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Abstract 

Background:  Much of the extensive research regarding transmission of malaria is underpinned by mathematical 
modelling. Compartmental models, which focus on interactions and transitions between population strata, have 
been a mainstay of such modelling for more than a century. However, modellers are increasingly adopting agent-
based approaches, which model hosts, vectors and/or their interactions on an individual level. One reason for the 
increasing popularity of such models is their potential to provide enhanced realism by allowing system-level behav-
iours to emerge as a consequence of accumulated individual-level interactions, as occurs in real populations.

Methods:  A systematic review of 90 articles published between 1998 and May 2018 was performed, characterizing 
agent-based models (ABMs) relevant to malaria transmission. The review provides an overview of approaches used to 
date, determines the advantages of these approaches, and proposes ideas for progressing the field.

Results:  The rationale for ABM use over other modelling approaches centres around three points: the need to accu-
rately represent increased stochasticity in low-transmission settings; the benefits of high-resolution spatial simula-
tions; and heterogeneities in drug and vaccine efficacies due to individual patient characteristics. The success of these 
approaches provides avenues for further exploration of agent-based techniques for modelling malaria transmission. 
Potential extensions include varying elimination strategies across spatial landscapes, extending the size of spatial 
models, incorporating human movement dynamics, and developing increasingly comprehensive parameter estima-
tion and optimization techniques.

Conclusion:  Collectively, the literature covers an extensive array of topics, including the full spectrum of transmission 
and intervention regimes. Bringing these elements together under a common framework may enhance knowledge 
of, and guide policies towards, malaria elimination. However, because of the diversity of available models, endors-
ing a standardized approach to ABM implementation may not be possible. Instead it is recommended that model 
frameworks be contextually appropriate and sufficiently described. One key recommendation is to develop enhanced 
parameter estimation and optimization techniques. Extensions of current techniques will provide the robust results 
required to enhance current elimination efforts.
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Background
Malaria, alongside HIV and tuberculosis, is considered 
one of the “big three” infectious diseases of humans. 
The global response to malaria transmission has been 
significant, with Plasmodium falciparum malaria elimi-
nated from 79 countries from 1979 to 2010 [1]. Model-
ling suggests that 70% of the reduction in malaria cases 
in sub-Saharan Africa (SSA) between 2000 and 2015 was 
attributable to the implementation of intervention strat-
egies [2]. Key interventions included insecticide-treated 
bed nets (ITNs), artemisinin-based combination therapy 
(ACT) and indoor residual spraying (IRS). Often, field 
data are used as evidence for the efficacy and cost-effec-
tiveness of selected interventions; however, these meth-
ods can be resource intensive, or have prohibitive ethical 
barriers. In such situations, mathematical simulation is 
increasingly used to provide further insights.

Infectious disease modelling of malaria has existed for 
over a century [3], with the dominant paradigm being 
the Ross–Macdonald models used by the Global Malaria 
Eradication Programme (GMEP) from 1955 to 1969 [4, 
5]. These are examples of compartmental transmission 
dynamic models, in which the simulated human popu-
lation consists of groups of individuals in disease states 
such as “susceptible”, “exposed”, “infectious” and “recov-
ered”. More recent compartmental models of malaria 
provide insights into risk-stratification of populations, 
multiple mosquito populations, and waning immunity; 
however, the majority of models still closely resemble the 
Ross–Macdonald configuration [6]. Comparing a vari-
ety of modelling approaches can provide robustness of 
results, and highlight areas for development of model-
ling techniques [7]. As such, comparing alternative model 
frameworks may accelerate learning about disease trans-
mission and control.

One approach that has significant potential is the use of 
agent-based models (ABMs). There appears to be no uni-
versal definition of ABMs; this review includes any model 
that explicitly models individual actions and responses, 
and associates with each individual respective state vari-
ables and parameters. In the following review, all pub-
lished ABMs are stochastic in nature.

As ABMs focus on the individual, they afford flex-
ibility in modelling factors, such as spatial heterogeneity 
(e.g. host movement, heterogeneous implementation of 
interventions) and stochasticity (e.g. inter-patient vari-
ability in time of infection, time to recovery, and location 
of infection). Compartmental models of malaria trans-
mission do exist that incorporate either stochasticity 
of individual infections [8] or spatial heterogeneity [9]. 
However, in areas of increasing spatial variation, com-
partmental models may face convergence issues, or pro-
vide no more insight than alternative model structures. 

In low-transmission environments, where patient vari-
ability is more pronounced, ABMs can better represent 
the stochasticity of disease progression and transmission 
than compartmental models, where (to some resolution) 
people are grouped together and treated as interchangea-
ble, so individual agent behaviour cannot be determined. 
Models that accommodate patient individuality and spa-
tial variation can help fill knowledge gaps [7] about trans-
mission heterogeneities important in malaria elimination 
strategies.

The flexibility of agent-based approaches also allows 
models to be constructed to address practical questions 
relating to malaria control and elimination in specific 
local contexts [7, 10]. This is advantageous because iden-
tifying optimal local intervention strategies can provide 
a strong evidence-based framework for National Malaria 
Control Programmes (NMCPs). ABMs can be con-
structed to resemble such specific settings closely, due to 
their flexibility in altering model attributes to reflect local 
individual characteristics and geographical factors.

As more is learned about malaria transmission, the 
complexity of the questions asked increases, which in 
turn calls for more nuanced models. The role of math-
ematical models continues to grow as both techni-
cal expertise and computing power increase. With the 
increasing capacity for modelling to assist in malaria 
elimination programmes, a review of the published litera-
ture for ABMs of malaria transmission was performed. 
Analysis included characterization of the structure of 
existing models, the factors influencing malaria transmis-
sion modelled, and the methods of data use and output 
analysis. The approaches used were highlighted and ideas 
for advancing the field proposed.

Methods
Search strategy and selection criteria
A systematic literature review was performed, consistent 
with the PRISMA statement [11]. Database searches of 
OVID Medline, CINAHL Plus and OVID Embase were 
performed as outlined in Additional file 1.

The search strategy aimed to return publications refer-
ring to each of the following three concepts in their sub-
ject heading, keywords list, title or abstract:

1.	 Terms relating to malaria, malaria vaccines, anti-
malarials (including individual medications), and rel-
evant Plasmodium species

2.	 Terms relating to epidemiology, demography, infec-
tious disease outbreaks or transmission, epidemics 
and key outbreak model parameters (e.g. basic repro-
duction number)

3.	 Terms relating to agent-based, individual-based or 
microsimulation models.
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No limits were placed on publication type, language, 
location, dates or publication status. Further to database 
searching, additional articles were found through expert 
knowledge, and backward and forward citation searching 
(the latter using Google Scholar) of included articles.

The abstracts of all returned studies were assessed for 
suitability, with those that mentioned an agent-based, 
individual-based, or microsimulation model of malaria 
transmission selected for full-text review. Full-text arti-
cles were excluded if no agent-based model of hosts or 
vectors was described or used, or if no components of 
malaria transmission (such as human disease, vector bit-
ing, or interventions) were explicitly modelled. Models of 
vector life cycles or ecology without malaria-specific ele-
ments were excluded. Articles that described comparison 
or ensemble modelling of pre-existing models were con-
sidered separately, and were not “included studies” for 
the purposes of this review.

Data collection and analysis
Due to the anticipated variation within the literature, a 
data extraction form was not developed prospectively. 
Instead, for included publications, key characteristics of 
each model were identified, with common themes and 
unique properties of models characterized. After model 
themes were identified, a classification for key compo-
nents of models was created (see Additional file 2). The 
properties of each model were collated as discussed in 
the “Results” section.

Results
The search yielded 406 abstracts potentially meeting 
inclusion criteria; 137 were selected for full-text assess-
ment, with 90 papers included in the final analysis. 
Search results are presented diagrammatically using the 
PRISMA template (available at: http://www.prism​a-state​
ment.org/) in Additional file  3. The table in Additional 
file 2 provides detailed information about each model.

Model construction
Development of models and model families
Figure 1 outlines the timeline of models in the included 
papers. 27 original model frameworks have been pub-
lished, with 15 models reported once to date, and 12 
‘baseline’ models collectively resulting in 63 further 
publications. Of the 27 original ABMs, six models were 
developed by extending compartmental or within-host 
models to an individualized framework [12–17]. Model 
progression was largely similar across the largest model 
frameworks, including OpenMalaria [18], EMOD [19] 
HYDREMATS [20], and work from Imperial College [14], 
such that the topic of each paper progressed logically 
from previous works. Extensions included simulating 

interventions [21], spatial mapping [22], or embedding 
“sub-modules” of key disease concepts into pre-existing 
works, such as host infectivity [23], mortality [24], and 
potential impacts of climate change [25]. When interven-
tions were adequately simulated, cost-effectiveness analy-
sis (CEA) was sometimes performed [26–28].

Model structure and frameworks
Methods of modelling at the individual level are influ-
enced by factors including the question at hand, charac-
teristics of the agent, and interactions of interest. Certain 
ABM frameworks naturally arise from the above con-
cepts; in malaria modelling, key considerations include 
the choice of agent and whether to focus on disease states 
or transmission. While these choices are not mutually 
exclusive, three broad methods of individual simula-
tion were common in the literature, each with differing 
degrees of agent autonomy. First, models developed from 
a compartmental structure typically used probabilities 
in place of flow rates to determine whether an individual 
transitioned to a new disease state at a given time step 
(e.g. Gurarie and McKenzie [13], and McKenzie et  al. 
[29]). Using this method, the success or failure of a Ber-
noulli trial generally dictated disease progression. Sec-
ond, and particularly in models focused on host parasite 
densities (see the OpenMalaria simulations [18]), distri-
butions of key variables were sampled to generate dif-
ferences between agents, with temporal disease state 
changes governed by a set of equations. In the third 
method, the specific actions of individuals, for example 
blood meal searching, resting and oviposition, were sim-
ulated according to a process represented by a flow chart 
(e.g. Pizzitutti et  al. [30], Zhu et  al. [31] or the EMOD 
framework [19]). Figure  2 presents a hypothetical flow 
chart of vector actions, to illustrate a typical set of transi-
tions available to a mosquito.

The diversity of methods led to a broad range of agent 
constructions, affecting the number and type of vari-
ables, the variation between individuals, and the type of 
agents required. Because methods to construct ABMs are 
so broad, two examples are provided below for compari-
son. These two models are examples of ABMs being tai-
lored to the question at hand and highlights the variation 
in model construction.

Consider an early OpenMalaria simulation of the rela-
tionship between the entomological inoculation rate 
(EIR) and force of infection [18]. Human agents had indi-
vidual ages, leading to an age-adjusted EIR. Individual 
mosquitoes were not explicitly modelled; instead, EIR 
was used to guide biting rates [32]. Two individuals of the 
same age may have a different number of infections on 
a particular day, but these numbers are drawn from the 
same distribution [33]. As OpenMalaria grew to answer 

http://www.prisma-statement.org/
http://www.prisma-statement.org/
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Fig. 1  Overview of included studies. The most recent studies are towards the bottom of the diagram. Solid arrows indicate papers directly linked 
to one another. Dotted arrows indicate models by the same lead author that are not related in methodology. Black solid or dotted boxes indicate 
models that did not meet inclusion criteria or are not agent-based, respectively, that guided the creation of a later ABM. Papers named in bold are 
spatially explicit. Boxes coloured orange, green and purple include human agents, mosquito agents or both, respectively
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new questions, these individuals also had different game-
tocyte densities [34], pyrogenic thresholds [35], and mor-
bidity and mortality [24].

In contrast, Zhu et al. [21, 31, 36] developed a spatial 
ABM to investigate the impact of the location of food, 
hosts, and resting and breeding sites on malaria trans-
mission. This required simulation of a physical land-
scape, with both mosquito and human locations guided 
by movement patterns. Mosquito agents had a sequence 
of actions to be undertaken, and therefore required vari-
ables capturing their current hunger, breeding state, and 
flight distance since last meal. The number of bites for 
each human was also recorded. The distance to the tar-
get of interest (sugar, host, resting site, breeding site) and 
time of day could dictate vector flight paths. Capping the 
number of eggs per larval habitat required the current 
number of eggs to be recorded.

There were also considerations relating the method of 
agent simulation and size of the time step. Where com-
partmental models inspired an ABM, daily time steps 
were most common [15]. To simulate host infections 
using distributions for variables, a temporal resolution 
of 1–5  days was sufficient to represent changing dis-
ease characteristics [32]. However, if agent actions were 

explicitly modelled, hourly status updates were most 
common, with some models tracking vectors as fre-
quently as each second [21, 31].

Agency and elements modelled
The complexity of malaria transmission prevents any one 
model simulating all transmission factors in depth. In 
practice, each framework is centred on a few core con-
cepts; these are generally sources of heterogeneity that 
motivate ABM use. These concepts can be categorized as 
host, vector, parasite, environment, and intervention fac-
tors. The core components of a model appeared to dic-
tate the characteristics of each model framework and 
this relationship is discussed in the following sections. 
Figure  3 outlines some of the factors that vary between 
transmission scenarios, and therefore may be suited to 
modelling with an ABM.

Model agents were either humans only (49/90 models), 
mosquitoes only (9/90) or both humans and mosqui-
toes (32/90) (Additional file  2, column 4). In a number 
of instances, the agency of vectors was unclear, although 
had been used in precursor studies. Pizzitutti et al. con-
sidered a Plasmodium agent as the infection of a host 
or vector [30, 37], whereas other models considered 

Fig. 2  A hypothetical ‘decision tree’ approach to modelling mosquito agents. At each time step t, mosquitoes will check their status, determining 
their subsequent action(s) i with probability pi of success. Individuals may have identical or differing probabilities of success for each task
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these elements as part of a vector or human agent. The 
AGiLESim framework specified larval habitats as agents, 
having properties such as location, larval capacity and 
current egg population [22]. The HYDREMATS simu-
lations of the Bomblies et  al. hydrology model [20, 25, 
38–42] describe individual larval habitats with many var-
iables and time-dependent formulae, but did not refer to 
habitats as agents.

Host
Models with only humans as agents commonly focused 
on the impact of infection characteristics or medi-
cal interventions on transmission. For example, the 
OpenMalaria models from the Swiss Tropical and Pub-
lic Health Institute had at their core individual humans 
with varying parasite densities [18]. These models were 
extended to incorporate individual effects of innate 
immunity [34], pyrogenic thresholds [35] and the impact 
of vaccination [43], particularly pre-erythrocytic vaccines 

[18, 33, 44]. The models from this group accounted for 20 
of the 49 human-only studies.

Key simulated human factors included age and host 
immunity, with immunity either being maternal, [13, 14] 
acquired [18, 39, 45] or both [34]. Details about immu-
nity varied from general descriptions of the impact of 
immunity on transmission, to individualized antibody 
concentrations for sexual-stage parasites [46]. Human 
behaviours regarding intervention use [30] and treat-
ment decisions have been simulated for both patients 
[47] and carers [28]. One model simulated the impact of 
anti-malarial use on HIV-positive pregnant women [48], 
including disease severity and improvements in birth 
weight.

The most commonly simulated disease aspects were 
gametocyte density (incorporated in all OpenMalaria 
models [18]) and the infectiousness of hosts to mosqui-
toes [49], with other common elements including fever 
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[35], disease morbidity and mortality [24] and disease 
severity [24, 50].

Of 81 papers with human agents, 50 stratified individu-
als by age (Additional file  2, column 13), either to vary 
disease profiles or report results. Commonly, age was 
used in the calculation of human biting rates, because of 
its strong correlation with body surface area [18]. Other 
age-varying factors were adaptive and maternal immu-
nity and duration of infection [17]. If interventions were 
age-specific, for example vaccination programmes [33], 
stratification was used to assess the impact at different 
levels of the community [44].

Vector
Models with mosquitoes as agents most commonly 
assessed interventions impacting vector mortality, such 
as habitat removal [30], IRS [16] or ITN [51]. Detailed 
models of vector life cycle and ecology were common, 
with mosquito behaviours, such as feeding habits [31, 
52], movement patterns [30, 53] and biting frequency 
[54], modelled in detail. Vector movement was often 
modelled as random motion, but CO2 gradients were also 
considered [20, 55–57]. Simulations such as the EMOD 
framework modelled the egg population as a cohort for 
their progression to adulthood [19], and two models sim-
ulated eggs as individual agents [58, 59].

In most publications, only female mosquitoes were 
simulated [60, 61], as the sex responsible for transmis-
sion. Male mosquitoes were generally modelled when a 
complete population was required, for example to assess 
vector control interventions (e.g. [21]). Males were spe-
cifically required to examine the effects of introduc-
ing gene drive mosquitoes into an environment, such as 
“driving-Y” modified male vectors [62]. Although domi-
nated by An. gambiae representation, models also varied 
by Anopheles species, including An. vagus [63], An. ste-
phensi [64], An. arabiensis [62], and An. darlingi [30, 37]. 
One An. gambiae model [65] was adapted to An. vagus 
vectors [63] to simulate transmission in Bangladesh, and 
several models incorporated multiple Anopheles popula-
tions [14, 56, 66–68], were adaptable across species [51, 
58, 59, 69], or were nonspecific in Anopheles species [60, 
70, 71].

When both hosts and vectors were simulated, models 
focused on mosquito life cycles [19], population dynam-
ics [58], physical environments [55] and interventions for 
vector control [21]. Human agents were often included to 
relate Anopheles populations and malaria transmission, 
in models with vector dynamics as a core component. 
When models also included a spatial component, malaria 
transmission generally required vector and host to be 
co-located. These simulations used a ‘decision tree’ to 
represent the timing of movements and other necessary 

actions [21, 30, 31] (e.g. Fig. 2). Simulation of both hosts 
and vectors at the individual level was regularly used to 
assess interventions directed at mosquitoes and their 
effects on malaria transmission [19, 72].

Parasite
Of 54 models that specified a malaria parasite (see Addi-
tional file  2, column five), 51 modelled the dynamics of 
Plasmodium falciparum, two simulated both P. falcipa-
rum and Plasmodium vivax [30, 37], and one Plasmo-
dium berghei [64]. The in-host modelling of P. falciparum 
dynamics by Molineaux et al. [12, 18, 73] was used in 21 
papers. In some studies, Plasmodium infections within 
an individual were modelled as agents [30, 37]; when 
a Plasmodium agent reached specific points in its life-
cycle, the vector or host agent would change infectious 
status.

One study characterized the infectious reservoir in 
humans according to parasite characteristics [68], with 
parasite densities known to be linked to host infectious-
ness. Studies investigated the impacts of infection not 
only on hosts, but also vector behaviours, such as altered 
biting rates [56, 57]. Parasite biology was also considered, 
including parasite strains [17, 74], PfHRP2 status [75, 
76] and recrudescence of P. vivax malaria [30]; the latter 
model considered the disease to be a submodule of the 
overall simulation framework. Three models simulated 
multiple parasite clones [15, 17, 77], and four allowed 
antigenic parasite variation [15, 78–82], particularly to 
capture antimalarial resistance.

The choice of parasite, much like the Anopheles species, 
was often based on the dominant species in the target 
location. The dominance of P. falciparum malaria simula-
tion reflects the attention paid to it, which is largely due 
to the historic relative burden of disease. Additionally, a 
number of interventions simulated were specific to P. fal-
ciparum, in particular the pre-erythrocytic RTS,S vaccine 
[14, 44, 83].

Modelling different Plasmodium species may require 
changes to model structure, for example to account for 
the recrudescence seen in P. vivax but not P. falciparum 
malaria. Pizzitutti et al. [30, 37] incorporated these differ-
ences by adding parameters governing recurrence time 
and risk of P. falciparum-triggered P. vivax recurrence. 
The parameters representing infection vary between 
Plasmodium species, based on prior evidence. Beyond 
these changes, the decision-tree model structures dictat-
ing the actions of agents were not changed.

Environment and spatial modelling
Core environmental aspects related to vector activity 
were included, such as water sources for oviposition (egg-
laying) [20], houses for blood meal locations [72], and 
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meteorological data to account for seasonal patterns in 
transmission [58, 84]. Rainfall and temperature data were 
regularly used; model questions included the impact 
of wet season lengths [42] and hysteresis [40] on vector 
populations.

Thirty of the 90 models explicitly incorporated a spatial 
framework into their model (Fig. 1 and Additional file 2, 
column 11; explored further in Additional file 4). Seven-
teen models investigated malaria transmission in Africa, 
by simulating a specific location (e.g. [20, 85]) or using 
a hypothetical landscape representing a typical African 
village (e.g. [31, 53]). Two models represented transmis-
sion in the Amazon region [30, 37] and one each in Papua 
New Guinea [17], France [71], Haiti [86] and Bangladesh 
[63]. Spatial models also simulated local vector activity in 
a generic physical environment [51, 57, 58].

While many spatial models had detailed representa-
tions of a known landscape [25], this was not always 
the case, particularly with early spatial models [22, 86]. 
Three methods of spatial construction predominated: 
grid-based systems, patches and continuous landscapes. 
Additionally, Depinay et  al. [58] explicitly linked vec-
tor locations to houses, but did not assign spatial coor-
dinates, whilst Karl et al. [17] generated a probability of 
transmission based on the distance between host and 
vector locations to incorporate spatial biting factors.

In a grid-based landscape, the modelled area was most 
commonly divided into squares of a constant size, with 
elements of the landscape residing within a square (e.g. 
[22]). The HYDREMATS hydrology/entomology models 
were the exception, with grid size varying depending on 
proximity to human habitats, and complexity of water 
sources in the area [20]. There was interplay between the 
physical properties of the study area and the construction 
of the model. For example, the size of grid squares were 
related to parameters such as typical distance moved by 
mosquitoes in one time step, or larval habitat size [20]. 
The overall simulation area, typically a square between 
600  m and 3000  m in length, was commonly justified 
based on Anopheles dispersal behaviour and typical vil-
lage sizes being modelled [31]. Six models did simulate 
much larger areas [16, 17, 37, 62, 67, 85]; the last of these 
models used 1  km grids to describe the environment, 
yet characterized movement and interventions on much 
finer spatial scales [67]. Distances from which mosqui-
toes can target hosts or oviposition sites were guided by 
previous field data where possible [30, 31].

The additional spatial methods addressed opposing 
limitations of grid-based landscapes, namely total area 
and spatial precision. A patch framework was used by 
Silal et al. [16] and Eckhoff et al. [62] to represent areas 
of differing transmission characteristics (e.g. chang-
ing  EIRs within districts), without explicitly modelling 

the environment. This method allowed for simulation of 
broader spatial areas. Rateb et  al. [86] achieved this by 
representing Haiti as a set of “microenvironments” that 
host agents were impacted by. Conversely, models with 
a continuous landscape were used to allow variation in 
the location of houses, larval habitats, sugar sources and 
resting sites, and to model the impact of different physi-
cal environments [21, 31]. Each object had a specified 
location, and mosquitoes could sense objects within a 
certain circular distance, as opposed to a particular grid 
square. However, even when using a village-sized contin-
uous landscape, models from Zhu et al. [21, 31, 36] still 
mapped random mosquito flight using a grid-based sys-
tem, albeit on a 1 m × 1 m scale.

Some models also impute spatial results from non-spa-
tial models by alternate means. The Malaria Atlas Project 
[87] and the Markham Seasonality Index [88] have gener-
ated methods to predict EIRs by location, and research-
ers have combined these tools with model outputs to 
generate maps of estimated disease burden across sub-
Saharan Africa (SSA) [27, 54, 69, 78, 89, 90]. Models also 
used SSA rainfall data to replicate seasonality patterns 
[69, 91] and population estimates for host locations over 
large areas [91, 92]. In one instance, a spatial model of 
hypothetical locations was simulated in conjunction with 
geographic information systems (GIS) technology, to rep-
resent transmission in specific locations [61].

Interventions
Fifty-eight studies assessed the impact of at least one 
intervention on malaria transmission, mosquito preva-
lence or EIR (Additional file 2, column 6). The majority 
of papers assessed multiple interventions, 21 assessed 
interventions in combination, and one investigated the 
removal of current malaria strategies [52]. Interven-
tions could broadly be divided into those targeted at the 
human host (e.g. pharmacological) or the vector. Model 
structure tended to support simulation of the interven-
tion being tested. For example, larval habitat elimination 
[51] or toxic sugar baits [21] were modelled spatially, 
requiring vectors as agents; whereas vaccination [18, 33, 
44] and drug administration [93] studies involved human 
agents, in order to capture individual immune responses.

Interventions were included in models for two reasons: 
for assessment of effectiveness [18], or to replicate the 
‘baseline’ characteristics of regional transmission [26], to 
allow additional interventions to be explored. In general, 
baseline scenarios included ITN [54] and “case manage-
ment” [26], as defined by the current interventions in the 
location being modelled.

Simulation of interventions usually took one of three 
approaches. First, a specific intervention was defined 
to have a certain effect when in use, for example a 
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medication having a fixed efficacy, and the impact on 
transmission is measured. Second, where environments 
were explicitly modelled, interventions were usually 
defined by their physical impact. For example, from a 
baseline scenario, an intervention might alter individual 
larval habitats [51] or remove sugar sources to reduce 
vector feeding [31], and simulations highlighted the 
change in the output of interest, such as disease bur-
den or vector populations. Third, hypothetical inter-
ventions were described by their impacts, to target a 
specific aspect of malaria transmission [65]. The hypo-
thetical impact may approximate a pre-existing interven-
tion, such as halving human biting rates for a fixed period 
[94], or evaluate novel targets that may guide future con-
trol techniques.

Other
The ease with which ABMs allow for heterogeneity and 
model complexity enables some less often considered 
transmission factors to be simulated. Examples include 
anthropophily (i.e. vector preference for human hosts) 
[19], sugar sources (e.g. fruit trees) [21, 31], travellers [16, 
95], the impacts of larval densities in oviposition sites 
[59, 65], and the pharmacokinetics and pharmacodynam-
ics of anti-malarials [75, 80, 91, 96].

Data use, model outputs and analysis
Parameter estimation and robustness of results
Most models used past literature or simulations to deter-
mine baseline parameter values (Additional file 2, column 
8). Due to the nature of certain inputs, many parameters 
cannot or have not been estimated in field studies, and 
consequently authors used expert knowledge to select 
these values. Five papers provided no evidence that prior 
knowledge was used to estimate parameters. These mod-
els generally introduced a new modelling technique, or 
assessed hypothetical scenarios, as opposed to claiming 
accurate simulation of real-world situations.

Fifty-two papers used models that were either previ-
ously calibrated to data or presented calibration as a com-
ponent of their work. Calibration techniques included 
the use of calibration vectors, least squares, maximum 
likelihood functions, and visual estimations. Twelve 
papers mentioned using Bayesian techniques for model 
fitting, with five providing credible intervals alongside 
point estimates of parameters [14, 23, 32, 50, 89, 91, 92, 
97]. Of note, no papers calibrated all model parameters 
to data, which necessarily excludes certain parameter 
combinations that could produce accurate calibrations.

Validation was performed on models used in 31 
papers. All major model frameworks were reported as 
validated. Validation techniques were rarely explained in 
detail. When described, validation was most commonly 

performed by running a calibrated simulation, and com-
paring model outputs to a dataset not used for calibration 
[98]. Methods of comparing models to data were rarely 
explained; use of a square distance function [37], log like-
lihoods [16] and docking techniques [99] were outlined. 
Successful model validation was often used to justify 
extending a model framework to include interventions or 
to assess their potential impact in the location of interest. 
A number of studies concluded that their model did not 
accurately fit the data used for validation [98], suggesting 
incomplete data may explain any discrepancies.

Forty-five papers either explicitly mentioned sensitiv-
ity analysis or described parameter variation and com-
parison of outputs. The techniques used were generally 
informal, with methods used rarely explained in detail, 
and reporting of results was uncommon. Where sen-
sitivity analysis was explained, it involved altering cali-
brated baseline parameter values by a fixed percentage 
and assessing changes to outputs. Formal techniques 
employed included Latin Hypercube sampling [70, 72], 
regression tree analysis [72], and one-way and probabilis-
tic sensitivity analysis [28].

Optimization and cost‑effectiveness analysis
A number of papers referenced optimization use, includ-
ing in titles [21, 45, 85] and keywords [100], and seven 
papers performed analysis for the clear purpose of 
optimization (Additional file  2, column 16). Methods 
included changing the timing [94, 95], location [21] or 
implementation of interventions [45, 85]. Five studies 
assessed between nine and 144 scenarios each. In con-
trast,  two studies described formal optimization meth-
ods [69, 97], whereby one or more objective functions are 
optimized using a defined search algorithm. By changing 
the combination and coverage of interventions in a vari-
ety of baseline settings, these studies compared 98,784 
and 306,000 scenarios, respectively.

CEA was performed in 11 studies, with six of these 
using the OpenMalaria platform to assess various medi-
cal interventions [101–103] or pre-erythrocytic vaccine 
RTS,S/SA02A [26, 27, 104] (Additional file  2, column 
14). CEA studies used known local costs of the physi-
cal intervention and the costs of implementation [27, 
104] to determine the financial impact of interventions. 
These values were compared to benchmarks, such as the 
World Health Organization (WHO) standard of $150 per 
life-year gained [28], to determine the potential value 
of interventions. No studies investigated the maximum 
impact on outputs for a fixed cost, instead assessing 
cost-effectiveness of interventions for a specific level of 
impact.

When determining how to scale interventions for CEA, 
one method employed was incremental cost-effectiveness 
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ratios (ICERs) [27, 103], in which a baseline scenario 
was compared to the introduction of a number of inter-
ventions, to determine the net cost per case averted of 
each  method up to a certain threshold. Interventions 
are added iteratively in a manner that does not perfectly 
optimize their delivery but has the lowest additional cost 
for each new intervention block.

Ensemble modelling and model comparison
Where multiple models analyse the same transmission 
scenario, ensemble modelling can be used to highlight 
robustness of results, or to assess the appropriateness of 
model structure. Similar to the role of sensitivity analysis 
in evaluating the sensitivity of model outputs to param-
eter values, ensemble modelling can assess aspects of 
both parametric and structural uncertainty. A precursor 
to this was performed by Ross et  al., extending a base-
line model to five variants to assess hypotheses regarding 
treatment and illness patterns [105]. In addition to the 
individual studies in this review, 12 publications included 
ensemble modelling of OpenMalaria model variants 
[106–117], and three studies performed “consensus mod-
elling” across different frameworks [118–120] (see Addi-
tional file 5).

The OpenMalaria ensembles used from six to 14 model 
variants, selected from 30 tested alternatives. The 16 
rejected models were either very similar to an accepted 
choice or could not be parameterized to the dataset used. 
For the three articles that compared outputs across the 
ensemble, the selected models were in agreement for 
most outputs [106, 107, 113]. The most common diver-
gence was differing intervention efficacies predicted by 
models with in-built transmission heterogeneity, com-
pared to those with uniform transmission levels between 
individuals. Interestingly, even though the fourteen mod-
els often reached the same conclusion, the estimated 
parameter values from calibration varied significantly 
across the ensemble [107].

The nine additional OpenMalaria ensembles aggre-
gated the outputs from model variants, to investigate 
interventions such as vaccination [108, 116], seasonal 
malaria chemoprevention [115], mass test-and-treat 
strategies [109], and long-lasting insecticidal nets 
(LLINs) and IRS [110–112, 114]. One study predicted 
changes to disease outcomes and transmission upon the 
removal of vector control interventions from elimination 
programmes [117]. The aggregation of model outputs for 
each parameter set was performed to reduce the uncer-
tainty arising from structural differences in models. In 
this way, the ensemble is considered as one model and its 
outputs interpreted as such.

Unlike the ensemble modelling above, when comparing 
inter-model variation, simulation outputs could not be 

aggregated. Despite the varied approaches, the consensus 
modelling largely drew consistent findings on the rela-
tionship between available malaria prevalence data and 
clinical incidence [118], and on the impacts of vaccina-
tion [119] and mass drug administration (MDA) [120].

Discussion
Mathematical modelling plays an important role in 
malaria elimination, and agent-based approaches make 
a major contribution to these efforts. The extension of 
compartmental models to their early ABM equivalents 
arose from the need to understand malaria transmission 
at the individual level. The result is a rich array of model 
families and simulation techniques, adapted to a range of 
key issues in transmission and control.

In general, three core themes emerged regarding jus-
tification of ABM use. First, the greater importance of 
stochasticity in low-transmission settings, particularly 
settings approaching elimination, requires an alternative 
approach to traditional compartmental methods. Second, 
attempts to eliminate local transmission require discrete 
population simulations to incorporate spatially explicit 
environments at increasingly fine resolutions. Third, het-
erogeneities in disease progression and severity on the 
individual patient level result in varying efficacy of drug 
and vaccine interventions, which may be difficult to cap-
ture within a compartmental framework. These three 
arguments stem from a common point: a compartmental 
structure, based on averaging over a population, has limi-
tations when that average does not adequately represent 
the individuals.

In addressing these issues, the benefits of agent-based 
techniques in this space are evident. Many papers in 
this review explicitly aimed to fill the knowledge gap 
regarding intervention use in low transmission environ-
ments. Most projects provided outputs robust at multi-
ple transmission intensities, highlighting the flexibility 
of ABMs in low-prevalence settings. The HYDREMATS 
framework was used in multiple locations, incorporating 
environmental factors such as temperature and rainfall 
at different times, [25, 38, 39]. The OpenMalaria mod-
els progressed from assessing the force of infection of 
malaria transmission [32], to estimating cost-effective-
ness of a vaccination programme [27]. Given the similari-
ties of compartmental models of malaria to the original 
Ross–McDonald framework [6], it is clear that the depth 
and flexibility of agent-based methods are allowing new 
insights into malaria transmission and prevention.

The variation in the models described above highlights 
the difficulties in developing a standardized style of ABM 
for use in malaria epidemiology. However, this is argua-
bly a major advantage, with the abundance of techniques 
allowing for the flexibility desired when transitioning 
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from solely using compartmental models. Instead of 
suggesting a “gold standard” approach, it may be prefer-
able to ensure the model style used is appropriate for the 
question at hand. For example, OpenMalaria’s early mod-
elling of gametocyte densities did not use vector agents 
[18], but successfully provided insights into risks of fever, 
morbidity and mortality of patients [24]. The EMOD 
models initially described host-vector interactions with-
out spatial consideration [19], but added this capability 
when required to assess interventions [62, 85]. There-
fore, while not every model incorporated every aspect of 
malaria epidemiology, each was tailored to the research 
question at hand.

Conversely, if modelling groups are considering 
extending their model frameworks, particularly to influ-
ence policy, there is potential to draw from the features 
of one another. For example, HYDREMATS currently 
includes human and mosquito agents, while the char-
acteristics of human infection are more detailed in the 
OpenMalaria simulations. Therefore, the time variability 
of individual gametocyte density, probabilities of fever, 
morbidity and mortality, and the infectivity of hosts to 
vectors used in the OpenMalaria framework could be 
adapted into HYDREMATS to more realistically replicate 
disease transmission. However, in neither of these simu-
lations do humans move, whereas this process is explic-
itly simulated in Zhu et al. [31] and Pizzitutti et al. [37] to 
better represent vector-host feeding patterns. Pizzitutti 
et  al. [30] and EMOD [19] include human behavioural 
reactions to biting rates (i.e. time-dependent interven-
tion use) and the probabilities of successful blood meals, 
respectively. These five models have components that 
simulate vector, egg and human populations, effects of 
climate on larval habitats, anthropophily, ITN, IRS, lar-
val habitat removal, vaccination, anti-malarial use, attrac-
tive toxic sugar baits, and rates of human disease. As each 
framework provides insights into key components of 
malaria transmission, all of which are important in guid-
ing elimination strategies.

To some extent, combining model structures across 
research teams can be considered an extension of the use 
of “submodules” already undertaken by larger modelling 
frameworks. The HYDREMATS team have successfully 
integrated detailed larval habitat and entomologic mod-
els [55], and OpenMalaria now includes upwards of seven 
modules of human disease states and interventions [100]. 
Modular projects such as HYDREMATS, EMOD [85] 
and OpenMalaria have provided insights into transmis-
sion dynamics, vector populations, disease severity, and 
the contributors to these factors. Given the importance 
of comprehensive modelling to guide policy decisions, 
the potential for combining the strengths of validated 

models to enhance decision-making capabilities of ABMs 
could be explored.

A key target for modelling low-transmission settings 
is a focus on spatial representation and heterogeneity. 
ABMs can shift spatial heterogeneity from a typically 
“patch-based” compartmental framework into a continu-
ous space, by having explicit locations for environmental 
objects, dwellings and agents. These detailed descrip-
tions of the landscape are coupled with local knowledge 
of physical characteristics (such as host/vector move-
ment patterns) to simulate malaria transmission, ecology, 
and the impact of interventions based on their location. 
These insights include the distances between larval habi-
tats and houses to effectively reduce malaria transmission 
[53], and the impact on systematic versus random loca-
tion of attractive toxic sugar baits (ATSB) on mosquito 
abundance [21]. This style of intervention inherently 
requires spatial modelling, although interventions such 
as ITNs and IRS have been modelled in both spatial and 
non-spatial simulations. Examining these interventions 
in physical environments allows the impact of factors 
such as vector movement and the proximity of unpro-
tected individuals to be measured.

Potential extensions to spatial models include vary-
ing elimination strategies across a landscape, and 
increasing the size of the geographical area modelled. 
For example, consider a small community near a local 
water source, and a nearby larger population with bet-
ter access to healthcare. A model could implement lar-
val source management at the local water sources, whilst 
increasing access to vaccines and anti-malarials in the 
healthcare centre. Human movement dynamics [121] 
could be incorporated to assess the relative effective-
ness of each interventions across both populations. This 
style of modelling may more accurately represent the 
manner in which interventions are implemented at the 
local level. Regarding model areas, most simulations of 
real-world environments only covered the area of a spe-
cific village, with sizes ranging from 600  m × 600  m  to 
3000 m × 3000 m. These spatial ranges have been limited 
by computational power, but this limitation will continue 
to decrease over time. There also may be a lack of access 
to consistent geospatial data over larger areas; however, 
many models only included spatial data on physical habi-
tats, which would be collected in a similar manner over 
larger areas. If it is deemed useful to model malaria over 
a wider area, techniques from other fields may be used, 
such as probability modelling of invasive species, which 
has been performed for an area of over 35,000 km2 [122].

Regarding the locations of malaria modelling, there is 
an understandable focus on SSA, which was responsible 
for 88% of the global malaria burden in 2015 [2]. How-
ever, there has also been a recent increase in attention on 
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South-East Asia (SEA), which is responsible for 10% of 
global cases and has emerging issues with drug resistance 
[2]. Moreover, challenges such as artemisinin resistance 
and insecticide resistance are more prominent in these 
areas. Despite this, approximately half of all malaria cases 
outside Africa in 2015 were due to P. vivax [2], while 
Plasmodium knowlesi malaria transmission is increas-
ing in locations, such as Malaysia [123]. The methods of 
ABM construction used in SSA and SEA, and for P. fal-
ciparum malaria, suggest transferability to other regions 
and Plasmodium species, which will be important as data 
availability from these areas improves and attention turns 
to global elimination.

Many ABMs reviewed here had an emphasis on 
informing policy and explicitly aimed to understand spe-
cific programmatic questions (e.g. [16, 28, 78, 83]). To 
reliably inform public health decisions, there must be 
confidence in the assumptions guiding model creation, 
in particular regarding choice of parameter values. The 
methods for estimating key parameters varied greatly 
across the literature. Parameter justification was not 
always clear [13, 22, 51, 65]; when explained, models gen-
erally calibrated a range of parameters to existing data, 
or provided references for their choice of fixed values. 
Further, no previous models have calibrated all param-
eters to data. Importantly, ensemble modelling of the 
OpenMalaria variants calibrated 14 variants to the same 
dataset, but parameter values varied significantly across 
between models [107]. Given that uncertainty remains 
even after calibration, it is important to apply a system-
atic and comprehensive approach to parameter estima-
tion before using models for predicting parameter impact 
or forecasting.

Whilst field data exists for a range of parameters, 
researchers must be pragmatic about the possibility of 
adequately calibrating complex ABMs, particularly when 
data is required in resource-poor settings. The fixing of 
well-established values can reduce the parameter space 
to be searched using calibration methods. Alternatively, 
techniques such as Markov chain Monte Carlo (MCMC) 
can search the entire parameter space, or more precisely 
that part of parameter space that has non-negligible 
posterior probability. MCMC has already been used in 
malaria ensemble modelling [108, 116, 118] and param-
eter estimation by Griffin et  al. [14], as well as in mod-
elling of other infectious diseases [124, 125]. Approaches 
such as MCMC and approximate Bayesian computation 
are increasing in popularity as including uncertainty in 
model parameters becomes more common [126].

An arguably more pressing area of need for develop-
ment is optimization, with methods for agent-based 
models still in their infancy. In this review, studies that 

reported optimization usually simulated a suite of differ-
ent interventions, or the same interventions at different 
levels of coverage or timing. Cost-effectiveness analysis 
was typically approached in the same manner. Whilst 
conclusions were provided as to the most effective sim-
ulation approach, true optimization was rare [69, 97], 
using formal techniques to identify parameter values that 
optimize one or more objective functions. Given the role 
of ABMs in modelling interventions in low-transmission 
settings, formal optimization techniques are important 
for enhancing the ability of models to guide policy.

Deterministic models have already been used as the 
basis of optimization of interventions for various infec-
tion diseases [125, 127, 128]. Strategies for the optimiza-
tion of interventions within ABMs appear less common, 
possibly due to the high computational burden of find-
ing consistent minima in the presence of stochasticity. It 
is difficult to define how to best approach optimization 
from an agent-based standpoint. A systematic review 
of ABMs for optimization problems [129] highlighted 
techniques used for disciplines such as scheduling, sup-
ply chain management, energy systems planning and 
transportation and logistics. As is likely the case regard-
ing spatial methods, optimization of malaria transmis-
sion modelling (and infectious disease simulation more 
broadly) may benefit from adapting approaches outside 
the field to a new context.

Increased clarity in model reporting would be of great 
benefit to both the creators of ABMs and their audience. 
While many papers included detailed supplementary 
materials for additional results, project descriptions and 
calibration, validation, sensitivity analysis and optimiza-
tion techniques, the intricacies of these techniques often 
unclear. A protocol exists for the description of ABMs 
[130], and models that used it [21, 31, 76] were simple 
to understand and appeared easily replicable by exter-
nal groups. Further transparency includes sharing of the 
mathematics and code [76] of models. These small steps 
in documentation would allow for increased verification 
and validation of models, as well as increasing opportuni-
ties for collaboration between modelling groups.

Beyond individual models, ensemble modelling is an 
important tool for generating robust conclusions about 
malaria transmission. A review of ebola models advo-
cated for an ensemble modelling approach that ade-
quately compares state-of-the-art models, but also allows 
for model diversity [131]. For malaria models built for 
similar purposes (for example, to estimate certain param-
eters of interest, or to predict the value of an interven-
tion), both inter- and intra-model comparison has been 
conducted. In some cases, two or three interventions 
have been simultaneously assessed using this approach 
[110, 114, 115]. The next steps for ensemble and 
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consensus modelling may include more interventions, 
spatial modelling, and developing techniques to deter-
mine which models are most appropriate when ensemble 
members differ in parameter estimates or outputs.

Conclusions
As malaria transmission continues to decline and inter-
ventions become more nuanced, agent-based modelling 
will have an increasingly important role to play in elimi-
nation programmes. A variety of techniques have already 
been developed, and models are increasingly tailored to 
the question of interest. The flexibility of ABMs is a key 
feature, with progressive model extensions and fine-grain 
spatiotemporal simulation two clear examples.

The breadth of model frameworks makes it difficult to 
develop guidelines for ABM construction, but this should 
be considered a strength. The correct approach to agent-
based modelling is likely a “horses for courses” approach, 
whereby the question at hand guides the development of 
the model; current approaches may be used to guide such 
choices. As models transition from tools for analysing an 
epidemic to guiding policy directions, it is important to 
be aware of the current literature and techniques availa-
ble. Existing model frameworks cover many transmission 
factors, so cross-collaboration may bring about larger 
models that can simulate many interventions and pro-
vide outputs regarding vector populations, host disease 
progression and the success of elimination strategies. 
However, using larger models may create difficulties with 
simulation. Improved techniques in parameter estima-
tion and optimization could enhance the role ensemble 
modelling currently plays in evaluating interventions for 
specific geographical and transmission contexts.

With the ever-increasing computing power available 
to researchers, detailed ABMs that accurately reflect 
the biology of malaria transmission are increasingly fea-
sible on a fine spatial resolution over large geographi-
cal regions. As such, agent-based modelling will be an 
important tool for helping to inform malaria elimination 
strategies over the coming years.
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