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Plasmodium vivax in vitro continuous 
culture: the spoke in the wheel
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and Manuel Alfonso Patarroyo2,4*

Abstract 

Understanding the life cycle of Plasmodium vivax is fundamental for developing strategies aimed at controlling and 
eliminating this parasitic species. Although advances in omic sciences and high‑throughput techniques in recent 
years have enabled the identification and characterization of proteins which might be participating in P. vivax inva‑
sion of target cells, exclusive parasite tropism for invading reticulocytes has become the main obstacle in maintaining 
a continuous culture for this species. Such advance that would help in defining each parasite protein’s function in 
the complex process of P. vivax invasion, in addition to evaluating new therapeutic agents, is still a dream. Advances 
related to maintenance, culture medium supplements and the use of different sources of reticulocytes and parasites 
(strains and isolates) have been made regarding the development of an in vitro culture for P. vivax; however, only 
some cultures having few replication cycles have been obtained to date, meaning that this parasite’s maintenance 
goes beyond the technical components involved. Although it is still not yet clear which molecular mechanisms P. 
vivax prefers for invading young  CD71+ reticulocytes [early maturation stages (I–II–III)], changes related to mem‑
brane proteins remodelling of such cells could form part of the explanation. The most relevant aspects regarding P. 
vivax in vitro culture and host cell characteristics have been analysed in this review to explain possible reasons why 
the species’ continuous in vitro culture is so difficult to standardize. Some alternatives for P. vivax in vitro culture have 
also been described.
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Background
Continuous in  vitro Plasmodium falciparum culture 
(standardized in the 1970s) [1–4] has been an indispen-
sable tool for understanding the parasite’s life cycle and 
identifying most proteins involved in erythrocyte inva-
sion, some of which have been tested as vaccine compo-
nents at clinical level [1–6]. Developing a methodology 
enabling the continuous growth and propagation of Plas-
modium vivax (P. vivax being the second most important 
species causing malaria in humans) has thus become a 

challenge for several research groups studying this para-
site [7–13].

Unfortunately, maintaining a continuous culture of P. 
vivax in  vitro is still difficult, despite different aspects 
having been studied and modified, i.e. different cul-
ture media [13, 14], parasite [9, 15] and reticulocyte [7, 
10] sources, added to the different methods for obtaining 
and enriching invasion target cells [16]. It has only been 
possible to maintain a culture in vitro for up to 26 months 
to date, having < 0.1% parasitaemia [14], which might be 
due to merozoites (Mrz) losing their ability to re-invade 
new host cells [11, 13, 14, 17, 18].

The forgoing has discouraged research orientated 
towards knowing in detail the mechanism used by P. 
vivax for specifically invading reticulocytes; conse-
quently, there has been a delay in identifying new mol-
ecules, the function they fulfil and their antigenic and 
immunogenic capability; such information is essential for 
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selecting specific proteins to be included when develop-
ing parasite control methods.

This work has been aimed at reviewing aspects which 
have been taken into account for standardizing an 
in  vitro P. vivax culture and proposes some alternatives 
which could be considered.

The current state of Plasmodium vivax biology
Plasmodium vivax is a parasite causing malaria in 
humans; it has been included on the international health 
agenda regarding its early eradication, mainly due to the 
high morbidity rates it causes and its wide geographical 
distribution [6]. This parasite species displays particu-
lar biological characteristics, such as hypnozoite devel-
opment in the liver and rapid gametocyte formation. 
Interestingly, the parasite exclusively infects immature 
erythrocytes (reticulocytes), representing just 1–2% of 
total red blood cells (RBC) from adult human peripheral 
blood. These cells are fragile, have rapid maturation and 
complex procedures are required for obtaining enriched 
samples, hence maintaining a P. vivax continuous culture 
in vitro is extremely difficult [16].

The absence of an in vitro culture in P. vivax could be 
considered as “the spoke in the wheel” which has caused 
a considerable delay (between 5 and 10 years) in execut-
ing certain types of studies, such as omic sciences, inva-
sion inhibition and determining adhesin-type ligands, 
epitopes and antigens [19–21], i.e. compared to those 
for P. falciparum [22–24]. In fact, more than 50 proteins 
involved in P. falciparum binding to and invading target 
cells have now been described as well as some receptors 
for them [25–28]. By contrast, only 23 proteins associ-
ated with P. vivax invasion of reticulocytes have been 
characterized (using parasites from patients [29–31] and 
infected animals’ samples [32–35]) and few receptors 
have been studied (Fig. 1). The proteins characterized to 
date have been tryptophan rich antigens (PvTRAg26.3, 
PvTRAg33.5, PvTRAg34, PvTRAg35.2, PvTRAg36 
(band 3 as receptor) [36], PvTRAg36.6, PvTRAg38 
(basigin [37] and band 3 [38] as receptors), PvTRAg40, 
PvTRAg69.4, PvTRAg74 (band 3 as receptor) [36], rhop-
try neck protein 5 (RON5) [39], reticulocyte-binding 
proteins RBP-1a, RBP-1b [40], RBP-2b (CD71 as recep-
tor) [41, 42], erythrocyte binding protein 2 (EBP-2) [43], 

Fig. 1 Plasmodium vivax and P. falciparum merozoite host cell adhesion proteins. The figure shows the P. vivax (left‑hand side) and P. falciparum 
(right‑hand side) proteins described to date having a binding‑related function regarding receptors identified on target cells: reticulocyte and 
mature erythrocytes, respectively. Mrz proteins’ subcellular localization is indicated. An asterisk indicates those molecules with unknown subcellular 
localization
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GPI-anchored micronemal antigen (GAMA) [44], reticu-
locyte binding surface antigen (RBSA) [45], the Duffy 
binding protein (DBP) (DARC as receptor) [46, 47], retic-
ulocyte binding protein 1 (RBP-1) [48], merozoite surface 
protein 1 (MSP-1) (possible receptor, band 3) [49], apical 
membrane antigen 1 (AMA-1) (chymotrypsin- and neu-
raminidase-sensitive receptor, GPB?) [50] and rhoptry 
neck proteins 2 and 4 (RON2 and RON4) [51].

The small list of characterized ligands and receptors 
reveals the tremendous challenge faced by research-
ers considering studying P. vivax in terms of continuous 
propagation to understand different aspects of the para-
site’s basic biology. In view of this and aimed at making 
significant advances in clinical and basic research regard-
ing the species, several groups have focused on stand-
ardizing a continuous in vitro culture system for P. vivax 
blood stages for which some essential parameters for 
optimizing parasite growth and development have been 
determined.

Culturing Plasmodium vivax
The first reports about culturing malarial Plasmodium 
date from the beginning of the twentieth century, some 
techniques being more controversial than others (i.e. par-
asite culture from infected water and keeping parasites 
alive in milk for several days) [52]. Although the first suc-
cessful P. vivax in vitro culture was reported in 1912 [53, 
54], a base protocol for propagating this parasite species 
was only established at the end of the 1970s [4, 55, 56]. 
Since then, one or more of the factors involved in the cul-
ture have been modified in various attempts at finding an 
efficient methodology (Fig. 2). However, it has not been 
possible to date to maintain a culture, given two main 
problems: parasitaemia dynamics and the amount of days 
for maintaining a P. vivax in vitro culture. Although is not 
clear why P. vivax Mrz in culture lose their ability to re-
invade new host cells, the isolate or parasite strain and 
target cells may have intrinsic characteristics which can 
influence P. vivax propagation (despite modifications to 
the culture media). The factors related to maintaining a 
P. vivax in vitro culture (i.e. culture media, parasite and 
reticulocyte origin) will therefore be analysed.

Culture media and supplements
Several media and supplement combinations have been 
tested to ensure the conditions and nutrients required 
for optimum P. vivax growth (Fig. 2). The first reported 
medias for P. vivax in  vitro culture were modified Har-
vard, RPMI-1640, Waymouth’s and SCMI 612 sup-
plemented media [4, 53, 57] (Fig.  2); it was seen that 
only SCMI 612 medium improved parasite viability 
[58] (Table  1). Other research showed that RPMI 1640 
medium supplemented with  MgCl2 [59], ascorbic acid, 

hypoxanthine, vitamin B12, choline and biotin [60] 
improved parasite maturation. However, in later studies 
in which RPMI 1640 medium was used [12, 56, 61–65], 
even in mixture with different compounds and salts 
 (MgS04,  KH2P04 and  CaCl2) and 50%  AB+ human serum, 
there was no improvement in parasitic density, suggest-
ing that the RPMI 1640 media is not appropriate for P. 
vivax continuous growth and development [65].

McCoy’s5A medium has also been routinely used [7, 
9–11, 13, 14, 17, 18, 66, 67] in combination with various 
supplements such as d-glucose and l-glutamine, or just 
with 20% or 25%  AB+ human serum [9, 10, 17, 18]. It has 
been reported that a medium consisting of McCoy’s5A 
supplemented with HEPES,  NaHCO3, d-glucose, gen-
tamycin and 50%  AB+ human serum maintains parasite 
density (10 parasites/µL) during the first 5  days of cul-
ture. However, such parasite density can be maintained 
after 5  days using just media supplemented with 25% 
 AB+ human serum [14]. Two compounds improving 
parasite development in McCoy’s5A medium have been 
reported recently: Albumax II [67] and GlutaMAX [15, 
68] (Fig.  2, Table  1). GlutaMAX (l-alanyl-l-glutamine 
dipeptide) did indeed improve parasite viability, growth 
and development compared to l-glutamine as this com-
pound does not break down to form toxic by-products, 
such as ammonia, formed by traditional l-glutamine 
[15]. This highlighted the fact that P. vivax could be very 
sensitive to the accumulation of waste or toxic products 
in in vitro conditions.

The use of Dulbecco’s Modified Eagle Medium 
(DMEM) for P. vivax culture supplemented with l-glu-
tamine, HEPES and hypoxanthine has been reported 
recently. Parasitaemia was maintained for 233  days and 
was ended because of bacterial contamination [69]. The 
fluctuation in parasitaemia using DMEM was similar 
to that observed when the parasite has been grown in 
McCoy’s5A medium [14], suggesting that these media 
(McCoy’s 5A and DMEM) are useful for culturing and 
maintaining parasite maturation and replication in vitro. 
Future trials should be conducted with McCoy’s5A or 
DMEM medium, supplemented with 25% human serum 
(with Glutamax and Albumax) to evaluate whether 
parasite density can be maintained and/or increased in 
culture.

Parasite source
The parasite has been used from two sources for stand-
ardizing P. vivax in  vitro culture, i.e. isolated from 
humans and from primates (Fig. 2, Table 1). Regardless of 
the source, it has been observed that keeping the culture 
in static conditions improves culture parasitaemia [15, 
61] as well as depleting white blood cell amount in reticu-
locyte samples, as leukocytes’ phagocytic activity against 
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parasites affects their invasion [53, 61]. Likewise, it has 
been shown that cryopreservation [9, 18] enables main-
taining parasite viability and invasive capability when 
preserved and stored for days [13, 69] or even years [9].

Difficulty related to variation in both longevity and 
parasitaemia has occurred regarding in vitro culture with 
parasites obtained from humans. For example, it has 
been reported that different isolates could be maintained 
in culture for several days: i.e. from 10 or 30  days [12], 
from 2 to 8 days or up to 85 days (more than 2 months) 
[10]. An in vitro culture of 3 P. vivax isolates was recently 
maintained for more than 1  year (26  months), having 
~ 0.01% parasitaemia [14]. Other research has shown that 
culture parasitaemia can increase almost tenfold when 

using parasites from isolates which were enriched during 
ring stage by Percoll gradient [11, 68]. Despite this, the 
parasite progressively loses its invasion ability, a problem 
which has not yet been resolved to date. These studies 
suggested that each P. vivax isolate has its own charac-
teristics related to adaptation to in vitro culture and thus 
their invasion capability, multiplication rate and para-
sitaemia are variables which must be considered when 
standardizing a culture for each of them. This hypothesis 
can be supported by a study by Russell et al., who evalu-
ated umbilical cord blood (UCB) reticulocyte invasion 
inhibition using 85 P. vivax clinical isolates. They found 
that invasion efficiency was constant for each specific 
isolate but that 85.79% of the total variance depended on 

Fig. 2 Conditions evaluated for culturing Plasmodium vivax in vitro. The figure shows modifications made to culture medium, parasite sources and 
the target cells which have been used in culturing the P. vivax parasite. Each combination evaluated is described in the culture medium section. 
For example, 14 indicates RPMI 1640 medium, which contains HEPES,  NaHCO3, neomycin, vitamin B12, hypoxanthine, ascorbic acid,  MgCl2, biotin, 
choline and 15%  AB+ human serum (box showing typology). The reticulocyte source section lists these cells’ enrichment methodology using the 
letters a–e. Sections of the graphic enclosed by a red discontinuous line indicate the best target cell sources and/or enrichment methods available 
so far
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isolate type [11]. Heterogeneity concerning human iso-
lates’ invasion efficacy and P. vivax parasitaemia density 
variation thus makes the methodologies used for cultur-
ing the parasite not suitable for studying its biology and 
further complicates the development of a robust and reli-
able culture method.

Unlike parasites obtained from humans, primate-
adapted P. vivax strains can be used to start in vitro cul-
ture anytime, given their availability. This is why some 
research groups have worked with several P. vivax strains 
(Fig.  2, Table  1) [56, 57, 61, 62, 70] which were able to 
adapt to invade erythroid cells in vitro (from humans suf-
fering from haemochromatosis [7, 15]), owl monkey cells 
[7] and reticulocytes obtained from the maturation of 
UCB haematopoietic stem cells (HSC) -  CD34+ [17], cul-
tures reaching > 0.5% parasitaemia. These results support 
the notion that monkey-adapted P. vivax strains do not 
lose their capability to invade, regardless of cell source, 
and therefore, represent a good alternative for establish-
ing a parasite culture.

Considering invasion efficacy variability in cultures 
from human sources and the great adaptability of strains 
in monkeys, it can be suggested that the same parasite 
strain must be used during attempts at standardization 
to establish the basic and necessary conditions for main-
taining a long-term in vitro culture.

Target cell source
Obtaining reticulocytes for continuous supplementation 
in culture has been a huge inconvenience since these cells 
only form 1 to 2% of human peripheral blood, mature 
quickly, are fragile and have low viability. UCB (con-
taining 6.9–7.9% reticulocytes), peripheral blood from 
humans or splenectomized monkeys, blood from haemo-
chromatosis patients (14–17% reticulocytes) and HSC 
(variable reticulocyte percentages) have been used as 
reticulocyte sources for standardizing an in vitro P. vivax 
parasite culture [7, 12, 61] (Fig. 2, Table 1). Different tech-
niques such as density gradients (Percoll and Nycodenz), 
ultra-centrifugation and/or immunomagnetic separation 
have also been used for obtaining a greater percentage of 
reticulocytes in culture, Nycodenz being one of the most 
appropriate compounds as it has had no notable toxic 
effects on cells [7, 14, 15] (Fig. 2).

Although UCB are a good source of reticulocytes, it has 
been shown that they do not support the parasite’s full 
development and are easily lysed [61]. Fetal haemoglobin 
in such erythroid cells apparently produces an inhibitory 
effect for P. vivax growth, equivalent to that reported for 
P. falciparum, which does not grow adequately in erythro-
cytes containing fetal haemoglobin [71, 72]. The forgoing 
has been supported since it has been reported that reticu-
locytes from  CD34+ erythroid progenitors (derived from 

adult peripheral blood or bone marrow) and from adults’ 
peripheral blood lacking fetal haemoglobin could improve 
P. vivax invasion [66] regarding maturation and gameto-
cyte production [14]. Whilst these studies have shown that 
UCB does not seem to be very suitable for standardizing 
an in vitro P. vivax culture, another study has shown that 
fetal haemoglobin caused no alteration in parasite growth 
and up to 0.4% parasitaemia was reached during the first 
days of culture [11]. Although it is not clear how haemo-
globin could alter parasite development, this effect might 
depend on the reticulocyte’s maturation stages (variability) 
and the availability of these stages in the UCB source.

Another great concern related to using reticulocytes is 
their rapid maturation. It has been suggested that these 
target cells can be frozen to provide a reserve and then 
used for supplementing a culture when required. Differ-
ent studies have reported that both fresh reticulocytes 
and freshly thawed reticulocytes were susceptible to 
invasion by P. vivax Mrz. Interestingly, such susceptibil-
ity did not depend on reticulocyte source since they were 
obtained from UCB [18], haemochromatosis patients (in 
which the cells were enriched using Percoll gradient [7, 
18] or differential centrifugation [7]) and human cord 
HSCs [9, 17] (enriched by Percoll density gradient [10]). 
Notably, cryopreserved cells which were then thawed had 
up to 70% viability and such percentage remained stable 
compared to that for fresh samples [9].

According to the literature, haemochromatosis patients 
have been one of the best reticulocyte (fresh or cryopre-
served) sources. These reticulocytes, enriched by differ-
ential centrifugation in 20% homologous plasma [7, 15], 
were easily invaded, able to support both parasite growth 
and invasion [12] and maintain a stable schizont percent-
age [7]. Although Percoll gradient has been widely used 
for enriching reticulocytes obtained from haemochro-
matosis patients (Fig. 2), two studies have reported that 
cell viability and stability could be affected by damage to 
or the loss of some membrane receptors which might be 
essential for P. vivax invasion [7, 15]. Despite this, one of 
the drawbacks of this target cell source is that haemo-
chromatosis mainly occurs in Caucasians, a type of retic-
ulocyte not normally accessible for researchers outside 
Europe or North America [14]. Using HSC-derived retic-
ulocytes could guarantee a more homogenous and stand-
ardized cell population which would enable obtaining a 
high reticulocyte concentration (> 20%) [9], necessary for 
maintaining P. vivax cultures.

Factors such as culture medium, as well as parasite 
and reticulocyte sources have been revised and possible 
modifications which could improve parasite development 
in vitro have been pointed out. However, target cells must 
be analysed in depth in relation to their intrinsic charac-
teristics enabling the parasite to invade them.
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Reticulocyte receptors: the new molecular keys?
Taking into account that P. vivax Mrz only invade reticu-
locytes, the next question arises: Which characteristics 
do reticulocytes have so that P. vivax can only invade 
this type of cell? Immature reticulocytes in bone marrow 
contain ribonucleic acid (RNA) and undergo different 
biochemical, biophysical and metabolic changes during 
their maturation to normocytes within a period of 72 h 
[73]. The differences between reticulocytes and normo-
cytes have been studied at molecular level in murine and 
human models [74–76]. It has been found that the main 
difference between these two cells is the abundance of 
their receptors, since more than 60% of proteins quanti-
fied in immature erythrocytes became reduced (from 
2 to 100 times) as they matured to normocytes, whilst 
around 5% had higher expression levels. Receptors such 
as transferrin receptor (CD71) on reticulocyte mem-
brane decrease progressively until their total absence in 
normocytes [77, 78]; this, together with cytoplasmatic 
RNA (Thiazole Orange stained, TO) concentration, has 
enabled classifying the reticulocyte population into four 
groups: Heilmeyer stage I  (CD71highTOhigh), Heilmeyer 
stages II and III  (CD71lowTOmed) and Heilmeyer stage IV 
 (CD7−TOlow) [73, 79].

Most P. vivax in  vitro culture studies have been 
restricted to using stage III (the first to emerge from bone 
marrow), stage IV or mature reticulocyte  (CD71−TOlow) 
populations. Using these two reticulocyte stages and their 
rapid maturation could provide an explanation for why 
the parasite loses its infective capability through various 
replication cycles. This could also explain why less than 
1% parasitaemia has only been achieved in most assays 
performed to date [12, 14]. In line with the forgoing 
hypothesis, it has been shown that cryopreserved para-
site isolates from patients can infect stage I reticulocytes 
 (CD71highTO high) representing only 0.02% in total blood 
[79]. The infected cells mature rapidly and almost com-
pletely lose reticular matter 3  h post-invasion, thereby 
showing that parasite invasion promotes rapid reticulo-
cyte maturation [79, 80]. Similar results have been found 
by Shaw-Saliba et al., when evaluating a culture of Sal-I 
strain parasites adapted in A. lemurinus monkeys with 
 CD71high reticulocytes. As expected, parasites prefer-
entially invaded stage I reticulocytes  (CD71highTOhigh) 
and very few managed to invade stage IV reticulocytes 
 (CD71−TOlow) [15]. Research by Golenda and Udom-
sangpetch showed that P. vivax development and inva-
sion levels were better using haemochromatosis patients’ 
blood; these results also support the previous hypothesis 
[7, 12] as people suffering this type of anaemia produce a 
larger amount of stage I reticulocytes  (CD71highTOhigh) to 
balance the decrease of erythrocytes in blood flow [81].

These observations lead to another question: Why can 
P. vivax Mrz only invade the most immature reticulocyte 
stage? Several studies using different approaches could 
provide an answer to this question. One such was related 
to DARC receptor abundance on  CD71highTOhigh reticu-
locytes and conformational changes affecting such recep-
tor enabling the parasite to bind to and invade this type 
of cell [82]. It has been found that although total DARC 
protein remains constant throughout reticulocyte matu-
ration there is selective exposure of one DARC amino 
acid sequence (QLDFEDVWNSSY) by conformational 
changes before maturation which causes DBP to bind 
more specifically to  CD71high/TOhigh reticulocytes than 
to other mature reticulocyte or erythrocyte subpopu-
lations [82]. Other studies showing P. vivax proteins’ 
preference for binding to  CD71high reticulocytes [44, 
45] and evidence about RBP-2b binding to CD71 mem-
brane receptor have been published very recently [42]. 
The above highlights the most immature reticulocyte 
stage  (CD71high  TOhigh) as the molecular key (receptor) 
which P. vivax takes advantage of to invade and replicate 
within cells. This could suggest that using reticulocytes 
from bone marrow and/or from patients suffering differ-
ent types of haemolytic anaemia (i.e. haemochromato-
sis) could be appropriate for maintaining and developing 
a continuous in  vitro culture system involving P. vivax 
blood stages [83]. However, it would be ethically compli-
cated to work with samples from patients suffering from 
some type of anaemia, which is why using stage I homog-
enous reticulocytes  (CD71high  TOhigh) obtained from 
HSC could be a viable alternative.

Others challenges to be faced
It has been demonstrated that P. vivax DBP binds more 
to reticulocytes having the  Fya−/Fyb+ phenotype [84], 
which could be an advantage regarding parasite culture.

It would be expected that supplementing cultures with 
a  CD71highTOhigh enriched reticulocyte population and 
having such phenotype should maintain parasitaemia, 
invasion efficiency and a culture for a long time.

A new challenge today concerns the fact that enough 
evidence has been amassed to indicate that the parasite 
can also invade Duffy negative cells  (Fya-/Fyb-) via an as-
yet-unknown alternative invasion route [85]. This find-
ing suggests two possibilities; first, such P. vivax property 
remains unknown due to this parasite’s sub-microscopic 
and asymptomatic parasitaemia and secondly this could 
be a new adaptation phenomenon where ligand-receptor 
interaction routes different to DBP-DARC are acting as 
survival strategy for propagating cells having the  Fya−/
Fyb− phenotype. Studies aimed at ascertaining whether 
P. vivax target cell invasion route is via the RBP2b-CD71 
interaction using Duffy negative phenotype  CD71high 
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reticulocytes are in need [42]. Future assays should evalu-
ate whether the aforementioned factors could help stand-
ardize a P. vivax culture.

Other important considerations include knowing 
whether the abundance of receptors (as has been showed 
for DARC and CD71) or remodelling other proteins 
during reticulocyte maturation (as has been shown for 
DARC [82]) can have an impact on the development of a 
P. vivax in vitro culture.

This review has described different factors affecting P. 
vivax in vitro culture, ranging from using several strains 
and isolates to different target cell sources and physico-
chemical variations. Using the same parasite strain and 
 CD71highTOhigh host cells could be a starting point for 
removing the spoke in the wheel and advance knowledge 
regarding P. vivax biology.
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