratory-bred Anoph-
eles tessellatus mosquitoes, studies of P. vivax-infected 
individuals in Sri Lanka demonstrated both naturally-
acquired transmission-blocking and transmission-
enhancing effects at different time points in relation 
to acute infection [58]. While these authors found that 
transmission-enhancing effects were observed early 
in P. vivax infection, transmission-blocking effects 
occurred later after initial infection. Interpretation of 
the data from these studies is limited because they were 
based on single time point sampling and not on serial 
sampling, so that the natural history of transmission-
modifying antibodies in individual subjects could not 
be ascertained.

Preliminary observations in the Peruvian Amazon in 
which laboratory-reared An. darlingi mosquitoes were 
infected via membrane feeding assays in the presence 
of serially-obtained sera (over 6  weeks) from subjects 
treated for acute P. vivax, have shown twofold increase 
in oocyst counts and fourfold increase in proportion of 
mosquitoes infected. These data further demonstrate 
the natural history of transmission-enhancing effects 
after acute P. vivax infection (McClean and Vinetz, 
manuscript in preparation).

These findings are striking in highlighting the com-
plexity of immune response and host-parasite inter-
action. It also, shows the potential for complex and 
counter-intuitive responses to any potential vaccine 
dependent on immunologic response and waxing of 
immunity over time.
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Characteristics of a successful 
transmission‑blocking vaccine against Plasmodium 
vivax
The concept of a vaccine blocking human infection of 
anopheline mosquitoes is an attractive approach to 
malaria control, elimination and eradication [59], but 
has not been robustly supported in the malaria com-
munity, at least in part because such a vaccine as a sole 
vaccine strategy has been considered to be “altruistic” 
but not of direct benefit to vaccinated individuals [46, 
60–62]. Development has also been hampered by sev-
eral major challenges including producing conforma-
tion of subunit vaccine proteins and the production of 
clinical grade material; the absence of validated stand-
ards and assays for efficacy; and the absence of a rapid 
pipeline of proof-of-principle human trials for testing 
lead candidates [63]. Based on homology with P. fal-
ciparum transmission-blocking vaccine candidates, 
the most promising P. vivax targets include Pvs48/45, 
Pvs28 and Pvs25 [64, 65].

The population impact of an effective transmission 
blocking vaccine is uncertain given the lack to date of 
phase 3 clinical trials but modelling suggests that a five-
fold reduction in transmission is potentially achievable if 
90% coverage could be implemented [53]. Modelling the 
impact of the best performing anti-Pvs25 vaccine at the 
time, the author predicted a 1.6-fold reduction in trans-
mission in a 90% coverage population. Importantly, the 
model suggests that vaccination against multiple antigens 
would reduce the concentration of antibody required to 
achieve a given level of protection.

Conclusion
Plasmodium vivax endemicity is maintained through a 
number of host-parasite interactions including relapse of 
hypnozoite stage infection, asymptomatic infection, early 
gametocyte appearance in the acute phase and immune 
interaction leading to enhanced transmission to the 
Anopheles vector. Disruption of these factors will be key 
to developing a strategy to eradicate infection and reduce 
the associated morbidity and mortality.

The ultimate goal of any malaria vaccine is to protect 
populations from malaria transmission arising from 
ongoing transmission and from reintroductions from 
movement of parasites into areas where transmission 
has been interrupted [66, 67]. The present discussion 
emphasizes that the pathway forward for a P. vivax 
transmission-blocking vaccine rests on several obser-
vations and concepts: that asymptomatic parasitaemia 
in highly prevalent in endemic regions; that latent hyp-
nozoite infection is usually associated with asympto-
matic relapse; that infectious gametocytes appear early 

in P. vivax infection; and that transmission-enhancing 
antibodies develop as an intrinsic aspect of P. vivax 
infection.
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