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Abstract 

Multiplicity of infection (MOI), also termed complexity of infection (COI), is defined as the number of genetically 
distinct parasite strains co-infecting a single host, which is an important indicator of malaria epidemiology. PCR-based 
genotyping often underestimates MOI. Next generation sequencing technologies provide much more accurate and 
genome-wide characterization of polyclonal infections. However, complete haplotype characterization of multiclonal 
infections remains a challenge due to PCR artifacts and sequencing errors, and requires efficient computational tools. 
In this review, the advantages and limitations of current molecular approaches to determine multiplicity of malaria 
parasite infection are discussed.
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Background
Individuals in malaria-endemic countries often carry 
several genetically distinct clones of the same parasite 
species. Multiplicity of infection (MOI), also termed 
complexity of infection (COI) is defined as the number 
of genetically distinct parasite strains co-infecting a sin-
gle host [1]. Multiclonal infection can be the result of 
independent bites of infected mosquitoes (also called 
superinfection), or a single mosquito bite transmitting 
a genetically diverse sporozoite inoculum. Genetically-
distinct malaria parasites in natural populations have an 
extremely high rate of genetic recombination during the 
sexual stages in a mosquito host, often resulting in mul-
tiple strains being transmitted simultaneously [2]. In the 
case of Plasmodium vivax, multiclonal infections also can 
be caused by the relapse of a liver-stage hypnozoite dur-
ing ongoing blood-stage infection of a genetically distinct 
clone. The number of co-infections within a host might 
be an important indicator of transmission intensity, 
though data to date are inconclusive [3–9]. For example, a 
positive correlation between the rate of polyclonal infec-
tions and annual parasite incidence has been observed in 

parasite populations from Indonesia [5] and Papua New 
Guinea [3], while in other studies, no correlation or nega-
tive correlation was found between the proportion of 
multiclonal infections and parasite prevalence [3, 6]. Sev-
eral studies reported correlations between clinical symp-
toms and higher MOI [10–18] and others did not find 
any associations [19–21]. On the contrary, some studies 
reported that a reduced risk of clinical malaria was asso-
ciated with polyclonal infections [22–24], while other 
studies reported that mono-infections and very com-
mon genotypes are more likely to develop severe malaria 
than polyclonal infections [21, 25]. MOI can also help 
to monitor vaccine efficacy. Vaccine-induced immune 
responses often show strain-transcending specificity [26, 
27], depending on the polymorphic alleles of the vac-
cine candidate antigens [28]. Neafsey et  al. found that 
the RTS, S vaccine has greater activity against malaria 
parasites with matched circumsporozoite protein allele 
than against mismatched parasite strains [29]. Hence, a 
reduction in MOI might be observed after vaccination, 
even if the risk of infection does not change. Understand-
ing of the extent and dynamics of genetic diversity in 
vaccine antigens of all parasite strains is needed to guide 
rational vaccine design and to interpret the results of vac-
cine efficacy trials conducted in malaria endemic areas 
[30]. In drug trials, detecting all clones is important, as 
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only one of them might be drug resistant and will result 
in recrudescence. If this clone is not detected at base-
line, e.g., because it is present in a very low proportion 
of all clones, genotyping might falsely identify it as new 
infection and thus underestimate treatment failure. The 
molecular force of blood-stage infection (molFOB), i.e. 
the number of clones acquired over time, is an important 
parameter to estimate exposure at the individual level 
[31, 32]. Accurate estimates of molFOB require identi-
fication of all clones in multiclonal infections. However, 
sensitive identification of the within-host parasite com-
ponent in multiclonal infection is often difficult due to 
lack of appropriate methods and analysis tools. In this 
review, the advantages and limitations of current molec-
ular approaches to determine multiplicity of malaria par-
asite infection are assessed.

Size‑polymorphic antigens and microsatellites
Over the past decade, hundreds of papers describing the 
multiplicity of Plasmodium infections have been pub-
lished by typing size-polymorphic antigens or micros-
atellite markers [18, 21, 28, 33–45]. Size-polymorphic 
antigenic markers, such as msp-1, msp-2, msp-3, glurp, 
csp and ama-1 in Plasmodium falciparum and P. vivax, 
can be amplified by PCR, and the size of the amplicon 
is determined by either gel or capillary electrophore-
sis. Protocols are comparably simple without requiring 
expensive equipment. In many populations, high diver-
sity of size-polymorphic antigens has been observed in 
both P. falciparum [33, 34, 38, 43, 46–53] and P. vivax 
[54–63]. Antigens are likely under immune selection, 
which will affect the distribution of alleles in the popula-
tion. While in most cases this will not affect estimates of 
MOI, antigen markers should not be included in studies 
assessing parasite population structure.

Microsatellite markers are highly polymorphic with 
tandem repeats of 2–6 bp. They are expected to be selec-
tion neutral with no phenotypic consequences [64–67]. 
Microsatellites are widely distributed throughout the 
genome and can be readily amplified by PCR [68]. A 
range of 5–14 microsatellite markers have been used to 
estimate MOI in P. falciparum [53, 69–71], P. vivax [11, 
72–74], and Plasmodium malariae [75, 76]. After evalu-
ating 42 microsatellite markers in P. vivax from 18 dif-
ferent global studies, Sutton et  al. found that five (3.27, 
8.504, PvMS11, MS16, and MS8) markers could be used 
as candidates for MOI studies [77]. However, as stutter 
peaks and nonspecific amplification in the case of sub-
optimal PCR conditions have been frequently observed 
[78–83], the recommendations of markers also need to 
take into account the robustness of the PCR protocols. 
High levels of stutter peaks have been observed in dif-
ferent laboratories for markers Pv3.27, MS8, and MS16 

(Koepfli, unpublished), thus these markers are no longer 
recommended. In P. falciparum, there are 12 microsat-
ellite markers (Polyα, TA42, TA81, TA1, TA109, TA87, 
TA40, 2490, ARAII, pfG377, PfPk2 and TA60) from 7 
chromosomes that are frequently used for genetic diver-
sity and multiplicity of infection studies [35, 65, 84]. MOI 
is determined as number of alleles detected, and if sev-
eral markers are combined, as the maximum number 
observed for any marker. Any highly polymorphic marker 
is suitable for estimating the MOI.

The major limitation of agarose gel electrophoresis is its 
limited discrimination of alleles of similar sizes. It is una-
ble to discriminate allele size difference less than 20  bp 
[85], resulting in underestimates of diversity and multi-
plicity. This problem is more pronounced when using 
microsatellites with many alleles differing by as little as 
2–6 bp, as compared to antigens, that often harbor larger 
repeat sizes. Also, it is difficult to detect minority clones 
that result in weak bands on gels. Polyacrylamide gels 
have a better discrimination power. Even better results 
are obtained by using primers labeled with fluorophores 
and sizing the PCR products by capillary electropho-
resis, which can resolve sizes of 2 bp. The second major 
problem is that PCR preferentially amplifies shorter frag-
ments [86], and artifacts, such as chimera, emerge during 
multi-template PCR [87]. Furthermore, irrespective of 
markers used, PCR can lead to amplification from non-
specific template and produce PCR artifacts differing in 
length from the main products [80]. To avoid non-spe-
cific amplification due to mispriming and/or undesirable 
interactions between primers, the PCR conditions should 
be more stringent such as lowest possible  MgCl2 concen-
tration and the minimum number of amplification cycles.

High‑throughput single nucleotide polymorphism 
(SNP) genotyping
As alternatives to size-polymorphic markers, several 
panels of genome-wide SNP makers have been identified 
and protocols for typing developed. One panel includes 
24 P. falciparum SNPs selected from over 112,000 SNPs 
of 18 parasite genomes [88]. Typing is based on High 
Resolution Melting (HRM) assays, which can detect par-
asite with a minor allele frequency higher than 10–20%, 
similar to that of traditional length polymorphic mark-
ers msp-1 and msp-2 [86], but the SNP-based molecular 
barcode provides greater power to discriminate among 
strains than msp-1 and msp-2 genotyping because many 
more possible alleles exist among the 24 markers than 
length polymorphisms within these regions. In P. vivax, a 
panel of 42-SNP barcodes was developed based on clini-
cal samples from parasite populations in South Amer-
ica (Brazil, French Guiana), Africa (Ethiopia) and Asia 
(Sri Lanka) [89], and typed also using HRM assays. The 
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small standardized set or subset of the 42-SNP barcode 
not only can be used for analyses of genetic diversity and 
population differentiation, but also can be used for MOI 
analyses though calculation of minor allele frequency 
[90]. HRM genotyping analyses provide a robust, inform-
ative, and relatively low-cost method of identifying par-
asite infections. However, a large amount of template 
DNA is required, as typically a separate reaction for each 
SNP needs to be run, and typing of low-density infections 
(e.g. from asymptomatic carriers) is challenging.

High-throughput SNP genotyping can also be done 
on the Sequenom MassARRAY iPLEX platform, which 
is capable of multiplexing up to 40 SNPs per single reac-
tion. SNP allele is determined by variations of MALDI-
TOF mass spectrometry at SNP site [91]. The parasite 
genotype is determined by the SNP allelic intensity ratios, 
ranging between 0 and 1. The SNP allelic intensity ratios 
value nearing 0 and 1 indicate single parasite genotype 
infection, while intermediate values indicate mixed para-
site genotype infections [92]. Galinsky et al. described a 
method for estimating MOI based on the data obtained 
from Sequenom platform using likelihood and devel-
oped the software package COIL as implementation [93]. 
COIL assumes that distinct parasite lineages in complex 
infections are unrelated and that genotyped loci do not 
exhibit significant linkage disequilibrium, which is very 
suitable to employ SNP barcodes for MOI estimation. 
Similarly, the THE REAL McCOIL package was devel-
oped, which does not require external allele frequency 
data [94]. However, although this approach can be used 
for inferring the number of strains (COIL), or simultane-
ously inferring the number of strains and their propor-
tions, it does not infer haplotypes.

Large-scale SNP genotyping using a custom 384-SNP 
Illumina GoldenGate has been conducted in P. falcipa-
rum from laboratory strains and clinical samples from 
East and West Africa, Southeast Asia, and Oceania [95]. 
This genotyping assay has a high genotype calling speci-
ficity from artificial mixtures of laboratory clones with 
a moderate sensitivity to call minor frequency alleles. 
The advantage of these methods is the large number of 
SNPs typed simultaneously. It thus can provide a practi-
cal, rapid, robust, and inexpensive assay of genome-wide 
parasite genotyping with easy data interpretation. The 
GoldenGate platform relies on monoclonal infections to 
estimate allele frequencies, which is problematic when 
a large fraction of infections are polyclonal. While most 
SNPs are bi-allelic, in theory up to four alleles are possi-
ble. Effective computational tools and advanced bioinfor-
matic analysis are required to distinguish more than two 
parasite clones within a host [94].

Nkhoma et al. used a set of 96 genome-wide SNPs and 
Illumina GoldenGate to examine changes in parasite 

population genetic parameters associated with decline 
in transmission in P. falciparum [96]. Polyclonal infec-
tion was determined by heterozygous base calls at > 5% of 
the genotyped SNPs with an error rate of 4.13 × 10−4. The 
clonal composition of parasite populations was measured 
by genotypic richness index (R) and the β-parameter 
of the Pareto distribution. R measures the proportion 
of unique genotypes (G) in the population and is esti-
mated as: R = (G − 1)/(n − 1), which varies from 0 when 
all n samples in a population have the same genotype, 
to 1.0, when all samples have a different genotype [97]. 
β-Parameter measures the slope of Power law (Pareto) 
distribution by resampling different numbers of sam-
ples (e.g. n = 100–1100) from the complete data set and 
recalculating genotypic data. The slope is highly skewed 
with a large number of rare genotypes and a few common 
ones [98]. A minimum of 25 SNP markers are required to 
exhaustively identify all distinct multilocus parasite gen-
otypes present in infections [96]. However, the propor-
tion of multiple-genotype infections is dependent on the 
sensitivity of genotyping methods used and is therefore 
difficult to compare between studies. Genotype richness 
and the β-parameter of the Pareto distribution can only 
be measured using single genotype infections.

Amplicon ultra‑deep sequencing
With the advent of next-generation sequencing (NGS) 
technology, studies on population genetics, diversity, 
and multiplicity of Plasmodium infections have entered 
a new era. NGS is becoming the standard approach to 
generate population genomic data. Great progress has 
been made for NGS data analysis and MOI estimation 
with the development of various bioinformatic tools 
(Table 1). In highly polymorphic amplicons, several SNPs 
are concentrated within a locus of 100–200 bp. Amplicon 
ultra-deep sequencing of high polymorphic makers has 
high sensitivity and specificity to detect minority clones 
in multiclonal infections. A number of highly polymor-
phic amplicons have been identified [99, 100]. Using 
pvmsp1 short amplicon (117  bp) deep sequencing, Lin 
et  al. reported 67 unique haplotypes identified from 78 
Cambodian P. vivax samples with an average of 3.6 MOI 
within each individual [100]. To increase the sensitivity 
of detecting minor alleles, three P. falciparum amplicons 
of 321 bp (pf-csp), 305 bp (pf-ama1), and 306 bp (pf-k13) 
have been used to conduct ultra-deep sequencing, which 
can quantitatively detect unique haplotypes comprising 
as little as 2% of a polyclonal infection [101].

Recently, the conserved Plasmodium membrane pro-
tein (cpmp) was described as a highly polymorphic 
marker, and an assay was developed with 100% sensitivity 
to detect all clones present at a frequency of > 1% [102]. 
Ultra-deep sequencing of amplicons from ribosomal 
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genes and genes encoded by the mitochondrial and api-
coplast genomes has been used to evaluate Plasmodium 
species diversity and MOI in symptomatic Gabonese 
patients [103]. It is, however, challenging to distinguish 
PCR and sequencing errors from true minority haplo-
types. Recently, multiple packages have been developed 
for de novo clustering of haplotypes from this type of 
data allowing detection of low frequency variants, such 
as HaplotypR [102] and SeekDeep [104].

Several studies have evaluated long amplicon deep 
sequencing to examine multiplicity of infection by 
sequencing mixtures of multiple lab strains. For example, 
Patel et al. performed amplicon deep sequencing of 1.6 kb 
ID1-DBL2× region of var2csa gene in P. falciparum 
infected placental samples and found that parasite hap-
lotypes can be recovered if they account for as little as 5% 
of the mixed template [105]. A long amplicon (~ 5 kb) of 
var2csa gene in P. falciparum was sequenced by PacBio 
deep sequencing and used to evaluate artificially created 
a mixture of laboratory strains [106]. De novo assembly 
of full-length amplicons was used to reconstruct var2csa 
haplotypes. It however identified minor alleles only if 
present at frequencies > 23% in the mixture, due to low 
read depth and coverage and high sequencing errors in 
homopolymer stretches [106]. In order to obtain highly 
accurate haplotype estimation from polyclonal clinical 
samples, Lerch et  al. suggest that a minimum coverage 
of 10,000 high-quality sequencing reads with duplicate 
experiment is required to detect minority clones at 0.1% 
frequency [102]. The major advantage of single ampli-
con deep sequencing over a panel of genome-wide SNPs 
is that all SNPs occur within one amplicon. Thus, hap-
lotypes can be directly identified without the need for 
multi-locus haplotype reconstruction. Software such as 
SeekDeep aids in the identification of haplotypes [100, 
104]. After filtering of sequencing reads according to 
their base quality scores, they are clustered using a clus-
tering algorithm based on k-mer distances. In contrast 
to microsatellites and SNP-panels, the haplotype fre-
quency can be directly estimated from read counts with 
high accuracy. The main limitation is that only a small 
genomic region is amplified. The threshold for accurate 
genotype calls may be different between studies due 
to various sequencing error rate in different sequenc-
ing platforms and computational strategies. In order to 
exclude PCR or sequencing errors, it is recommended 
to perform experiments in duplicate and use appropriate 
controls with each study to help determine that no false 
calls are being made.

Whole genome sequencing
Whole genome sequencing of field isolates is rapidly 
becoming common, and a number of software pack-
ages have been developed to identify multiclonal infec-
tions and reconstruct haplotypes. The estMOI software 
package can be used to analyse deep sequencing data 
for estimation of the presence of multiple genotypes, the 
number of infections, as well as proportions by phas-
ing information of each allele [107]. In other words, the 
software can be used to estimate minor allele (> 10% fre-
quency) in multiclonal infections. The limitation of this 
software is that MOI is estimated by maximum number 
of haplotype in a specific genome region with a high 
coverage (> 30-fold), which is costly to generate at large 
scales by whole genome sequencing. In order to reduce 
cost, a list of 26 MOI informative genes with high levels 
of polymorphism has been recommended to use for gen-
otyping to estimate multiplicity in clinical P. falciparum 
samples [107].

The  FWS (similar to Wright’s inbreeding coefficient  FIS) 
statistics derived from read count data of whole genome 
sequencing at 86,158 SNP positions had been used to 
explore the number of within-host clones, their rela-
tive proportions and genetic divergence in P. falciparum 
[108, 109]. This approach is conducted by estimating 
levels of heterozygosity both within an individual sam-
ple (Hw) and within the local parasite population (Hs) 
using genome-wide SNP data. The  FWS values, where 
 FWS = 1 − HW / HS, observed in blood samples provide 
a proxy indicator of inbreeding rates in the parasite 
population. The  FWS ranges from 0 to 1, with 0 reflect-
ing a mixture of highly unrelated clones and 1 reflecting 
a single clone. In other words, a low  FWS reflects a low 
risk of inbreeding/high risk of out-crossing and thus high 
within-host diversity. A threshold of  FWS ≥ 0.95 was sug-
gested as indication of an essentially clonal infection. A 
significant negative correlation was observed between 
the PCR-based msp1 genotyping and  FWS statistics for 
calculating MOI. Although the  FWS can capture informa-
tion of within-host heterozygosity relative to population 
diversity, it does not provide a direct estimate of MOI. 
To help make a connection of  FWS with MOI estimates, 
O’Brien et  al. presented several new approaches for 
inferring inbreeding coefficients using read counts from 
WGS, which can be implemented in the R package [110].

Zhu et  al. developed a software package named 
DEploid, which can be used to analyse genome-wide SNP 
data for estimation of the number of strains, their rela-
tive proportions and the haplotypes present in a sample 
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[111]. The software package uses haplotype structure 
within a reference panel of clonal isolates as a prior for 
haplotypes present in a multiclonal sample. The effective 
number of strains can be inferred without an assumption 
of the number of strains or the use of linkage disequilib-
rium information. The assumed haplotypes are inferred 
using read counts of the reference strain and alternative 
alleles. First, allele counts are extracted from the vcf file, 
and then the population allele frequencies of each allele 
are calculated from total read counts. Finally, inference of 
correct haplotypes and relative proportions can be com-
pleted by quality filtering of sequencing reads. Overall, 
this method can be used to infer mixed strains with pro-
portions at > 20% with high accuracy, but it struggles with 
minor strains due to insufficient read coverage and if the 
minor strain carries the alternative allele. The computer 
program has been tested and confirmed to work well for 
the deconvolution of datasets with a mixture of samples 
from a single species in P. falciparum [111]. It is able to 
perform deconvolution of 372,884 variant sites of malaria 
parasites within one sample in just five and half hours. 
DEploid is the only software currently available that can 
reconstruct haplotypes as well as estimate COI using 
genome wide SNP data. The limitation is that it requires a 
panel of references, which should include enough differ-
ent reference strains to cover all the haplotype structure 
representing the field population. However, this is not 
realistic for current computational technology.

Finally, sequencing coverage remains a main challenge 
when estimating MOI from whole genome sequenc-
ing data. By amplicon deep sequencing, a read depth of 
1000–10,000× coverage is easily obtained, resulting in 
a significantly increased power of detection of minor-
ity clones. At this sequencing depth, minority clones 
at a frequency of 0.1% have been successfully identi-
fied in experimental mixtures of strains [102]. A typical 
sequencing run on an Illumina NextSeq sequencer yields 
approximately 130 million reads of 150 base pairs each. 
Even if a single isolate was sequenced by a single run, and 
if even coverage across the genome of 23 million base 
pairs was obtained, coverage would be below 900×. Fac-
toring in that field isolates always contain some human 
DNA, coverage would be even lower. Thus, when MOI is 
the main interest of a study, whole genome sequencing is 
not a cost-effective method at the current stage.

Conclusions
Traditional standard PCR-based genotyping methods 
using msp-1, msp-2, and microsatellite markers often 
underestimate the MOI. Next-generation amplicon 
sequencing technology has largely increased the sen-
sitivity in detection of polyclonal infections, but targets 
only partial genomic regions, which may not represent 

complete polymorphism in mixed infections. Whole 
genome sequencing yields complete information for 
parasite infections, but requires extensive and efficient 
computation algorithms and mathematical models to 
reconstruct the complete haplotypes, and sensitivity to 
detect minority clones is limited due to low reads cov-
erage for minor strains. Therefore, there is a need to 
develop an accurate and cost-effective method for detec-
tion of minority clones at the current stage. As the cost 
of whole genome sequencing continues to decrease and 
bioinformatics tools mature, fine-scale investigation of 
multiplicity of Plasmodium infections becomes possible 
in the near future.
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